JPH048615B2 - - Google Patents

Info

Publication number
JPH048615B2
JPH048615B2 JP57210286A JP21028682A JPH048615B2 JP H048615 B2 JPH048615 B2 JP H048615B2 JP 57210286 A JP57210286 A JP 57210286A JP 21028682 A JP21028682 A JP 21028682A JP H048615 B2 JPH048615 B2 JP H048615B2
Authority
JP
Japan
Prior art keywords
loop control
fuel ratio
closed
fuel
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57210286A
Other languages
Japanese (ja)
Other versions
JPS59101561A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21028682A priority Critical patent/JPS59101561A/en
Publication of JPS59101561A publication Critical patent/JPS59101561A/en
Publication of JPH048615B2 publication Critical patent/JPH048615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 この発明は、エンジンの空燃比を理論空燃比よ
りもリーンな状態に制御する電子式の空燃比制御
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic air-fuel ratio control device that controls the air-fuel ratio of an engine to be leaner than the stoichiometric air-fuel ratio.

従来、排気通路に排気センサを設置して排気中
の酸素濃度を検出し、その検出信号に基づいて空
燃比を理論空燃比(14.7)近傍となるように燃料
供給量を閉ループ制御して、三元触媒によるHC
およびCOの酸化とNOxの還元とを円滑に行なう
システムが広く知られている。
Conventionally, an exhaust sensor is installed in the exhaust passage to detect the oxygen concentration in the exhaust gas, and based on the detection signal, the fuel supply amount is controlled in a closed loop so that the air-fuel ratio is close to the stoichiometric air-fuel ratio (14.7). HC with original catalyst
A system that smoothly oxidizes CO and reduces NOx is widely known.

これに対し、燃費の向上等の目的から、空燃比
を理論空燃比よりもリーンな状態に設定したい要
請がある。ところが、リーンな状態で運転すると
排気の温度が下がり、排気センサの作動最低温度
よりも低くなつて、排気センサが円滑に作動しな
くなる。そのため、このリーンな制御においては
上記した閉ループ制御をそのまま利用することが
できない。
On the other hand, there is a demand for setting the air-fuel ratio to a leaner state than the stoichiometric air-fuel ratio for the purpose of improving fuel efficiency and the like. However, when the engine is operated in a lean state, the temperature of the exhaust gas decreases and becomes lower than the minimum operating temperature of the exhaust sensor, making it difficult for the exhaust sensor to operate smoothly. Therefore, in this lean control, the above-described closed loop control cannot be used as is.

そこで、所定時間ごとに短い所定期間だけ、排
気センサを用いて理論空燃比となるように閉ルー
プ制御を行ない、そのときの燃料供給量をリーン
方向へ修正した修正値を記憶しておき、上記所定
期間以外の期間は上記修正値に基づいて理論空燃
比から設定値だけリーン方向へシフトした目標空
燃比となるように燃料供給量を開ループ制御する
ようにしたシステムが知られている(特開昭56−
44434号公報参照)。このシステムによれば、所定
時間ごとに行なわれる閉ループ制御によりエンジ
ンの経年変化が検知されて、その度に上記修正値
が新たな値に置き換えて記憶されるので、この修
正値を用いた上記開ループ制御、すなわち、リー
ンな状態の制御が正確になされる利点が期待され
るけれども、実際には、閉ループ制御に入ると
き、排気の温度が急速に上昇しないから排気セン
サが迅速に作動しないので、閉ループ制御が円滑
になされなくなり、したがつて、開ループ制御も
正確になされない欠点がある。
Therefore, for a short predetermined period at predetermined intervals, closed-loop control is performed using an exhaust sensor to maintain the stoichiometric air-fuel ratio, and the correction value for correcting the fuel supply amount at that time in the lean direction is stored. A system is known in which open-loop control of the fuel supply amount is performed so that the target air-fuel ratio is shifted lean by a set value from the stoichiometric air-fuel ratio based on the above-mentioned corrected value during periods other than the above-mentioned correction value (Japanese Patent Application Laid-open No. 1982-
(See Publication No. 44434). According to this system, aging of the engine is detected through closed-loop control performed at predetermined intervals, and each time the above-mentioned correction value is replaced with a new value and stored. Although it is expected that there will be an advantage of accurate loop control, that is, lean state control, in reality, when entering closed loop control, the exhaust temperature does not rise rapidly, so the exhaust sensor does not operate quickly. There is a drawback that closed loop control cannot be performed smoothly and, therefore, open loop control cannot be performed accurately.

この発明は上記従来の欠点を解消するためにな
されたもので、排気センサを用いる開ループ制御
が始まる前に排気センサを加熱することにより、
排気センサの迅速かつ正確な作動を保証して閉ル
ープ制御を円滑に行なわせ、その結果、開ループ
制御を正確に行なわせるエンジンの空燃比制御装
置を提供することを目的とする。
This invention was made to eliminate the above-mentioned conventional drawbacks, and by heating the exhaust sensor before open loop control using the exhaust sensor starts,
It is an object of the present invention to provide an air-fuel ratio control device for an engine that guarantees prompt and accurate operation of an exhaust sensor to smoothly perform closed-loop control and, as a result, to accurately perform open-loop control.

以下、この発明の実施例を図面にしたがつて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図において、11は4サイクルガソリンエ
ンジンで、このエンジン11の吸気通路12には
エアクリーナ13と燃料噴射弁のような燃料供給
装置14とが設けられ、排気通路15には排気1
6の酸素成分を検出する排気センサ17が設けら
れている。19は燃料制御回路で、所定時間ごと
に所定期間だけ上記排気センサ17からの検出信
号に基づいて、吸入混合気20の空燃比が理論空
燃比(14.7)となるように、燃料供給装置14か
らの燃料供給量を閉ループ制御するとともに、上
記所定期間以外の期間は、記憶回路21で記憶さ
れた修正値に基づいて、理論空燃比から設定値だ
けリーン方向へシフトした目標空燃比となるよう
に、燃料供給装置14からの燃料供給量を開ルー
プ制御する。上記閉ループと開ループの切り替え
は、タイミング回路22によりなされる。閉ルー
プ制御は、たとえば、走行時間が所定値に達する
ごとに数分間だけ行なわれる。
In FIG. 1, reference numeral 11 denotes a four-stroke gasoline engine, an air cleaner 13 and a fuel supply device 14 such as a fuel injection valve are provided in an intake passage 12 of this engine 11, and an exhaust gas 14 is provided in an exhaust passage 15.
An exhaust sensor 17 for detecting the oxygen component No. 6 is provided. Reference numeral 19 denotes a fuel control circuit that controls the air-fuel ratio of the intake air-fuel mixture 20 to be the stoichiometric air-fuel ratio (14.7) based on the detection signal from the exhaust sensor 17 for a predetermined period at predetermined time intervals. The fuel supply amount is controlled in a closed loop, and during periods other than the above-mentioned predetermined period, the target air-fuel ratio is shifted from the stoichiometric air-fuel ratio by a set value in the lean direction based on the correction value stored in the storage circuit 21. , the amount of fuel supplied from the fuel supply device 14 is controlled in an open loop. The switching between the closed loop and open loop is performed by the timing circuit 22. The closed-loop control is performed, for example, only for a few minutes each time the running time reaches a predetermined value.

なお、ここで数分間という意味は、後述する修
正値Q(m)は各領域(m=1〜9)で全て書き
換え修正される方がより好ましいので、このため
には、閉ループ制御は数分間継続して行えば良い
と考えられるからである。
Note that the term "several minutes" here means that it is more preferable that the correction value Q(m), which will be described later, be completely rewritten and corrected in each region (m = 1 to 9), so for this purpose, the closed loop control should be performed for several minutes. This is because it is considered a good idea to continue doing this.

上記記憶回路21は、閉ループ制御の際の燃料
供給量を修正した値を、その制御時点のエンジン
運転状態に対応して上記修正値として記憶するも
ので、この修正値のつくり方はつぎのようであ
る。
The storage circuit 21 stores a value obtained by correcting the fuel supply amount during closed-loop control as the above-mentioned correction value in accordance with the engine operating state at the time of the control. This correction value is created as follows. be.

閉ループ制御のときは、排気センサ17からの
検出信号に基づいて、理論空燃比となるように燃
料供給量が制御されるのであるが、第2図に示す
ように、燃料供給量は、リーン側とリツチ側へじ
ぐざぐ状に増減される。上記燃料供給量の頂上お
よび谷底の値をK(1),K(2)…として求めておき、
これらK(i)(i=1〜n)を用いて、 Q(m)=oi=1 K(i)/n×α 0<α<1.0 を求める。ここで、αは理論空燃比よりもリーン
な方向へ修正するための設定値である。
During closed-loop control, the fuel supply amount is controlled to maintain the stoichiometric air-fuel ratio based on the detection signal from the exhaust sensor 17, but as shown in Figure 2, the fuel supply amount is on the lean side. The amount increases and decreases in a zigzag pattern toward the rich side. The peak and bottom values of the above fuel supply amount are determined as K(1), K(2)...
Using these K(i) (i=1 to n), calculate Q(m)= oi=1 K(i)/n×α 0<α<1.0. Here, α is a set value for correcting the air-fuel ratio to leaner than the stoichiometric air-fuel ratio.

上記Q(m)を、その閉ループ制御時点でのエンジ
ン運転状態に対応させて、たとえば第3図に示す
ように、エンジンの回転数および負荷に対応させ
てマツピング処理したうえで、修正値として記憶
しておく。これら修正値Q(m)(m=1〜9)は、
閉ループ制御が行なわれて上記K(i)が更新される
ごとに新しい値に置き換えられるので、エンジン
の経年変化が吸収されて、正確な修正値Q(m)が得
られる。
The above Q(m) is mapped to correspond to the engine operating state at the time of closed-loop control, for example, as shown in Figure 3, and is mapped to the engine speed and load, and then stored as a modified value. I'll keep it. These correction values Q(m) (m=1 to 9) are:
Closed-loop control is performed and each time K(i) is updated, it is replaced with a new value, so aging of the engine is absorbed and an accurate corrected value Q(m) can be obtained.

開ループ制御のときは、上記修正値Q(m)が第1
図の燃料制御回路19へ入力され、理論空燃比か
ら設定値だけリーン方向へシフトした目標空燃比
が得られるように、燃料供給装置14からの燃料
供給量が制御される。
In open-loop control, the above correction value Q(m) is the first
The amount of fuel supplied from the fuel supply device 14 is input to the fuel control circuit 19 shown in the figure, and the amount of fuel supplied from the fuel supply device 14 is controlled so as to obtain a target air-fuel ratio shifted in the lean direction by a set value from the stoichiometric air-fuel ratio.

以上の構成および作動は従来と同様であり、こ
の発明の特徴は、排気センサ17の加熱装置24
と、この加熱装置24を作動させるための加熱制
御装置25とを設けた点にある。
The above configuration and operation are the same as those of the conventional one, and the feature of the present invention is that the heating device 24 of the exhaust sensor 17
and a heating control device 25 for operating this heating device 24.

上記加熱制御装置25は、走行時間を計測する
外部のタイマ26から走行時間が所定値に達する
ごとにトリガ信号aを受けて、パルス状の加熱指
令信号bを発生するパルス発生回路27と、上記
加熱指令信号bを受けて作動し、加熱信号cを発
生する加熱回路28と、電源29とからなる。上
記加熱指令信号bは上記タイミング回路22にも
入力され、所定時間遅延されたのちタイミング信
号dが出力されて、燃料制御回路19が開ループ
制御状態から閉ループ制御状態へと切り替えら
れ、さらに、燃料制御回路19自身に設定された
所定期間だけ閉ループ制御を続けたのち、開ルー
プ制御状態へ復帰する。
The heating control device 25 includes a pulse generating circuit 27 that receives a trigger signal a from an external timer 26 that measures the running time and generates a pulsed heating command signal b every time the running time reaches a predetermined value; It consists of a heating circuit 28 that operates upon receiving a heating command signal b and generates a heating signal c, and a power source 29. The heating command signal b is also input to the timing circuit 22, and after being delayed for a predetermined time, the timing signal d is output, the fuel control circuit 19 is switched from the open loop control state to the closed loop control state, and the fuel control circuit 19 is switched from the open loop control state to the closed loop control state. After continuing the closed loop control for a predetermined period set in the control circuit 19 itself, it returns to the open loop control state.

上記各信号a〜dの波形を第4図のA〜Dに示
す。第4図のEは燃料制御回路19(第1図)の
作動を示す。第4図から明らかなように、タイミ
ング信号dは加熱指令信号bよりも所定時間t1
け遅延されており、上記タイミング信号dを受け
て燃料制御回路19が所定期間t2だけ閉ループ制
御を行ない、第5図に示すように、燃料供給量を
開ループ制御時よりも増加させて理論空燃比を得
る。
The waveforms of each of the above signals a to d are shown in A to D in FIG. E in FIG. 4 shows the operation of the fuel control circuit 19 (FIG. 1). As is clear from FIG. 4, the timing signal d is delayed by a predetermined time t1 from the heating command signal b, and in response to the timing signal d, the fuel control circuit 19 performs closed loop control for a predetermined period t2 . , as shown in FIG. 5, the stoichiometric air-fuel ratio is obtained by increasing the fuel supply amount compared to the open loop control.

第4図Cの加熱信号cは、閉ループ制御の開始
前に第1図の加熱装置24を作動させることによ
り、排気センサ17をあらかじめ作動最低温度
(約300℃)以上に加熱しておくためのものであ
り、閉ループ制御中は排気16の温度が上記作動
最低温度以上になるので上記加熱は特に必要でな
い。したがつて、上記加熱信号cは、閉ループ制
御開始よりも所定時間前から少なくとも閉ループ
制御開始まで加熱装置24を作動させるだけの時
間幅があれば十分であるが、種々の誤差を考慮す
ると、第4図Cに示すように、時間幅t3を、t1
t3<t1+t2となるように設定するのが好ましい。
The heating signal c in FIG. 4C is used to heat the exhaust sensor 17 to a minimum operating temperature (approximately 300°C) or higher by activating the heating device 24 in FIG. 1 before the start of closed-loop control. During closed loop control, the temperature of the exhaust gas 16 is equal to or higher than the above-mentioned minimum operating temperature, so the above-mentioned heating is not particularly necessary. Therefore, it is sufficient that the heating signal c has a time width sufficient to operate the heating device 24 from a predetermined time before the start of closed-loop control until at least the start of closed-loop control. As shown in Figure 4C, the time width t 3 is set to t 1 <
It is preferable to set so that t 3 <t 1 +t 2 .

第1図の加熱装置24は、第6図に示すよう
に、発熱コイルからなるもので、排気センサ17
の検出素子部17aを加熱するように配設されて
おり、加熱回路28からの加熱信号Cにより通電
されて発熱する。上記排気センサ17は、排気通
路15内と大気中との酸素濃度差により超電力を
発生し、これを検出信号eとして出力するもの
で、その検出素子部17aの内外面に、大気に対
する排気16の酸素濃度を検出するための白金の
薄膜31,32を有している。
The heating device 24 in FIG. 1 is composed of a heating coil, as shown in FIG.
The detection element section 17a is arranged to heat the detection element section 17a, and is energized by the heating signal C from the heating circuit 28 to generate heat. The exhaust sensor 17 generates superpower due to the difference in oxygen concentration between the inside of the exhaust passage 15 and the atmosphere, and outputs this as a detection signal e. It has platinum thin films 31 and 32 for detecting the oxygen concentration of the oxygen.

上記構成において、第1図の燃料制御回路は、
常時は前述した開ループ制御を行なつて、理論空
燃比から設定値だけリーン方向へシフトした目標
空燃比となるように、燃料供給装置14からの燃
料供給量を制御している。この状態で、タイマ2
6が走行時間を計測し、この走行時間が所定値に
達するごとにトリガ信号aを出力する。このトリ
ガ信号aを受けて加熱制御回路25のパルス発生
回路27が作動し、加熱指令信号bを出力する。
この加熱指令信号bを受けて加熱回路28が作動
し、加熱信号cを出力して、閉ループ制御開始よ
りも所定時間t1(第4図参照)前から閉ループ制
御開始直後まで加熱装置24を作動させ、第6図
の排気センサ17の検出素子部17aを加熱す
る。
In the above configuration, the fuel control circuit in FIG.
The above-mentioned open-loop control is normally performed to control the amount of fuel supplied from the fuel supply device 14 so that the target air-fuel ratio is shifted from the stoichiometric air-fuel ratio by a set value in the lean direction. In this state, timer 2
6 measures running time and outputs a trigger signal a every time this running time reaches a predetermined value. Upon receiving this trigger signal a, the pulse generation circuit 27 of the heating control circuit 25 is activated and outputs a heating command signal b.
In response to this heating command signal b, the heating circuit 28 operates, outputs the heating signal c, and operates the heating device 24 from a predetermined time t 1 (see Figure 4) before the start of the closed loop control until immediately after the start of the closed loop control. Then, the detection element portion 17a of the exhaust sensor 17 shown in FIG. 6 is heated.

開ループ制御中は排気16の温度が排気センサ
17の作動最低温度(300℃)以下になつている
が、上記加熱により上記検出素子部17aが上記
作動最低温度以上に保たれる。この状態で、第1
図のタイミング回路22が上記加熱指令信号bを
受けて所定時間t1だけ遅延されたタイミング信号
dを出力し、燃料制御回路19を閉ループ制御に
切り替え、理論空燃比が得られるように燃料供給
装置14からの燃料供給量を制御する。したがつ
て、閉ループ制御に入つたときには、排気センサ
17が既に作動最低温度以上になつているので、
排気センサ17が迅速かつ正確に作動し、閉ルー
プ制御が円滑に行なわれる。したがつて、閉ルー
プ制御の際の燃料供給量を修正した修正値を用い
て行なう開ループ制御が正確になされる。
During open loop control, the temperature of the exhaust gas 16 is below the minimum operating temperature (300° C.) of the exhaust sensor 17, but the heating keeps the detection element portion 17a above the minimum operating temperature. In this state, the first
The timing circuit 22 shown in the figure receives the heating command signal b and outputs the timing signal d delayed by a predetermined time t1 , switches the fuel control circuit 19 to closed loop control, and controls the fuel supply system so that the stoichiometric air-fuel ratio is obtained. Controls the amount of fuel supplied from 14. Therefore, when closed loop control is entered, the exhaust sensor 17 has already reached the minimum operating temperature, so
The exhaust sensor 17 operates quickly and accurately, facilitating closed loop control. Therefore, open-loop control can be performed accurately using the corrected value that corrects the amount of fuel supplied during closed-loop control.

以上説明したように、この発明は、排気センサ
17の素子部17aを加熱する加熱装置24と、
閉ループ制御開始よりも所定時間t1前から少なく
とも閉ループ制御開始まで上記加熱装置24を作
動させる加熱制御装置25とを設けた構成である
から、排気センサ17を用いる閉ループ制御が始
まる時点では排気センサ17が十分加熱されてい
るので、排気センサ17の作動が迅速かつ正確に
なり、閉ループ制御が円滑に行なわれ、その結
果、開ループ制御が正確になされる効果がある。
As explained above, the present invention includes a heating device 24 that heats the element portion 17a of the exhaust sensor 17;
Since the configuration includes a heating control device 25 that operates the heating device 24 from a predetermined time t 1 before the start of the closed-loop control until at least the start of the closed-loop control, the exhaust sensor 17 is activated at the time when the closed-loop control using the exhaust sensor 17 starts. Since the exhaust gas sensor 17 is sufficiently heated, the operation of the exhaust sensor 17 is quick and accurate, and closed-loop control is performed smoothly, resulting in the effect that open-loop control is performed accurately.

加えて、排気温度を心配することなく、開ルー
プ制御の基礎となる閉ループ制御をその当初から
的確に行なうことができるため、開ループ制御の
目標空燃比のリーン度合いを大きくすることが可
能となり、これにより空燃比のリーン制御の目的
である燃費等を向上することができる。
In addition, since closed-loop control, which is the basis of open-loop control, can be performed accurately from the beginning without worrying about exhaust temperature, it is possible to increase the leanness of the target air-fuel ratio for open-loop control. This makes it possible to improve fuel efficiency, which is the purpose of lean control of the air-fuel ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す系統図、第
2図は閉ループ制御の特性を示す特性図、第3図
は開ループ制御に用いる修正値Q(m)のマツピング
方法を示す説明図、第4図は各部の信号を示す信
号波形図、第5図は開ループ制御および閉ループ
制御における燃料供給量を示す特性図、第6図は
排気センサを示す縦断面図である。 11……エンジン、14……燃料供給装置、1
6……排気、17……排気センサ、17a……検
出素子部、19……燃料制御回路、21……記憶
回路、24……加熱装置、25……加熱制御装
置、Q(m)……修正値、t1……所定時間、t2……所
定期間。
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a characteristic diagram showing characteristics of closed-loop control, and Fig. 3 is an explanatory diagram showing a mapping method of correction value Q(m) used in open-loop control. , FIG. 4 is a signal waveform diagram showing the signals of each part, FIG. 5 is a characteristic diagram showing the fuel supply amount in open loop control and closed loop control, and FIG. 6 is a longitudinal sectional view showing the exhaust sensor. 11...Engine, 14...Fuel supply device, 1
6... Exhaust, 17... Exhaust sensor, 17a... Detection element section, 19... Fuel control circuit, 21... Memory circuit, 24... Heating device, 25... Heating control device, Q(m)... Correction value, t 1 ... predetermined time, t 2 ... predetermined period.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンの排気の成分を検出する排気センサ
と、所定時間ごとに所定期間だけ上記排気センサ
からの検出信号に基づいて空燃比が理論空燃比と
なるように燃料供給量を閉ループ制御するととも
に、上記所定期間以外の期間は、記憶回路で記憶
された修正値に基づいて、理論空燃比から設定値
だけリーン方向へシフトした目標空燃比となるよ
うに燃料供給量を開ループ制御する燃料制御回路
とを具備し、上記記憶回路は、上記閉ループ制御
の際の燃料供給量を修正した値をその制御時点の
エンジン運転状態に対応して修正値として記憶す
るように構成されたエンジンの空燃比制御装置に
おいて、排気センサの素子部を加熱する加熱装置
と、閉ループ制御開始よりも所定時間前から少な
くとも閉ループ制御開始まで上記加熱装置を作動
させる加熱制御装置とを設けたことを特徴とする
エンジンの空燃比制御装置。
1 An exhaust sensor detects the components of engine exhaust, and the fuel supply amount is controlled in a closed loop so that the air-fuel ratio becomes the stoichiometric air-fuel ratio based on the detection signal from the exhaust sensor for a predetermined period every predetermined time, and During periods other than the predetermined period, the fuel control circuit performs open-loop control of the fuel supply amount so that the target air-fuel ratio is shifted from the stoichiometric air-fuel ratio by the set value in the lean direction based on the correction value stored in the memory circuit. an air-fuel ratio control device for an engine, wherein the memory circuit is configured to store a corrected value of the fuel supply amount during the closed-loop control as a corrected value corresponding to the engine operating state at the time of the control. An air-fuel ratio of an engine characterized in that it is provided with a heating device that heats an element portion of an exhaust sensor, and a heating control device that operates the heating device from a predetermined time before the start of closed-loop control until at least the start of closed-loop control. Control device.
JP21028682A 1982-11-30 1982-11-30 Air-fuel ratio controller of engine Granted JPS59101561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21028682A JPS59101561A (en) 1982-11-30 1982-11-30 Air-fuel ratio controller of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21028682A JPS59101561A (en) 1982-11-30 1982-11-30 Air-fuel ratio controller of engine

Publications (2)

Publication Number Publication Date
JPS59101561A JPS59101561A (en) 1984-06-12
JPH048615B2 true JPH048615B2 (en) 1992-02-17

Family

ID=16586878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21028682A Granted JPS59101561A (en) 1982-11-30 1982-11-30 Air-fuel ratio controller of engine

Country Status (1)

Country Link
JP (1) JPS59101561A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116043A (en) * 1984-11-09 1986-06-03 Nissan Motor Co Ltd Air-fuel ratio control device for internal-combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294930A (en) * 1976-02-04 1977-08-10 Bosch Gmbh Robert Device for controlling fuellair mixture in internal combustion engine
JPS5346523A (en) * 1976-10-08 1978-04-26 Nissan Motor Co Ltd Controlling method and apparatus for air-fuel ratio
JPS5644434A (en) * 1979-09-19 1981-04-23 Nippon Denso Co Ltd Control of air-fuel ratio
JPS57105530A (en) * 1980-12-23 1982-07-01 Toyota Motor Corp Air-fuel ratio controlling method for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294930A (en) * 1976-02-04 1977-08-10 Bosch Gmbh Robert Device for controlling fuellair mixture in internal combustion engine
JPS5346523A (en) * 1976-10-08 1978-04-26 Nissan Motor Co Ltd Controlling method and apparatus for air-fuel ratio
JPS5644434A (en) * 1979-09-19 1981-04-23 Nippon Denso Co Ltd Control of air-fuel ratio
JPS57105530A (en) * 1980-12-23 1982-07-01 Toyota Motor Corp Air-fuel ratio controlling method for internal combustion engine

Also Published As

Publication number Publication date
JPS59101561A (en) 1984-06-12

Similar Documents

Publication Publication Date Title
JP2592342B2 (en) Control device for internal combustion engine
JPS627374B2 (en)
US5396875A (en) Air/fuel control with adaptively learned reference
JP2778383B2 (en) Engine air-fuel ratio control device
JPH048615B2 (en)
JPH08165943A (en) Internal combustion engine control device
JP4371027B2 (en) Engine air-fuel ratio control device
JPH0480653A (en) Correction of output of air/fuel ratio sensor
JP2006097510A (en) Air-fuel ratio control device of engine
JP2569460B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07325066A (en) Control device for heating means for air-fuel ratio sensor
JPH0147614B2 (en)
JP2668080B2 (en) Air-fuel ratio control method for internal combustion engine
JP2571234B2 (en) Fuel supply control method for internal combustion engine
JP2004197693A (en) Air/fuel ratio control system of internal combustion engine
JPS6329857Y2 (en)
JP2733963B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0531247Y2 (en)
JPH10205374A (en) Exhaust emission control device of internal combustion engine
JP3608443B2 (en) Air-fuel ratio control device for internal combustion engine
JP2901978B2 (en) Engine air-fuel ratio control device
JP2009191692A (en) Air-fuel ratio control device of internal combustion engine
JPH07269398A (en) Air-fuel ratio controller of internal combustion engine
JPS5941643A (en) Electronically-controlled fuel injector for internal- combustion engine
JPH0788795B2 (en) Air-fuel ratio controller for engine