JP2619216B2 - Combined ceramic and metal - Google Patents

Combined ceramic and metal

Info

Publication number
JP2619216B2
JP2619216B2 JP6006627A JP662794A JP2619216B2 JP 2619216 B2 JP2619216 B2 JP 2619216B2 JP 6006627 A JP6006627 A JP 6006627A JP 662794 A JP662794 A JP 662794A JP 2619216 B2 JP2619216 B2 JP 2619216B2
Authority
JP
Japan
Prior art keywords
ceramic
metal
fitting
temperature
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6006627A
Other languages
Japanese (ja)
Other versions
JPH072577A (en
Inventor
博之 河瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6006627A priority Critical patent/JP2619216B2/en
Publication of JPH072577A publication Critical patent/JPH072577A/en
Application granted granted Critical
Publication of JP2619216B2 publication Critical patent/JP2619216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、セラミック(ファイン
セラミックと称される)製部材の凸部を金属製部材の凹
部に嵌合して両者を一体化した結合体の結合構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joint structure in which a convex portion of a ceramic (referred to as fine ceramic) member is fitted into a concave portion of a metal member and both are integrated.

【0002】[0002]

【従来の技術】金属とセラミックとの結合には、金属製
部材に設けた凹部にセラミック製部材に突設した凸部を
嵌合させ、圧入、焼きばめのような嵌合手段により結合
力を確保したり、蝋付けなどによって接合する手段が採
用されている。嵌合手段で結合した場合は、常温で理想
の締め代を与えても、高温になると熱膨張係数の差によ
り結合力が低下するから、常温における締め代を大きく
設定しなくてはならなくなり、そうすると金属部材の粒
界が残留応力により高温腐食して破断を生じたり、過大
応力によってセラミックがひび割れを起こす虞れがあ
る。一方蝋付けでは、接合後の冷却過程において、熱膨
張係数の差によりセラミックに高い残留応力が働くた
め、外力を受けた場合にセラミックが破断しやすい。そ
こで従来、セラミック製部材と結合する金属には、専ら
低熱膨張金属として定評の高いインコロイ903.イン
コロイ909(共に商品名)が採用されていた。
2. Description of the Related Art To join a metal and a ceramic, a projection provided on the ceramic member is fitted into a recess provided on the metal member, and the coupling force is applied by fitting means such as press-fitting and shrink fitting. Means or joining by brazing or the like is employed. In the case of joining by the fitting means, even if an ideal interference is given at room temperature, the joining force decreases due to a difference in the coefficient of thermal expansion at a high temperature, so the interference at room temperature must be set large, In this case, there is a possibility that the grain boundary of the metal member is corroded at a high temperature due to residual stress to cause breakage, or the ceramic may be cracked due to excessive stress. On the other hand, in brazing, since a high residual stress acts on the ceramic due to a difference in the coefficient of thermal expansion during the cooling process after joining, the ceramic is easily broken when subjected to an external force. Therefore, conventionally, Incoloy 903., which has a high reputation as a low thermal expansion metal, is mainly used as a metal bonded to a ceramic member. Incoloy 909 (both trade names) was employed.

【0003】[0003]

【発明が解決しようとする課題】近年、タービンをセラ
ミック化したターボ過給器の実用化が進んでいるが、今
後の課題として、内燃機関には燃費の向上が要求されて
いることから、高温燃焼により排気ガスの温度は更に高
くなることが予想される。そのためセラミック製のター
ビンと金属製軸との結合部は、より高温に対しても高い
結合強度が発揮できる構造にする必要性に迫られてい
る。セラミックと金属相互間には、温度が高くなればそ
れだけ低い熱膨張係数差が要求されるので、例えば特開
昭60−231473号公報、特開昭59−21583
号公報、特開昭62−191478号公報、特開平1−
215769号公報を始めとして多くの提案がなされ、
その中でも特に注目されているインコロイ903.イン
コロイ909などのセラミックと、鉄、ニッケル、コバ
ルト系の熱膨張耐熱合金といった金属との組み合わせで
すら、金属のクリープ強度が、夫々10時間において5
0kg/mm2以下、或いは50時間において80kg/mm2
下と低いため、結合部が現状より高温になると、嵌合手
段の場合は、結合部に緩みを生じて充分な結合強度が得
られないし、逆に充分な結合強度を得るべく締め代を大
きくすると、金属に発生している高応力部位から酸化に
よる腐食割れを起こしてしまうので、500℃の温度範
囲にあって、より高性能な材質が要求されている。
In recent years, a turbocharger using a ceramic turbine has been put into practical use. However, as a problem to be solved in the future, an improvement in fuel consumption of an internal combustion engine is required. It is expected that the combustion will further increase the temperature of the exhaust gas. Therefore, there is an urgent need for a structure in which the joint between the ceramic turbine and the metal shaft has a structure capable of exhibiting high joint strength even at higher temperatures. The higher the temperature, the lower the difference in thermal expansion coefficient is required between the ceramic and the metal. For example, JP-A-60-231473 and JP-A-59-21583 disclose the difference.
JP, JP-A-62-191478, JP-A-1-191478
Many proposals have been made, including the Japanese Patent Publication No.
Among them, Incoloy 903. Even with a combination of ceramics such as Incoloy 909 and metals such as iron, nickel and cobalt-based heat-expansion heat-resistant alloys, the creep strength of the metal is 5 hours at 10 hours each.
0 kg / mm 2 or less, or as low as 80 kg / mm 2 or less at 50 hours, when the coupling portion reaches a high temperature than the current, in the case of fitting means, do not sufficient bonding strength can not be obtained occurs looseness in the coupling portion Conversely, if the interference is increased to obtain a sufficient bonding strength, corrosion cracking due to oxidation will occur from the high stress site generated in the metal. Is required.

【0004】[0004]

【課題を解決するための手段】本発明は、例えば高温下
で使用されるターボ過給器のタービンを、更に高い温度
においた場合でも、充分な結合力の確保を目的とするも
ので、セラミックを、シリコンナイトライドとサイアロ
ンの中から選択する一方、金属を、鉄、ニッケル、コバ
ルト系の時効硬化型合金の中から選択し、且つそれらの
セラミックと金属とを、互いに常温から500℃におけ
る平均熱膨張係数の差を3.2×10-6〜4.7×10
-6/℃の範囲を満足する組み合わせとし、更に金属は、
500℃における200時間クリープ破壊強度を80kg
/mm2 以上確保する材質を採用したセラミックと金属と
の結合体にある。そして前記凸部の直径Dと凹部周囲の
肉厚tとは、結合部においてt≧0.05Dの関係を満
足させることが望ましい。
SUMMARY OF THE INVENTION The present invention aims at securing a sufficient bonding force even when a turbine of a turbocharger used at a high temperature, for example, is heated to a higher temperature. Is selected from among silicon nitride and sialon, while the metal is selected from among iron, nickel and cobalt-based age-hardenable alloys, and their ceramics and metals are mutually averaged from room temperature to 500 ° C. The difference in thermal expansion coefficient is from 3.2 × 10 −6 to 4.7 × 10
-6 / ° C.
80 hours creep rupture strength at 500 ° C for 80kg
/ Mm 2 the material to ensure more adopted was in conjugate of ceramic and metal. It is desirable that the diameter D of the convex portion and the thickness t around the concave portion satisfy the relationship of t ≧ 0.05D at the joint portion.

【0005】[0005]

【作用】採用するセラミックと金属との各特性を考慮し
た上で、最適な材料を選択をすると共に、平均熱膨張係
数の差と、200時間クリープ破壊強度とを適切な値に
設定した結果、結合部は高温で高い結合強度が得られ、
且つ高温の酸化雰囲気中における応力腐食により割れが
発生する虞れもなくなる。
[Function] The optimum material is selected in consideration of the properties of the ceramic and metal to be adopted, and the difference between the average thermal expansion coefficients and the 200-hour creep rupture strength are set to appropriate values. The joint has high joint strength at high temperatures,
In addition, there is no possibility that cracks may occur due to stress corrosion in a high-temperature oxidizing atmosphere.

【0006】[0006]

【実施例】本発明に係るセラミックと金属との結合体
を、その実施例について説明する前に、本発明で特定す
る数値の根拠を説明する。今後の燃費向上対策によって
排気ガスの温度は更に高くなることが予想され、セラミ
ック製のタービンと金属製軸との結合部は約500℃に
達するものと推定される。その場合、常温から500℃
の範囲で高い信頼性を維持するには、セラミックと金属
との平均熱膨張係数差を、少なくとも4.7×10-6
下にする必要があることを見出した。又、鉄、ニッケ
ル、コバルト系の時効硬化型合金は、酸化による応力腐
食割れを起す性質がある。そのため熱膨張係数差が小さ
すぎると、嵌合部に発生している金属内の応力が高温で
低下しにくいため、結合体が高温の酸化雰囲気中に長時
間さらされたとき、酸化を受ける金属表面から応力腐食
を起しやすい。応力腐食割れを起こさせない良好な結合
体を得るには、平均熱膨張係数差の下限を3.2×10
-6、500℃における200時間クリープ破壊強度は8
0kg/mm2以上必要であることを確認した。一般に金属
部内へ働く応力は、図3に示す結合構造の場合、金属の
内面と外面とでは、外面ほど応力σが小さくなることが
知られているが、外面は酸化され易いため、応力腐食割
れを起し易い。又肉厚tが小さくなるほど外面の応力σ
は大きくなるので、図1に示す厚肉部Aと薄肉部Bとで
は、薄肉部Bが高い応力を受けて最も酸化による応力腐
食割れを起しやすい。応力を小さくするには肉厚を大き
くすれば簡単であるが、概して寸法的な制約を受ける場
合が多く、そこで破壊を起こさない径の限界を調べたと
ころ、肉厚tの最小値は0.05Dであることを見出し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the embodiments of the composite body of ceramic and metal according to the present invention, the basis of numerical values specified in the present invention will be described. It is anticipated that the temperature of the exhaust gas will be further increased due to future measures for improving fuel efficiency, and it is estimated that the joint between the ceramic turbine and the metal shaft will reach approximately 500 ° C. In that case, from normal temperature to 500 ℃
It has been found that in order to maintain high reliability in the range described above, the difference in average thermal expansion coefficient between ceramic and metal must be at least 4.7 × 10 −6 or less. Further, an age hardening type alloy of iron, nickel and cobalt has a property of causing stress corrosion cracking due to oxidation. For this reason, if the difference in thermal expansion coefficient is too small, the stress in the metal generated in the fitting portion is not easily reduced at a high temperature. It is easy to cause stress corrosion from the surface. In order to obtain a good bonded body that does not cause stress corrosion cracking, the lower limit of the average thermal expansion coefficient difference is set to 3.2 × 10
-6 , 200 hours creep rupture strength at 500 ° C is 8
It was confirmed that 0 kg / mm 2 or more was required. In general, it is known that, in the case of the joint structure shown in FIG. 3, the stress acting on the metal portion between the inner surface and the outer surface of the metal becomes smaller as the outer surface becomes smaller. Easy to cause. In addition, as the thickness t decreases, the stress σ on the outer surface increases.
Therefore, in the thick portion A and the thin portion B shown in FIG. 1, the thin portion B receives the high stress and is most likely to cause stress corrosion cracking due to oxidation. It is easy to reduce the stress by increasing the wall thickness. However, in general, there are many dimensional restrictions. Therefore, when the limit of the diameter that does not cause breakage is examined, the minimum value of the wall thickness t is 0. 05D.

【0007】ここで金属との結合体に多用されているセ
ラミックとその物理的特性を表1に、又表2に従来セラ
ミックとの結合体に採用されている合金であるインコロ
イ903.インコロイ909の各成分及びその物理的特
性、ならびにニッケル、コバルト、ニオブ、チタン、珪
素、アルミニウムの配合調整により、平均膨張係数とク
リープ破壊強度を所定の値になるよう設定して製造した
合金Mの成分とその物理的特性を示す。これらの表か
ら、表1のセラミックと合金Mの組み合わせは本発明で
指定された特性を満足することが確認できる。又肉厚t
の値が0.05D以下になると強度不足を招き、例えば
ターボ過給器のタービンをセラミック化した場合、その
タービンが破損するとセラミックと結合している金属の
薄肉部も破損し、油漏れ等を引き起す虞れがあるので、
薄肉部Bの厚さも重要である。
[0007] Here, Table 1 shows the ceramics frequently used in a combination with a metal, and Table 2 shows physical properties thereof. Incoloy 903., which is an alloy conventionally used in a combination with a ceramic, is shown in Table 1. The alloy M produced by setting the average expansion coefficient and creep rupture strength to predetermined values by adjusting the components of Incoloy 909 and their physical properties, and the adjustment of the blending of nickel, cobalt, niobium, titanium, silicon, and aluminum. Shows the components and their physical properties. From these tables, it can be confirmed that the combination of the ceramic and the alloy M in Table 1 satisfies the characteristics specified in the present invention. Thickness t
Is less than 0.05D, the strength becomes insufficient. For example, when the turbine of the turbocharger is ceramicized, when the turbine is damaged, the thin portion of the metal combined with the ceramic is also damaged, and oil leakage etc. Because it may cause
The thickness of the thin portion B is also important.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】次に具体的な実施例に入る。1は前記合金
に時硬効果処理を施し、端縁が開口した嵌合穴2を有す
るカップ状に形成した嵌合部である。3は仕上げ加工を
行なった継手部材である嵌合突起であり、この嵌合突起
3を前記嵌合穴2に圧入し、嵌合部1の外表面に凹溝4
を周設してセラミックと金属との結合体を形成した。前
記嵌合部1における凹溝4周設部の肉厚tは、嵌合突起
3の直径Dに対して、t〉0.05Dの関係を満足する
ように設定されている。結合部のセラミック径D、t/
D、締め代等の具体的な寸法を表3と表4に示す。表3
は、500℃にて、図4に示す構造のテストピースにお
ける合金で形成された軸Yを支持し、セラミックで形成
された軸Xを捩ることによって捩りトルクTrを計測
し、その捩りトルクTrから数1に示す式によって接合
強度Pを算出した。ここでLは結合長さ(mm)である。
それによると、本実施例の合金Mを使用したNo1〜3
はいずれも5Kg/mm2 で異常がないのに対し、インコロ
イ903.インコロイ909を使用したNo4及び5で
は、熱膨張係数差が大きいために、5Kg/mm2 未満で接
合部にて滑り回転した。表4は各結合体を500℃の酸
化雰囲気中に放置した結果を示し、合金にインコロイ9
03を使用したNo15〜17は短時間で金属部材が応
力腐食割れを起こしたが、合金Mとセラミックとの結合
体では、No6〜14のいずれにも異常は認められなか
った。
Next, a specific embodiment will be described. Numeral 1 denotes a fitting portion formed by subjecting the alloy to a hardening effect treatment and having a cup shape having a fitting hole 2 with an open end. Reference numeral 3 denotes a fitting projection which is a finished joint member. The fitting projection 3 is press-fitted into the fitting hole 2, and a concave groove 4 is formed on the outer surface of the fitting portion 1.
To form a combined body of ceramic and metal. The thickness t of the peripheral portion of the concave groove 4 in the fitting portion 1 is set so as to satisfy the relationship of t> 0.05D with respect to the diameter D of the fitting protrusion 3. Ceramic diameter D, t /
Tables 3 and 4 show specific dimensions such as D and interference. Table 3
Measures the torsion torque Tr at 500 ° C. by supporting the axis Y formed of the alloy in the test piece having the structure shown in FIG. 4 and twisting the axis X formed of the ceramic, from the torsion torque Tr. The joining strength P was calculated by the equation shown in Equation 1. Here, L is the coupling length (mm).
According to the results, No. 1 to No. 3 using the alloy M of this example were used.
Are 5 kg / mm 2 without any abnormality, whereas Incoloy 903. In Nos. 4 and 5 using Incoloy 909, due to a large difference in thermal expansion coefficient, they slipped and rotated at the joint at less than 5 kg / mm 2 . Table 4 shows the results of leaving each assembly in an oxidizing atmosphere at 500 ° C.
In Nos. 15 to 17 using No. 03, the metal member caused stress corrosion cracking in a short time, but in the combined body of the alloy M and the ceramic, no abnormality was recognized in any of Nos. 6 to 14.

【0011】[0011]

【表3】 [Table 3]

【0012】[0012]

【表4】 [Table 4]

【0013】[0013]

【数1】 (Equation 1)

【0014】次に、ターボ過給器のタービンに実施した
具体例を説明する。図2に示す5は回転軸で、SNCM
439の金属で形成されている。この回転軸5の先端に
は前記合金Mにて形成された嵌合部1が摩擦圧接手段に
て一体的に結合され、その後両金属の熱処理を行なっ
た。セラミックで形成された翼径50mmの翼車6は、軸
心に直径12mmの嵌合突起3を一体的に備え、この嵌合
突起3が前記嵌合部1の嵌合穴2に嵌合される。嵌合部
は、嵌合穴2の内周面にニッケルメッキを施した後、蝋
材(BAg8.銀72%、銅28%)にて嵌合穴2の内
周面とセラミックの嵌合突起3外周面とを蝋付けした。
因に嵌合部1における凹溝4の周設部の肉厚tは1mm
で、t/Dは0.083となり、前記t〉0.05Dの
条件を充分満足する。このように形成されたタービン
を、ターボ過給器に実装して、フルスロットル、停止を
5分毎に繰り返す運転試験を、連続して2000回行な
ったが全く異常は認められず、採用した材質の物理的特
性の値の正しいことが確認され、それによって燃費の向
上を目的とする内燃機関の高温燃焼に対応できることも
実証された。
Next, a specific example implemented for a turbine of a turbocharger will be described. Reference numeral 5 shown in FIG.
439 metal. The fitting portion 1 made of the alloy M was integrally connected to the tip of the rotating shaft 5 by friction welding means, and then heat treatment was performed on both metals. An impeller 6 made of ceramic and having a blade diameter of 50 mm is integrally provided with a fitting protrusion 3 having a diameter of 12 mm at an axis thereof. The fitting protrusion 3 is fitted into the fitting hole 2 of the fitting portion 1. You. The fitting portion is formed by applying nickel plating to the inner peripheral surface of the fitting hole 2 and then using a brazing material (BAg 8. 72% silver, copper 28%) to fit the inner peripheral surface of the fitting hole 2 to the ceramic projection. 3 and the outer peripheral surface were brazed.
The thickness t of the peripheral portion of the concave groove 4 in the fitting portion 1 is 1 mm.
T / D is 0.083, which sufficiently satisfies the condition of t> 0.05D. The turbine thus formed was mounted on a turbocharger, and a running test in which full throttle and stop were repeated every 5 minutes was performed 2,000 times continuously, but no abnormality was found at all. It was confirmed that the values of the physical characteristics of the internal combustion engine were correct, and it was proved that it could cope with high-temperature combustion of an internal combustion engine for the purpose of improving fuel efficiency.

【0015】尚本発明で使用されるセラミック及び金属
は、本発明を構成する材質であれば実施例に限定されな
いし、ターボ過給器のタービン以外でも、温度変化の影
響を受やすい状況下で使用される部品に適用できる。又
嵌合手段ばかりでなく、蝋付けによる結合でも、高温下
において高い結合力を発揮する。
The ceramic and metal used in the present invention are not limited to the embodiments as long as they are materials constituting the present invention. Other than the turbine of the turbocharger, the ceramic and the metal may be subjected to the influence of temperature change. Applicable to the parts used. Also, not only the fitting means but also the connection by brazing exhibits a high connection force at high temperatures.

【0016】[0016]

【発明の効果】本発明によれば、結合部が常温から50
0℃の範囲内において、耐久性に優れ而も高い結合力を
発揮するセラミックと金属との結合体を得ることが可能
となるので、この技術をターボ過給器に利用すれば、高
温燃焼による排気ガスの温度上昇に対するセラミックタ
ービンの実用化が可能となる。
According to the present invention, the bonding portion is maintained at a temperature between room temperature and 50 ° C.
Within the range of 0 ° C., it is possible to obtain a combined body of ceramic and metal having excellent durability and exhibiting a high binding force. Practical use of the ceramic turbine with respect to the temperature rise of the exhaust gas becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】結合部分の説明図である。FIG. 1 is an explanatory diagram of a coupling portion.

【図2】本発明の一実施例であるターボ過給器のタービ
ンを示す説明図である。
FIG. 2 is an explanatory diagram showing a turbine of a turbocharger according to one embodiment of the present invention.

【図3】応力分布の説明図である。FIG. 3 is an explanatory diagram of a stress distribution.

【図4】接合強度を算出するために用いたテストピース
の説明図である。
FIG. 4 is an explanatory diagram of a test piece used for calculating a joining strength.

【符号の説明】[Explanation of symbols]

1・・嵌合部、2・・嵌合穴、3・・嵌合突起、4・・
凹溝、5・・回転軸、6・・翼車、t・・肉厚、D・・
嵌合突起の直径、A・・厚肉部、B・・薄肉部、X・・
セラミックで形成された軸、Y・・合金で形成された
軸、L・・結合長さ。
1. Fitting part, 2 Fitting hole, 3 Fitting protrusion, 4
Groove, 5 ... Rotary shaft, 6 ... Impeller, t ... Thickness, D ...
Diameter of fitting projection, A ... thick part, B ... thin part, X ...
Shafts formed of ceramic, Y ... shafts formed of alloys, L..coupling length.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セラミック製部材の凸部を金属製部材の
凹部に嵌合して両者を一体化した結合体にあって、前記
セラミックは、シリコンナイトライドとサイアロンの中
から選択され、一方金属は、鉄、ニッケル、コバルト系
の時効硬化型合金の中から選択され、且つそれらのセラ
ミックと金属とを、互いに常温から500℃における平
均熱膨張係数の差を3.2×10-6〜4.7×10-6
℃の範囲を満足する組み合わせとし、更に金属は、50
0℃における200時間クリープ破壊強度を80kg/mm
2 以上確保する材質を採用したセラミックと金属との結
合体。
1. A combined body in which a convex portion of a ceramic member is fitted into a concave portion of a metal member to integrate the two, wherein the ceramic is selected from silicon nitride and sialon. Is selected from iron, nickel, and cobalt age hardening alloys, and the difference between the ceramic and the metal is 3.2 × 10 -6 to 4 × 10 -6, which is different from ordinary temperature to 500 ° C. 0.7 × 10 -6 /
° C range, and metal is 50%
80 hours creep rupture strength at 0 ° C for 80kg / mm
Combined body of ceramic and metal that uses a material that secures 2 or more.
【請求項2】 前記凸部の直径Dと凹部周囲の肉厚tと
が、結合部においてt≧0.05Dの関係を満足する請
求項1に記載のセラミックと金属との結合体。
2. The combined body of ceramic and metal according to claim 1, wherein the diameter D of the convex portion and the thickness t around the concave portion satisfy a relationship of t ≧ 0.05D at the joint portion.
JP6006627A 1994-01-25 1994-01-25 Combined ceramic and metal Expired - Fee Related JP2619216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6006627A JP2619216B2 (en) 1994-01-25 1994-01-25 Combined ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6006627A JP2619216B2 (en) 1994-01-25 1994-01-25 Combined ceramic and metal

Publications (2)

Publication Number Publication Date
JPH072577A JPH072577A (en) 1995-01-06
JP2619216B2 true JP2619216B2 (en) 1997-06-11

Family

ID=11643606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6006627A Expired - Fee Related JP2619216B2 (en) 1994-01-25 1994-01-25 Combined ceramic and metal

Country Status (1)

Country Link
JP (1) JP2619216B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160486A (en) * 2001-09-17 2003-06-03 Lion Corp Oral hair grower and food/drink containing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921583A (en) * 1982-07-29 1984-02-03 日産自動車株式会社 Bondage of ceramic shaft and metal shaft
JPS60231473A (en) * 1984-05-01 1985-11-18 三菱重工業株式会社 Method of bonding ceramic member and metal member
JPS62191478A (en) * 1986-02-19 1987-08-21 日本碍子株式会社 Ceramics-metal bonded body
JPH01215769A (en) * 1988-02-25 1989-08-29 Ngk Insulators Ltd Production of ceramic-metal coupled body

Also Published As

Publication number Publication date
JPH072577A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
JPH0477129B2 (en)
JPH0438715B2 (en)
JP2006037952A (en) Titanium aluminide impeller and connection of steel shaft to the impeller
JPS61219767A (en) Metal ceramic bonded body
JP3453302B2 (en) Method of joining TiAl alloy member to structural steel and joining parts
JPH043129Y2 (en)
US5066547A (en) Metal and ceramic heat-connected body
JP3829388B2 (en) TiAl turbine rotor
EP0323207B1 (en) Joined metal-ceramic assembly method of preparing the same
JPH03279277A (en) Joint structure of turbine rotor
JP2619216B2 (en) Combined ceramic and metal
WO2000029352A2 (en) Method for joining ceramic to metal
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
JP3336485B2 (en) Tappet
JPH0610337U (en) Combination of ceramic and metal
JPS58217814A (en) Construction of shaft
KR100246705B1 (en) Manufacturing method for sliding parts
JPH0516192Y2 (en)
JPH0240031B2 (en)
JP2979529B2 (en) Joint of ceramic member and metal member
JPS6278402A (en) Ceramic turbo rotor
JPH0829991B2 (en) Method for manufacturing ceramic / metal combination
JPH02124781A (en) Method for coupling rotor made of ceramic with metallic shaft
JPH061701U (en) Joining structure of metal rotating shaft and ceramic rotating body
JPH0658044B2 (en) Turbine rotor and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees