JPH048730B2 - - Google Patents

Info

Publication number
JPH048730B2
JPH048730B2 JP56161122A JP16112281A JPH048730B2 JP H048730 B2 JPH048730 B2 JP H048730B2 JP 56161122 A JP56161122 A JP 56161122A JP 16112281 A JP16112281 A JP 16112281A JP H048730 B2 JPH048730 B2 JP H048730B2
Authority
JP
Japan
Prior art keywords
vortex
piezoelectric sensor
piezoelectric
sensor
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56161122A
Other languages
Japanese (ja)
Other versions
JPS5862516A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56161122A priority Critical patent/JPS5862516A/en
Publication of JPS5862516A publication Critical patent/JPS5862516A/en
Publication of JPH048730B2 publication Critical patent/JPH048730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 本発明は、カルマン渦を利用して流体の流速ま
たは流量を測定する渦流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex flow meter that uses Karman vortices to measure the flow velocity or flow rate of a fluid.

流体中に物体を置くと、物体の両後側面から交
互にかつ規則的に渦が発生し、下流に渦列となつ
て流れることが古くから知られている。この渦列
はカルマン渦列といわれ、単位時間当りの渦の生
成数(渦周波数)が流体の流速に比例している。
そこで、測定流体を導く管路内に渦発生体を配置
し、渦の生成による揚力変化に基づく応力変化を
渦発生体(または受力体)の凹部内に設けた圧電
センサで検出した後信号変換して流体の流速や流
量を測定する渦流量計が実用化されている。とこ
ろでこの種の渦流量計においては、ポンプなどに
より励起される配管振動などの外乱振動によるノ
イズの影響を受ける。すなわち、外乱振動が加わ
ると、渦発生体(または受力体)が振動するとと
ももに、管路に取付けた変換器等の搭載物も振動
する。渦発生体(または受力体)が振動するとそ
の質量分布等に基づく曲げモーメントが渦発生体
(または受力体)に作用し、搭載物が振動すると
管路歪が生じ、この歪によつても渦発生体(また
は受力体)に曲げモーメントが作用する。その結
果圧電センサには、渦の揚力に基づく曲げモーメ
ントによる信号成分に、渦発生体(または受力
体)の振動に基づく曲げモーメントによるノイズ
成分と管路歪みに基づく曲げモーメントによるノ
イズ成分とが重畳されて検出される。このように
従来の渦流量計では、外乱振動によるノイズの影
響を受け、特に低流速時のS/N比が悪化すると
いう問題があつた。
It has long been known that when an object is placed in a fluid, vortices are generated alternately and regularly from both rear sides of the object and flow downstream as a vortex train. This vortex street is called a Karman vortex street, and the number of vortices generated per unit time (vortex frequency) is proportional to the flow velocity of the fluid.
Therefore, a vortex generator is placed in the pipe that guides the fluid to be measured, and a piezoelectric sensor installed in the recess of the vortex generator (or force receiver) detects the stress change based on the lift change caused by the vortex generation, and then a signal is generated. Vortex flowmeters that measure the flow velocity and flow rate of fluids have been put into practical use. However, this type of vortex flow meter is affected by noise caused by external vibrations such as piping vibrations excited by a pump or the like. That is, when external vibration is applied, the vortex generating body (or force receiving body) vibrates, and a mounted object such as a transducer attached to the conduit also vibrates. When the vortex generating body (or force receiving body) vibrates, a bending moment based on its mass distribution etc. acts on the vortex generating body (or force receiving body), and when the loaded object vibrates, pipe strain occurs, and this distortion causes A bending moment acts on the vortex generating body (or force receiving body). As a result, the piezoelectric sensor has a signal component due to the bending moment based on the lift of the vortex, a noise component due to the bending moment due to the vibration of the vortex generating body (or force receiving body), and a noise component due to the bending moment due to pipe distortion. are detected in a superimposed manner. As described above, the conventional vortex flowmeter has a problem in that it is affected by noise due to disturbance vibration, and the S/N ratio deteriorates particularly at low flow speeds.

このため、先に出願した特願昭56−155947号
(特開昭58−555816号)、特願昭56−155948号(特
開昭58−55817号)および特願昭56−159060号
(特開昭58−60217号)では、渦発生体(または受
力体)の凹部に設けたセンサ部に生ずる渦の揚力
による信号成分の応力分布と、外乱振動によるノ
イズ成分の応力分布が相違していることに着目
し、センサ部内に第1の圧電センサと第2の圧電
センサを所定の間隔をおいて配置して、各々の圧
電センサの出力を信号変換した後演算することに
よつて、外乱振動によるノイズの影響を有効に除
去し、S/N比の良好な渦流量計を実現してい
る。
For this reason, the previously filed Japanese Patent Application No. 56-155947 (Japanese Patent Application No. 58-555816), Japanese Patent Application No. 56-155948 (Japanese Patent Application No. 58-55817) and Japanese Patent Application No. 159060 (Sho 56-159060) In 1983-60217), the stress distribution of the signal component due to the lift of the vortex generated in the sensor section provided in the concave part of the vortex generator (or force receiving body) is different from the stress distribution of the noise component due to disturbance vibration. By arranging a first piezoelectric sensor and a second piezoelectric sensor at a predetermined interval in the sensor section, and calculating the output of each piezoelectric sensor after converting the output into a signal, the disturbance can be reduced. This effectively eliminates the effects of noise caused by vibrations, creating a vortex flowmeter with a good S/N ratio.

本発明は、第1の圧電センサと第2の圧電セン
サを所定の間隔をおいて配置し、各々の圧電セン
サの出力を信号変換した後演算することによつ
て、外乱振動によるノイズの影響を有効に除去
し、S/N比を良好にした渦流量計において、第
1の圧電センサと第2の圧電センサを共に反転分
極形の圧電センサとすることにより、センサ部の
構成を簡単にし、製作の容易な渦流量計を実現し
たものである。
In the present invention, a first piezoelectric sensor and a second piezoelectric sensor are arranged at a predetermined interval, and the output of each piezoelectric sensor is converted into a signal and then calculated, thereby reducing the influence of noise caused by external vibration. In a vortex flowmeter that effectively removes eddy waves and improves the S/N ratio, the structure of the sensor section is simplified by using both the first piezoelectric sensor and the second piezoelectric sensor as inverted polarization type piezoelectric sensors. This realizes a vortex flow meter that is easy to manufacture.

第1図は本発明の一実施例を示す構成説明図、
第2図はその検出器部分を断面で示す構成説明図
であり、第3図は本発明の一実施例の電気的接続
図である。図において、10は渦流量計検出器、
20は渦流量計変換器である。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention;
FIG. 2 is a configuration explanatory diagram showing the detector portion in cross section, and FIG. 3 is an electrical connection diagram of an embodiment of the present invention. In the figure, 10 is a vortex flow meter detector;
20 is a vortex flowmeter transducer.

渦流量計検出器10において、11は測定流体
が流れる管路、12は管路11に直角に設けられ
た円筒状のノズル、13はノズル12を通して管
路11に直角に挿入された柱状の渦発生体で、ス
テンレス等からなり、その上端13aはノズル1
2にネジまたは溶接により固定され、下端13b
はネジにより管路11に支持されている。渦発生
体13の測定流体と接する部分13cは測定流体
にカルマン渦列を生ぜしめ、かつ揚力変化を安定
強化するように例えば台形等の断面形状を有し、
また上端13a側には凹部13d有している。1
4はセンサ部で、渦発生体13の凹部13d内に
第1の圧電センサ14aと第2の圧電センサ14
bとが一定間隔おいて押圧固定されている。セン
サ部14において、ステンレス等の下敷14cは
第2の圧電センサ14bと凹部13dの底面との
バツフアの役目をし、凹部13dの底面の加工上
のあらさ管理の困難さを補うものである。ステン
レス等の第1のスペーサ14dとセラミツク等の
絶縁板14eおよびステンレス等の第2のスペー
サ14fは第1の圧電センサ14aと第2の圧電
センサ14bとの間隔を決めるとともに、両者の
絶縁を行うためのものである。ステンレス等の押
し棒14gは圧電センサ14a,14bを押圧し
た状態で渦発生体13の上端13aに溶接され、
圧電センサ14a,14bを押圧固定するもので
ある。なおセンサ部14は渦発生体13に下敷1
4cと押し棒14gの上部のみで接触するように
なつている。圧電センサ14a,14bは円板状
の圧電素子PZTからなり、その中心が渦発生体
13の中立軸と一致するように配置されている。
さらに圧電素子PZTには第4図イの斜視図に示
すようにその表と裏にそれぞれ測定流体の流れ方
向(図の矢印方向)に対して左右に分割して対称
的に電極d1,d2,d3,d4が設けられ、かつ第4図
ロに示す如く矢印方向(渦の揚力方向)の力によ
る曲げモーメントによつて中立軸を鋏んで互いに
逆方向に発生する応力(圧縮応力と引張応力)に
対応して電極d1,d2間に生ずる電荷と、電極d3
d4間に生ずる電荷とが同極性になるように反転分
極されている。このため第4図ハに示すように同
方向に発生する応力に対しては両電極間に互いに
逆極性の電荷が発生する。また測定流体の流れ方
向のストレスによつて発生する電荷量は電極間で
キヤンセルされて出てこず、また流れ方向の配管
振動によつて発生する電荷量も電極間で互いにキ
ヤンセルされて出てこない。第1圧電センサ14
aは電極d1,d2間および電極d3,d4間ににそれぞ
れ生ずる同極性の電荷の和を出力電荷q1とし逆極
性の電荷をキヤンセルするために、電極d1とd3
が押し棒14gを介して共通に渦発生体13すな
わち基準点に接続され、電極d2とd4とがスペーサ
14fを介して共通にリード線l1に接続されてい
る。第2の圧電センサ14bは電極d1,d2間およ
び電極d3,d4間にそれぞれ生ずる同極性の電荷の
和を出力電荷q2とし逆極形の電荷をキヤンセルし
て、かつq1とは極性を反転させるために、電極d1
とd3がスペーサ14dを介して共通にリード線l2
に接続され、電極d2とd4とが下敷14cを介して
共通に渦発生体13すなわち基準点に接続されて
いる。リード線l1,l2はセンサ部14の各部品に
設けられた貫通孔およびハーメチツクシール14
hを介して外部に取り出され、渦流量計変換器2
0に接続される。なお渦発生体13の凹部13d
とセンサ部14で囲まれた部分には結露防止のた
めに、露点の低いガスが封入されており、押し棒
14gには封入ガス用の連通孔14iが設けられ
ている。またセンサ部14の各部品の厚さおよび
材質は、温度変化により初期押しつけ応力に変化
が生じないように決定されている。
In the vortex flow meter detector 10, 11 is a pipe through which the fluid to be measured flows, 12 is a cylindrical nozzle provided perpendicularly to the pipe 11, and 13 is a columnar vortex inserted perpendicularly into the pipe 11 through the nozzle 12. The generating body is made of stainless steel or the like, and its upper end 13a is connected to the nozzle 1.
2 by screws or welding, and the lower end 13b
is supported in the conduit 11 by screws. The portion 13c of the vortex generator 13 that comes into contact with the fluid to be measured has a cross-sectional shape, such as a trapezoid, so as to generate a Karman vortex street in the fluid to be measured and to stabilize and strengthen lift changes.
Further, a recess 13d is provided on the upper end 13a side. 1
4 is a sensor section, in which a first piezoelectric sensor 14a and a second piezoelectric sensor 14 are installed in the recess 13d of the vortex generator 13.
b are pressed and fixed at regular intervals. In the sensor section 14, the underlay 14c made of stainless steel or the like acts as a buffer between the second piezoelectric sensor 14b and the bottom surface of the recess 13d, and compensates for the difficulty in controlling the roughness during processing of the bottom surface of the recess 13d. The first spacer 14d made of stainless steel or the like, the insulating plate 14e made of ceramic or the like, and the second spacer 14f made of stainless steel or the like determine the distance between the first piezoelectric sensor 14a and the second piezoelectric sensor 14b, and insulate them. It is for. A push rod 14g made of stainless steel or the like is welded to the upper end 13a of the vortex generator 13 while pressing the piezoelectric sensors 14a and 14b.
The piezoelectric sensors 14a and 14b are pressed and fixed. Note that the sensor section 14 is attached to the vortex generator 13 by the underlay 1.
4c and only the upper part of the push rod 14g are in contact with each other. The piezoelectric sensors 14a and 14b are composed of disc-shaped piezoelectric elements PZT, and are arranged so that their centers coincide with the neutral axis of the vortex generator 13.
Furthermore, as shown in the perspective view of Fig. 4A, the piezoelectric element PZT has electrodes d 1 and d symmetrically divided into left and right sides with respect to the flow direction of the measurement fluid (direction of the arrow in the figure) on its front and back sides, respectively. 2 , d3 , and d4 are provided, and as shown in Figure 4 (b), stress (compressive stress) is generated in opposite directions by scissoring the neutral axis due to the bending moment due to the force in the direction of the arrow (in the direction of the lift of the vortex). and tensile stress) between the electrodes d 1 and d 2 and the electric charge generated between the electrodes d 3 ,
The polarization is reversed so that the charge generated between d and 4 has the same polarity. Therefore, as shown in FIG. 4C, charges of opposite polarity are generated between the two electrodes in response to stresses occurring in the same direction. In addition, the amount of charge generated by stress in the flow direction of the measured fluid is canceled between the electrodes and does not come out, and the amount of charge generated by pipe vibration in the flow direction is also canceled between the electrodes and does not come out. . First piezoelectric sensor 14
a is the sum of charges of the same polarity generated between electrodes d 1 and d 2 and between electrodes d 3 and d 4 , respectively, as an output charge q 1 , and in order to cancel charges of opposite polarity, electrodes d 1 and d 3 are connected. are commonly connected to the vortex generator 13, that is, a reference point, via a push rod 14g, and electrodes d2 and d4 are commonly connected to a lead wire l1 via a spacer 14f. The second piezoelectric sensor 14b uses the sum of charges of the same polarity generated between the electrodes d 1 and d 2 and between the electrodes d 3 and d 4 as an output charge q 2 , cancels charges of opposite polarity, and outputs the sum of the charges of the same polarity generated between the electrodes d 1 and d 2 and between the electrodes d 3 and d 4 as an output charge q 1 . and to reverse the polarity, electrode d 1
and d 3 are connected to a common lead wire l 2 through a spacer 14d.
The electrodes d 2 and d 4 are commonly connected to the vortex generator 13, that is, the reference point, via the underlay 14c. The lead wires l 1 and l 2 are connected to the through holes and hermetic seals 14 provided in each part of the sensor section 14.
h and is taken out to the outside via the vortex flow meter converter 2
Connected to 0. Note that the recess 13d of the vortex generator 13
A gas with a low dew point is filled in the area surrounded by the sensor section 14 to prevent condensation, and the push rod 14g is provided with a communication hole 14i for the filled gas. Further, the thickness and material of each component of the sensor section 14 are determined so that the initial pressing stress does not change due to temperature changes.

渦流量計変換器20は、2個の変換増幅器2
1,22と、これらの変換増幅器21,22の出
力の加算または減算を行なう演算器23と、変換
器20を管路11に固定するためのブラケツト2
4とを有している。変換増幅器21,22として
は、演算増幅器OP1,OP2の帰還回路に接続され
たコンデンサC1,CO2と抵抗R1,R2の並列回路
からなるチヤージアンプが示されており、演算増
幅器OP1の反転入力端子(−)にリード線l1が接
続され、演算増幅器OP2の反転入力端子(−)に
リード線l2が接続されている。したがつて、圧電
センサ14aの出力電荷q1が変換増幅器21に加
えられ、圧電センサ14bの出力電荷q2が反転さ
れて変換増幅器22に加えられ、それぞれ交流電
圧e1,e2に変換された後演算器23に加えられ
る。演算器23は、抵抗R3により帰還が施され
た演算増幅器OP3からなり、OP3の反転入力端子
(−)に演算抵抗R4を介して加えられる変換増幅
器21の出力電圧e1と、抵抗R5と可変抵抗R6
直列回路を介して加えられる変換増幅器22の出
力e2との加算を行い、出力端に外乱振動によるノ
イズの影響を有効に除去した出力電圧e3を得てい
る。
The vortex flowmeter converter 20 includes two conversion amplifiers 2
1 and 22, an arithmetic unit 23 for adding or subtracting the outputs of these conversion amplifiers 21 and 22, and a bracket 2 for fixing the converter 20 to the conduit 11.
4. As the conversion amplifiers 21 and 22, a charge amplifier consisting of a parallel circuit of capacitors C 1 and CO 2 and resistors R 1 and R 2 connected to the feedback circuits of operational amplifiers OP 1 and OP 2 is shown. Lead wire l1 is connected to the inverting input terminal (-) of operational amplifier OP2 , and lead wire l2 is connected to the inverting input terminal (-) of operational amplifier OP2. Therefore, the output charge q 1 of the piezoelectric sensor 14a is applied to the conversion amplifier 21, and the output charge q 2 of the piezoelectric sensor 14b is inverted and applied to the conversion amplifier 22, and is converted into AC voltages e 1 and e 2 , respectively. After that, it is added to the arithmetic unit 23. The arithmetic unit 23 is composed of an operational amplifier OP 3 which is fed back by a resistor R 3 , and the output voltage e 1 of the conversion amplifier 21 is applied to the inverting input terminal (-) of OP 3 via the operational resistor R 4 . By adding the output e 2 of the conversion amplifier 22 applied through a series circuit of resistor R 5 and variable resistor R 6 , an output voltage e 3 is obtained at the output terminal, which effectively eliminates the influence of noise due to disturbance vibration. There is.

なお上述では、変換増幅器21の出力e1と変換
増幅器22の出力e2を演算器23で加算する場合
を例示したが、圧電センサ14a,14bの出力
電荷q1,q2のノイズ成分が同相の場合には演算器
23で減算すればよい。また上述では、圧電セン
サ14a,14bの出力電荷を利用する場合を例
示したが、出力電圧を利用してもよい。この場合
変換増幅器21,22としてチヤージアツプの代
りに電圧増幅器が用いられる。また上述では、圧
電センサ14a,14bとして反転分極した圧電
素子を用いる場合を例示したが、反転分極できな
い圧電素子を用いる場合には、圧電素子を左右に
分割し、一方を裏返しにして取り付けて実質的に
反転分極形にすればよい。
In addition, although the case where the output e 1 of the conversion amplifier 21 and the output e 2 of the conversion amplifier 22 are added by the arithmetic unit 23 has been illustrated above, the noise components of the output charges q 1 and q 2 of the piezoelectric sensors 14a and 14b are in phase. In this case, the arithmetic unit 23 may perform subtraction. Further, in the above description, the case where the output charges of the piezoelectric sensors 14a and 14b are used is exemplified, but the output voltage may also be used. In this case, voltage amplifiers are used as the conversion amplifiers 21 and 22 instead of charge amplifiers. Furthermore, in the above description, the piezoelectric sensors 14a and 14b are exemplified using piezoelectric elements with reverse polarization. However, when using piezoelectric elements that cannot be reversely polarized, the piezoelectric elements are divided into left and right parts, and one side is attached upside down. It is preferable to use reverse polarization type.

また渦流量計検出器10として本実施例では、
渦発生体13の凹部13d内にセンサ部14を設
ける場合を例示したが、渦発生体13の下流側に
渦の生成による揚力変化を受ける受力体を設け、
受力体の凹部内にセンサ部を設けてもよい。
In this embodiment, as the vortex flowmeter detector 10,
Although the case where the sensor part 14 is provided in the recessed part 13d of the vortex generator 13 is illustrated, a force receiving body is provided on the downstream side of the vortex generator 13 to receive a lift change due to the generation of the vortex,
The sensor portion may be provided within the recessed portion of the force receiving body.

以上説明したように本発明では、第1の圧電セ
ンサと第2の圧電センサを所定の間隔をおいて配
置し、各々の圧電センサの出力を信号変換した後
演算することによつて、外乱振動によるノイズの
影響を有効に除去し、S/N比を良好にした渦流
量計において、第1の圧電センサと第2の圧電セ
ンサとして共に反転分極形の圧電センサを用い、
渦発生体(または受力体)の凹部内に金属の下敷
と、第2の反転分極形の圧電センサと、第2の金
属のスペーサと、絶縁板と、第1の金属のスペー
サと、第1の反転分極形の圧電センサの順に積み
重ね、これら積み重ね部分を金属の押し棒で押圧
固定しているので、外部へのリード線が2本です
むなどセンサ部の構成が簡単になり、製作が容易
な渦流量計が得られる。
As explained above, in the present invention, the first piezoelectric sensor and the second piezoelectric sensor are arranged at a predetermined interval, and the output of each piezoelectric sensor is converted into a signal and then calculated. In the vortex flowmeter that effectively removes the influence of noise caused by noise and improves the S/N ratio, inverted polarization type piezoelectric sensors are used as both the first piezoelectric sensor and the second piezoelectric sensor,
A metal underlay, a second inverted polarization type piezoelectric sensor, a second metal spacer, an insulating plate, a first metal spacer, and a second metal spacer are installed in the recess of the vortex generator (or force receiving body). Since the reverse polarization type piezoelectric sensors (No. 1) are stacked in order and the stacked parts are pressed and fixed with a metal push rod, the configuration of the sensor part is simplified, as only two external lead wires are required, and manufacturing is easy. A simple vortex flow meter is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明渦流量計の一実施例の構成説明
図、第2図はその検出器部分の断面図、第3図は
本発明渦流量計の一実施例の電気的接続図、第4
図は本発明に用いる圧電センサの一例を示す構成
説明図である。 10……渦流量計検出器、20……渦流量計変
換器、11……管路、13……渦発生体、13d
……渦発生体の凹部、14……センサ部、14a
……第1の圧電センサ、14b……第2の圧電セ
ンサ、21,22……変換増幅器、23……演算
器。
Fig. 1 is a configuration explanatory diagram of an embodiment of the vortex flowmeter of the present invention, Fig. 2 is a sectional view of the detector portion thereof, Fig. 3 is an electrical connection diagram of an embodiment of the vortex flowmeter of the present invention, 4
The figure is a configuration explanatory diagram showing an example of a piezoelectric sensor used in the present invention. 10... Vortex flow meter detector, 20... Vortex flow meter converter, 11... Pipe line, 13... Vortex generator, 13d
... Concavity of vortex generator, 14 ... Sensor section, 14a
...First piezoelectric sensor, 14b... Second piezoelectric sensor, 21, 22... Conversion amplifier, 23... Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 1 測定流体に応じたカルマン渦を生成させる渦
発生体または渦発生体の下流側に配置された受力
体の凹部内に配置されるセンサ部に所定の間隔を
おいて第1の圧電センサと第2の圧電センサを設
け、これら圧電センサの出力を信号変換した後演
算を行ない外乱振動の影響を除去するようにした
渦流量計において、前記第1、第2の圧電センサ
として共に反転分極形の圧電センサを用い、前記
凹部内に金属の下敷と、第2の反転分極形の圧電
センサと、第2の金属のスペーサと、絶縁板と、
第1の金属のスペーサと、第1の反転分極形の圧
電センサの順で積み重ね、これら積み重ね部分を
金属の押し棒で押圧固定してセンサ部を構成した
ことを特徴とする渦流量計。
1. A first piezoelectric sensor and a sensor section arranged at a predetermined interval in a recess of a vortex generator or a force receiving body arranged downstream of the vortex generator that generates a Karman vortex depending on the fluid to be measured. In a vortex flowmeter in which a second piezoelectric sensor is provided and the outputs of these piezoelectric sensors are converted into signals and then arithmetic is performed to remove the influence of disturbance vibration, both the first and second piezoelectric sensors are of inverted polarization type. using a piezoelectric sensor, a metal underlay, a second inverted polarization type piezoelectric sensor, a second metal spacer, and an insulating plate in the recess,
A vortex flowmeter characterized in that a first metal spacer and a first reverse polarization type piezoelectric sensor are stacked in this order, and the stacked portion is pressed and fixed with a metal push rod to constitute a sensor section.
JP56161122A 1981-10-09 1981-10-09 Vortex flow meter Granted JPS5862516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161122A JPS5862516A (en) 1981-10-09 1981-10-09 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161122A JPS5862516A (en) 1981-10-09 1981-10-09 Vortex flow meter

Publications (2)

Publication Number Publication Date
JPS5862516A JPS5862516A (en) 1983-04-14
JPH048730B2 true JPH048730B2 (en) 1992-02-18

Family

ID=15729015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161122A Granted JPS5862516A (en) 1981-10-09 1981-10-09 Vortex flow meter

Country Status (1)

Country Link
JP (1) JPS5862516A (en)

Also Published As

Publication number Publication date
JPS5862516A (en) 1983-04-14

Similar Documents

Publication Publication Date Title
JPS6161607B2 (en)
JPS6047531B2 (en) vortex flow meter
JPH048730B2 (en)
JPH11258016A (en) Vortex flow meter
JP4670152B2 (en) Vortex flow meter
JPS58160813A (en) Vortex flow meter
JPS6046368B2 (en) vortex flow meter
JPS5928342Y2 (en) force detector
JPH068497Y2 (en) Vortex flowmeter
JPH0783721A (en) Vibration type measuring apparatus
JPH0569369B2 (en)
JP3599082B2 (en) Vortex flow meter
JPS58169029A (en) Vortex flowmeter
JP2893847B2 (en) Mass flow meter
JPS6011461Y2 (en) Flow velocity flow measuring device
JP2893855B2 (en) Mass flow meter
JPH05118889A (en) Vortex flowmeter
JPS6244339Y2 (en)
JPS5953489B2 (en) Flow velocity flow measuring device
JPS6032809B2 (en) Flow velocity flow measuring device
JPH11248500A (en) Eddy flowmeter
JP3114411B2 (en) Vortex flow meter
JPS62162921A (en) Mass flowmeter
JP2003149023A (en) Vortex flowmeter
JPH01107113A (en) Vortex flowmeter