JPH0489368A - Production of ceramics-metal coupled body - Google Patents

Production of ceramics-metal coupled body

Info

Publication number
JPH0489368A
JPH0489368A JP20181290A JP20181290A JPH0489368A JP H0489368 A JPH0489368 A JP H0489368A JP 20181290 A JP20181290 A JP 20181290A JP 20181290 A JP20181290 A JP 20181290A JP H0489368 A JPH0489368 A JP H0489368A
Authority
JP
Japan
Prior art keywords
ceramic
metal
metal member
press
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20181290A
Other languages
Japanese (ja)
Other versions
JPH0829991B2 (en
Inventor
Hiroyuki Kawase
河瀬 博之
Takeyuki Mizuno
水野 丈行
Koji Kato
加藤 孝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2201812A priority Critical patent/JPH0829991B2/en
Publication of JPH0489368A publication Critical patent/JPH0489368A/en
Publication of JPH0829991B2 publication Critical patent/JPH0829991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To easily and surely couple a ceramic member to a specified metal member and to improve the quality of the resulting coupled body by forcing the projecting part of the ceramic member into the recessed part of the metal member at ordinary temp. CONSTITUTION:A metal member made of a precipitation-hardening low- expansion heat-resistant Fe-Ni-Co alloy having 90-120kg/cm<2> yield stress (offset yield stress strength at 0.2% permanent set) after precipitation hardening is subjected to precipiation hardening and recessed to obtain a metal member 6 having a recessed part 8 whose inside diameter (b) satisfies the inequality [where (a) is the outside diameter of the projecting part 4 of a ceramic member 2 to be coupled]. The projecting part 4 of the ceramic member 2 is forced into the recessed part 8 of the metal member 6 at ordinary temp. to produce the subject coupled body.

Description

【発明の詳細な説明】 (技術分野) 本発明は、セラミックス・金属結合体の製造方法に係り
、特にセラミックス部材と金属部材との結合作業を容易
に且つ確実に行ない、品質の優れた結合体を製造する方
法に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for manufacturing a ceramic-metal composite, and in particular to a method for manufacturing a ceramic-metal composite, in particular a method for manufacturing a ceramic-metal composite, which facilitates and reliably performs the process of joining a ceramic member and a metal component, and provides a high-quality composite. The present invention relates to a method for manufacturing.

(背景技術) セラミックスは、一般に、硬度、耐摩耗性に優れ、また
高温での機械的性質や耐食性にも優れているところから
、高温での機械的強度や耐摩耗性が必要とされる自動車
エンジン部品、ガスタービン部品、産業機械用部品等へ
の応用が種々状みられ、既に実用化に至っているものも
ある。
(Background technology) Ceramics generally have excellent hardness and wear resistance, as well as excellent mechanical properties and corrosion resistance at high temperatures, so they are used in automobiles that require mechanical strength and wear resistance at high temperatures. There are various applications for engine parts, gas turbine parts, parts for industrial machinery, etc., and some have already been put into practical use.

しかしながら、セラミックスを上記の如き部品として用
いる場合には、通常、金属部材と組み合わせて、それと
結合せしめた形態において用いられている。けだし、セ
ラミックスが優れた特性を持つ反面、加工が困難であっ
たり、脆性を有するため、単独で用いるよりは、必要な
部品にのみセラミックスを用い、機械部品として更に他
の構造部材との組合せにおいて加工の容易な金属部材を
セラミックスと結合させた形で用いる方が有利であるか
らである。
However, when ceramics are used as the above-mentioned parts, they are usually combined with and bonded to metal members. However, although ceramics have excellent properties, they are difficult to process and are brittle, so rather than using them alone, they are used only in necessary parts, and in combination with other structural members as mechanical parts. This is because it is more advantageous to use a metal member that is easy to process and combined with ceramics.

ところで、セラミックスと金属との結合方法としては、
従来から、多くの方法が提案されているが、その中でも
、凹凸嵌合による結合方式は、比較的容易な方法とされ
、例えば特開昭61−40879号公報や特開昭62−
251023号公報等においては、析出硬化型合金から
なる金属部材の凹部に、セラミックス部材に設けられた
凸部を加熱圧入せしめた後、金属部材を析出硬化処理す
ることにより、金属・セラミックス結合体を得る手法が
明らかにされている。
By the way, the method of bonding ceramics and metals is as follows:
Many methods have been proposed in the past, but among them, a coupling method using concave-convex fitting is considered to be a relatively easy method, for example, as disclosed in JP-A-61-40879 and JP-A-62-
In Publication No. 251023, etc., a protrusion provided on a ceramic member is heated and press-fitted into a recess of a metal member made of a precipitation-hardening alloy, and then the metal member is subjected to precipitation hardening treatment to form a metal-ceramic composite. The method to obtain it has been clarified.

しかしながら、そのような金属部材とセラミックス部材
との加熱圧入による結合方式にあっては、加熱嵌合によ
る圧入荷重の低減が期待されるものではあるが、そのよ
うな加熱によって金属部材の金属表面が酸化され、その
結果、圧入後の冷却過程において、セラミックスと金属
の熱膨張係数の相違により、セラミックス部材と金属部
材とが個々に収縮する際、それら部材間に存在する酸化
膜によって接触部の摩擦係数が高くなり、セラミックス
部材を破損したり、それら両部材の結合状態が不完全と
なったりする問題が内在していた。
However, in such a method of joining a metal member and a ceramic member by heating and press-fitting, although it is expected that the press-fitting load will be reduced by heating, such heating may damage the metal surface of the metal member. As a result, during the cooling process after press-fitting, when the ceramic member and the metal member contract individually due to the difference in coefficient of thermal expansion between the ceramic and metal, the oxide film that exists between them causes friction at the contact area. The coefficient becomes high, and there is an inherent problem that the ceramic member may be damaged or the bonding state between the two members may become incomplete.

しかも、そのような加熱圧入による結合方式では、金属
部材とセラミックス部材との圧入機構に加熱装置を組み
付ける必要があり、その作業性も低下する問題があった
Moreover, in such a joining method by heating and press-fitting, it is necessary to assemble a heating device to the press-fitting mechanism for the metal member and the ceramic member, and there is a problem that the workability thereof is also reduced.

また、析出硬化処理の施されていない金属部材にセラミ
ックス部材を圧入または焼き嵌めした結合体において、
降伏応力が低い金属部材を用いた場合には、金属が望性
変形し、締付力が低下する問題を惹起し、更に圧入、結
合せしめた形態において、金属部材を析出硬化処理する
場合にあっては、金属がクリープし、有効締め代が低下
する問題を惹起して、有効な金属・セラミックス結合体
を得ることが出来なかったのである。
In addition, in a combined body in which a ceramic member is press-fitted or shrink-fitted into a metal member that has not been subjected to precipitation hardening treatment,
If a metal member with low yield stress is used, the metal may undergo desired deformation and the tightening force may be reduced. Furthermore, when the metal member is press-fitted and bonded, precipitation hardening treatment may occur. As a result, the metal creeps and the effective interference decreases, making it impossible to obtain an effective metal-ceramic composite.

(解決課題) ここにおいて、本発明は、かかる事情を背景4こして為
されたものであって、その課題とするところは、セラミ
ックス部材と金属部材との圧入結合に際しての酸化膜の
存在による悪影響を排除して、充分な締付力の確保と圧
入荷重によるセラミ・ノクスの破損を防止した有効なセ
ラミックス・金属結合体を製造することにあり、またそ
のような結合体を、簡便に且つ容易に、作業性よく製造
することにある。
(Problem to be Solved) Here, the present invention has been made against the background of the above-mentioned circumstances, and its problem is to solve the problem of adverse effects caused by the presence of an oxide film when press-fitting a ceramic member and a metal member. The objective is to manufacture an effective ceramic-metal composite body that eliminates the above problems, secures sufficient tightening force, and prevents damage to the ceramic-nox due to press-fitting loads, and also provides a simple and easy way to create such a composite body. The key is to manufacture it with good workability.

(解決手段) そして、本発明は、かかる課題解決のために、セラミッ
クス部材に設けられた凸部を、金属部材に設けられた凹
部内に圧入して、それらセラミックス部材と金属部材と
を結合せしめてなるセラミックス・金属結合体を製造す
るに際して、前記金属部材を析出硬化型Fe−Ni−C
o基低膨張耐熱合金にて形成し、それを析出硬化せしめ
た後、前記凹部を加工して、該金属部材の凹部の内径(
b)と前記セラミックス部材の凸部の外径(a)とが、
次式: を満足するように為し、その後か−かる加工された金属
部材の凹部に対して、前記セラミックス部材の凸部を常
温下において圧入するようにしたのである。
(Solution Means) In order to solve this problem, the present invention press-fits a convex portion provided on a ceramic member into a recess provided on a metal member to join the ceramic member and the metal member. When manufacturing a ceramic-metal composite consisting of
The metal member is made of an o-based low expansion heat-resistant alloy, and after precipitation hardening, the recess is processed to adjust the inner diameter of the recess (
b) and the outer diameter (a) of the convex portion of the ceramic member,
The following formula was made to satisfy: After that, the convex portion of the ceramic member was press-fitted into the concave portion of the processed metal member at room temperature.

(具体的構成・作用) このように、本発明にあっては、セラミックス部材と金
属部材との圧入結合に際して、かかる金属部材として、
析出硬化(時効硬化)後の降伏応力(0,2%耐力)が
90〜120 kg/cm2程度の析出硬化型Fe−N
i−Co基低膨張耐熱合金にて形成されたものを用い、
且つそれらの圧入代が前記式を満足するように0.4%
〜2.5%とすることにより、充分な締付力の確保と、
圧入荷重によるセラミックスの破損の防止を達成し得た
のである。
(Specific configuration/effect) As described above, in the present invention, when press-fitting a ceramic member and a metal member, as the metal member,
Precipitation hardening type Fe-N with a yield stress (0.2% proof stress) of about 90 to 120 kg/cm2 after precipitation hardening (age hardening)
Using an i-Co based low expansion heat resistant alloy,
And 0.4% so that the press-fitting allowance satisfies the above formula.
~2.5% ensures sufficient tightening force and
This made it possible to prevent damage to the ceramics caused by press-fitting loads.

これに対して、析出硬化型合金の一つであるマルエージ
ング鋼からなる金属部材を用いた場合にあっては、かか
るマルエージング鋼は弾性係数が大きく、且つ降伏応力
が高いため、室温圧入では圧入荷重が大きくなり、セラ
ミックス部材が破損し易いのであり、またそのような問
題を回避すべく、加熱により金属部材を膨張させて、セ
ラミックス部材の正大荷重を低(して、高温圧入操作に
て嵌入・結合を行なうと、前記したように、酸化膜の発
生によりセラミックスの破損等の問題が惹起されるので
ある。
On the other hand, when using a metal member made of maraging steel, which is one of the precipitation hardening alloys, such maraging steel has a large elastic modulus and high yield stress, so it cannot be press-fitted at room temperature. The press-fitting load becomes large, and the ceramic member is likely to be damaged.In order to avoid such problems, the metal member is expanded by heating to reduce the normal load of the ceramic member (to reduce the normal load in the high-temperature press-fitting operation). If fitting and bonding are performed, problems such as damage to the ceramics will occur due to the formation of an oxide film, as described above.

なお、ここで用いられる金属部材を構成する析出硬化型
のFe−Ni−Co基低膨張耐熱合金とは、一般に、高
含量(30〜45%程度)のNlと共に、COを、Fe
に含有せしめてなる時効硬化型の高強度合金であって、
熱膨張率の低いものである。そして、有利には、それら
合金成分の他にも、AA、Nb、Ti、Si等の成分が
、更に加えられてなるものであり、インコロイ9o3゜
907.909.HRA903 (日立金属);MGA
93(三菱金属)等として市販されているものが、有利
に用いられる。
Note that the precipitation hardening Fe-Ni-Co-based low-expansion heat-resistant alloy that constitutes the metal member used here generally contains CO, Fe, and a high content of Nl (approximately 30 to 45%).
An age-hardening high-strength alloy containing
It has a low coefficient of thermal expansion. Advantageously, in addition to these alloy components, components such as AA, Nb, Ti, and Si are further added. HRA903 (Hitachi Metals); MGA
93 (Mitsubishi Metals) and the like are advantageously used.

そして、このような析出硬化型のFe−NiCo基低膨
張耐熱合金にて形成された金属部材には、常法に従って
、析出硬化(時効硬化)処理が施され、析出硬化せしめ
られた金属部材とされた後、その析出硬化した金属部材
に対して、セラミックス部材の凸部に対応する凹部が、
前記式にて規定される圧入代〔(a−b)/a)となる
ように加工されるのである。
Then, a metal member formed from such a precipitation hardening type Fe-NiCo-based low expansion heat resistant alloy is subjected to a precipitation hardening (age hardening) treatment according to a conventional method, and becomes a precipitation hardened metal member. After that, the precipitation-hardened metal member has recesses corresponding to the protrusions of the ceramic member.
Processing is performed so that the press-fitting allowance [(a-b)/a] is defined by the above formula.

このように、本発明にあっては、析出硬化処理を金属部
材のみで行ない、結合体の形態において実施するもので
はないところから、−度に大量の金属部材を析出硬化処
理することが出来る利点があるのであり、また析出硬化
処理後に、金属部材に凹部を加工するものであるところ
から、金属酸化の影響を全く受けることがなく、このた
め、凹凸嵌合面における酸化膜の存在を全く顧慮する必
要が無くなったのである。
As described above, in the present invention, since the precipitation hardening treatment is performed only on the metal members and not in the form of a composite body, the advantage is that a large number of metal members can be subjected to the precipitation hardening treatment at the same time. Moreover, since the recesses are machined into the metal member after precipitation hardening, it is completely unaffected by metal oxidation, and therefore, the presence of an oxide film on the uneven mating surface is not considered at all. There was no longer a need to do so.

なお、セラミックス部材の凸部の外径をa、金属部材の
凹部の内径をbとしたとき、それら両部材の圧入代((
a−b)/a)に関して、その値が0.4%未満、換言
すれば凸部と凹部の寸法差が小さいと、それら両部材の
熱膨張係数の差が大きいところから、接合体の高温下に
おける充分な捩じり強度の確保が困難となる問題が惹起
されるのであり、一方、かかる圧入代が2.5%を越え
るようになると、正大荷重が著しく増大するようになり
、セラミックス部材が破損する可能性が大となる等の問
題を惹起することとなる。
In addition, when the outer diameter of the convex part of the ceramic member is a, and the inner diameter of the concave part of the metal member is b, the press-fitting allowance ((
Regarding a-b)/a), if the value is less than 0.4%, in other words, the difference in dimension between the convex part and the concave part is small, the difference in the coefficient of thermal expansion between these two parts is large, so the high temperature of the joined body On the other hand, if the press-fitting allowance exceeds 2.5%, the positive load will increase significantly, causing the ceramic member to have sufficient torsional strength. This may cause problems such as an increased possibility of damage to the product.

その後、かかる加工された金属部材の凹部に対して、セ
ラミックス部材の凸部が常温下において圧入せしめられ
、以て目的とするセラミ・ノクス・金属結合体が形成さ
れるのであるが、このような圧入による凹凸嵌合操作に
あっては、その正大作業が常温下で行なわれるために、
装置も簡易化することが出来、且つ作業性も容易となり
、その生産性を高めることが出来るのである。
Thereafter, the protrusions of the ceramic member are press-fitted into the recesses of the processed metal member at room temperature, thereby forming the desired ceramic-nox-metal composite. In the uneven fitting operation by press-fitting, since the work is carried out at room temperature,
The device can also be simplified, and workability can also be simplified, making it possible to increase productivity.

また、かかる圧入嵌合に際して、金属部材は、析出硬化
されているために、それにセラミックス部材を圧入して
も、望性変形しにくく、目的とする締付力の結合体を容
易に得ることが出来るのである。
In addition, during such press-fitting, since the metal member is precipitation hardened, even if a ceramic member is press-fitted into it, it is difficult to deform as desired, and it is easy to obtain a combined body with the desired tightening force. It can be done.

(実施例) 以下に、本発明の幾つかの実施例を示し、本発明を更に
具体的に明らかにすることとするが、本発明が、そのよ
うな実施例の記載によって何等の制約をも受けるもので
ないことは、言うまでもないところである。
(Examples) Below, some examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited in any way by the description of such examples. It goes without saying that this is not something you should accept.

また、本発明には、以下の実施例の他にも、更には上記
の具体的記述以外にも、本発明の趣旨を逸脱しない限り
において、当業者の知識に基づいて種々なる変更、修正
、改良等を加え得るものであることが、理解されるべき
である。
In addition to the following examples and the above-mentioned specific description, the present invention includes various changes, modifications, and changes based on the knowledge of those skilled in the art, as long as they do not depart from the spirit of the present invention. It should be understood that improvements and the like may be made.

実施例 1 第1図に示されるようなセラミックス部材2の凸部4を
金属部材6の凹部8に圧入せしめて得られるセラミック
ス・金属結合体を得るべく、図示の如き形状のセラミッ
クス部材2を、窒化珪素焼結体から、その凸部4の外径
(a)が8.10゜12.15mmとなるようにして作
製した。
Example 1 In order to obtain a ceramic-metal composite obtained by press-fitting the protrusion 4 of the ceramic member 2 into the recess 8 of the metal member 6 as shown in FIG. 1, the ceramic member 2 having the shape shown in the figure was It was manufactured from a silicon nitride sintered body so that the outer diameter (a) of the convex portion 4 was 8.10° and 12.15 mm.

一方、析出硬化型Fe−Ni−Co基低膨張耐熱合金で
あるインコロイ903 (42%Fe−38%Ni−1
5%Co −3,O%N b −1,4%Ti−〇、7
%Al−0.1%Si)を用い、720°CX8時間と
620°CX8時間の加熱により、析出硬化処理を施し
た後、下記第1表に示される内径(b)を与えるように
、深さニアmmの凹部(8)を切削加工により設け、そ
れぞれの金属部材6を得た。
On the other hand, Incoloy 903 (42%Fe-38%Ni-1
5%Co -3, O%N b -1, 4%Ti -〇, 7
%Al-0.1%Si) by heating at 720°C for 8 hours and 620°C for 8 hours. A concave portion (8) with a diameter of 1 mm was provided by cutting, and each metal member 6 was obtained.

次いで、圧入用治具をオートグラフに載置し、圧入状態
を該オートグラフで確認しながら、上記のセラミックス
部材(2)と金属部材(6)とを種々組み合わせて、そ
れぞれ圧太し、目的とするセラミックス・金属結合体を
作製した。
Next, the press-fitting jig is placed on an autograph, and while checking the press-fitting state on the autograph, various combinations of the above ceramic member (2) and metal member (6) are pressed, and the desired thickness is achieved. A ceramic-metal composite was fabricated.

また、比較のために、圧入温度を高めたものや圧入後に
おいて同様な析出硬化処理を施したもの、更に従来のマ
ルエージング綱からなる金属部材を用いて、圧入前また
は圧入後に析出硬化処理(550°CX3時間)を施し
たものについても、それぞれ、セラミックス・金属結合
体を作製した。
In addition, for comparison, we used metal members made of conventional maraging steel that were heated to a higher press-in temperature, those that underwent similar precipitation hardening treatment after press-fitting, and those that underwent precipitation hardening treatment before or after press-fitting. 550°C for 3 hours), ceramic-metal composites were also produced.

そして、このようにして得られた各種のセラミックス・
金属結合体について、それらを、小型電気炉に組み付け
たネジリ試験機にそれぞれセットし、500°Cの温度
で10分間保持した後、ネジリトルフレンチでネジリ強
さを測定し、その結果を、下記第1表に併わせ示した。
Various ceramics obtained in this way
Regarding the metal composites, each was set in a torsion tester assembled in a small electric furnace, and after holding at a temperature of 500°C for 10 minutes, the torsion strength was measured with a screw little French, and the results are shown below. It is also shown in Table 1.

なお、このネジリ試験結果を示すネジリ強度二P (k
g/mn2. )は、単位面積当りの強度として、下式
に基づいて算出されるものである。
In addition, torsion strength 2P (k
g/mn2. ) is calculated as the strength per unit area based on the following formula.

a / 2     π ・ a−L 但し、a:セラミックス部材の凸部の外径(肛)Tr:
ネジリトルク (kg−胚) L:接合長さ(mll+) かかる第1表の結果から明らかなように、圧入前に析出
硬化処理が施された金属部材を用いて得られた結合体に
おいて、その圧入代が0.4〜2.5%のものにあって
は、そのネジリ強度か約5廟/肛2程度あり、良好な締
付状態であることが確認された。
a / 2 π ・ a-L However, a: Outer diameter (anus) of the convex part of the ceramic member Tr:
Screw Torque (kg-embryo) L: Joining length (ml+) As is clear from the results in Table 1, in a bonded body obtained using a metal member that has been subjected to precipitation hardening treatment before press-fitting, the press-fitting length is It was confirmed that the torsion strength of those with a thickness of 0.4 to 2.5% was approximately 5 torsions/2 torsions, indicating a good tightening condition.

これに対して、圧入代が0.4%未満、即ち凸部と凹部
の寸法差が小さい場合にあっては、充分なネジリ強度が
得られず、また結合後に析出硬化処理した場合のネジリ
強度は約4kg/mm2以下となり、締付力が小さく、
更に結合前に析出硬化させたインコロイ903からなる
金属部材を加熱して圧入した結合体にあっては、その冷
却時にセラミックス部材が破損し、目的とするセラミッ
クス・金属結合体を得ることが出来なかった。
On the other hand, if the press-fit allowance is less than 0.4%, that is, the dimensional difference between the convex part and the concave part is small, sufficient torsional strength cannot be obtained, and even if precipitation hardening is performed after bonding, the torsional strength is approximately 4 kg/mm2 or less, and the tightening force is small.
Furthermore, in the case of a combined body in which a metal member made of Incoloy 903, which had been precipitation hardened before bonding, was heated and press-fitted, the ceramic member was damaged during cooling, making it impossible to obtain the desired ceramic-metal combined body. Ta.

実施例 2 第2図に示されるターボチャージャロータを、Si3N
、よりなるセラミックロータ12に設けた直径:12m
m(7)凸部14と、合金m(SNCM439)よりな
る金属軸(ジャーナル部)15の一端に摩擦圧接により
接合された析出硬化処理済みの析出硬化型合金(インコ
ロイ903)からなるスリンガ一部16に設けた内径:
11.9mmの凹部18とを、常温下で圧入することに
より、製作した。なお、摩擦圧接は、スリンガ一部(1
6)とジャーナル部(15)の段付アール部において行
なった。
Example 2 The turbocharger rotor shown in FIG.
Diameter of ceramic rotor 12 made of: 12 m
m(7) A part of a slinger made of a precipitation-hardened alloy (Incoloy 903) that has undergone precipitation hardening treatment and is joined by friction welding to the convex part 14 and one end of a metal shaft (journal part) 15 made of alloy m (SNCM439). Inner diameter provided at 16:
It was manufactured by press-fitting a recess 18 of 11.9 mm at room temperature. In addition, friction welding is performed on a part of the slinger (1
6) and the stepped radius portion of the journal portion (15).

かくして得られたセラミックターボチャージャロータを
高温回転試験装置に組み込んで、900゛Cの温度の燃
焼ガスにより、周速500 m /secの回転速度で
100時間回転試験を行なったが、何等の異常も認めら
れなかった。
The thus obtained ceramic turbocharger rotor was installed in a high-temperature rotation test device, and a rotation test was conducted for 100 hours at a circumferential speed of 500 m/sec using combustion gas at a temperature of 900°C, but no abnormality was found. I was not able to admit.

(発明の効果) 以上の説明から明らかなように、本発明によれば、充分
な締付力を確保しつつ、圧入荷重によるセラミックス部
材の破損を防止せしめて、有効なセラミックス・金属結
合体を得ることが出来るのであり、特に析出硬化せしめ
た材料を加工して得られる金属部材に対して、セラミン
クス部材を常温圧入するものであるところから、金属酸
化の影響も全く受けることがないので、圧入嵌合におけ
る酸化膜の存在による問題も悉く排除し得、更には圧入
装置も簡易化され得て、その作業性も容易となる等の特
徴を発揮し、そこに、本発明の大きな工業的意義が存す
るのである。
(Effects of the Invention) As is clear from the above description, according to the present invention, it is possible to prevent damage to the ceramic member due to press-fitting load while ensuring sufficient tightening force, thereby creating an effective ceramic-metal bond. In particular, since ceramic parts are press-fitted at room temperature into metal parts obtained by processing precipitation-hardened materials, they are completely unaffected by metal oxidation. Problems caused by the presence of an oxide film during fitting can be completely eliminated, and the press-fitting equipment can also be simplified, making its workability easier.Therefore, the present invention has great industrial significance. exists.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、それぞれ、実施例1及び2におい
て作製されるセラミックス・金属結合体を示す説明図で
ある。 2:セラミンクス部材  4;凸部 6:金属部材      8:凹部 12:セラミックロータ 14:凸部 15:金属軸(ジャーナル部) 16:スリンガ一部   18:凹部
FIG. 1 and FIG. 2 are explanatory diagrams showing ceramic-metal composite bodies produced in Examples 1 and 2, respectively. 2: Ceraminx member 4; Convex portion 6: Metal member 8: Concave portion 12: Ceramic rotor 14: Convex portion 15: Metal shaft (journal portion) 16: Part of slinger 18: Concave portion

Claims (1)

【特許請求の範囲】 セラミックス部材に設けられた凸部を、金属部材に設け
られた凹部内に圧入して、それらセラミックス部材と金
属部材とを結合せしめてなるセラミックス・金属結合体
を製造するに際して、前記金属部材を析出硬化型Fe−
Ni−Co基低膨張耐熱合金にて形成し、それを析出硬
化せしめた後、前記凹部を加工して、該金属部材の凹部
の内径(b)と前記セラミックス部材の凸部の外径(a
)とが、次式: 0.4≦(a−b)/a×100≦2.5 を満足するように為し、その後かかる加工された金属部
材の凹部に対して、前記セラミックス部材の凸部を常温
下において圧入することを特徴とするセラミックス・金
属結合体の製造方法。
[Claims] In manufacturing a ceramic-metal composite body in which a protrusion provided on a ceramic member is press-fitted into a recess provided in a metal member to join the ceramic member and the metal member. , the metal member is made of precipitation hardening type Fe-
It is made of a Ni-Co-based low expansion heat-resistant alloy, and after precipitation hardening, the recess is processed so that the inner diameter (b) of the recess of the metal member and the outer diameter (a) of the protrusion of the ceramic member are
) satisfies the following formula: 0.4≦(a-b)/a×100≦2.5, and then the convex part of the ceramic member is made to meet the concave part of the processed metal member. A method for manufacturing a ceramic-metal composite, characterized by press-fitting parts at room temperature.
JP2201812A 1990-07-30 1990-07-30 Method for manufacturing ceramic / metal combination Expired - Fee Related JPH0829991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2201812A JPH0829991B2 (en) 1990-07-30 1990-07-30 Method for manufacturing ceramic / metal combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2201812A JPH0829991B2 (en) 1990-07-30 1990-07-30 Method for manufacturing ceramic / metal combination

Publications (2)

Publication Number Publication Date
JPH0489368A true JPH0489368A (en) 1992-03-23
JPH0829991B2 JPH0829991B2 (en) 1996-03-27

Family

ID=16447322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201812A Expired - Fee Related JPH0829991B2 (en) 1990-07-30 1990-07-30 Method for manufacturing ceramic / metal combination

Country Status (1)

Country Link
JP (1) JPH0829991B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026477A (en) * 2010-07-20 2012-02-09 Ngk Spark Plug Co Ltd Joined body of ceramics and metal and solid oxide type fuel cell
JP2016016452A (en) * 2014-07-11 2016-02-01 トヨタ自動車株式会社 Insert member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140879A (en) * 1984-08-03 1986-02-27 日本碍子株式会社 Metal ceramic bonded body and manufacture
JPS624528A (en) * 1985-06-12 1987-01-10 Ngk Insulators Ltd Ceramics-metal combined structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140879A (en) * 1984-08-03 1986-02-27 日本碍子株式会社 Metal ceramic bonded body and manufacture
JPS624528A (en) * 1985-06-12 1987-01-10 Ngk Insulators Ltd Ceramics-metal combined structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026477A (en) * 2010-07-20 2012-02-09 Ngk Spark Plug Co Ltd Joined body of ceramics and metal and solid oxide type fuel cell
JP2016016452A (en) * 2014-07-11 2016-02-01 トヨタ自動車株式会社 Insert member

Also Published As

Publication number Publication date
JPH0829991B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
JPS6050204A (en) Metal-ceramics bonded body and its manufacturing process
JPH043129Y2 (en)
JPH0336787B2 (en)
JPS61219767A (en) Metal ceramic bonded body
US5066547A (en) Metal and ceramic heat-connected body
JPS6322225A (en) Metal and ceramic bond body and manufacture thereof
JPS6140879A (en) Metal ceramic bonded body and manufacture
JPH0489368A (en) Production of ceramics-metal coupled body
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
JPS61286274A (en) Metal ceramic joinned body and manufacture
JPH06254723A (en) Junction body, its combination body with ceramic, and their manufacture
JP3119981B2 (en) Combined body of ceramic member and metal member and method of combining the same
JP2619216B2 (en) Combined ceramic and metal
JPH0416569A (en) Structure coupled with ceramics and metal
JPH07133811A (en) Iron/steel parts interference fit assembly body and its processing
JPH0658044B2 (en) Turbine rotor and method for producing the same
JPS6270275A (en) Method for bonding ceramic rotor and metal rotary shaft
JPH0516192Y2 (en)
JPS63134134A (en) Combined construction of aluminium alloy cylindrical member and steel axis
JP2001205443A (en) Method for joining steel to titanium material
JPH086754B2 (en) High torque transmission shaft
JPH052585Y2 (en)
JPS63158306A (en) Coupling structure of cylindrical member made of aluminum alloy and shaft made of steel
JPH02124781A (en) Method for coupling rotor made of ceramic with metallic shaft
JPH0455146B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees