JPH0485179A - Rear-wheel steering controller for four-wheel steering vehicle - Google Patents

Rear-wheel steering controller for four-wheel steering vehicle

Info

Publication number
JPH0485179A
JPH0485179A JP2198211A JP19821190A JPH0485179A JP H0485179 A JPH0485179 A JP H0485179A JP 2198211 A JP2198211 A JP 2198211A JP 19821190 A JP19821190 A JP 19821190A JP H0485179 A JPH0485179 A JP H0485179A
Authority
JP
Japan
Prior art keywords
vehicle
wheel steering
rear wheel
steering angle
yaw rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2198211A
Other languages
Japanese (ja)
Inventor
Mizuho Sugiyama
杉山 瑞穂
Osamu Takeda
修 武田
Hiroaki Tanaka
宏明 田中
Shin Koike
伸 小池
Kaoru Ohashi
薫 大橋
Hitoshi Iwata
仁志 岩田
Susumu Ishikawa
将 石川
Hideki Kusunoki
秀樹 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2198211A priority Critical patent/JPH0485179A/en
Publication of JPH0485179A publication Critical patent/JPH0485179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To better travel stability and rectilinear travelability at time of forward or backward movement by installing a sign setting means which sets a plus or minus sign of a desired rear-wheel steering angle to be calculated to the same sign as a detecting signal at time of forward movement but to the different sign at time of backward movement, respectively. CONSTITUTION:When a vehicle is in forward movement, symmetrical front wheels FW1, FW2 are steered in the right direction, and if the vehicle is in turning clockwise, a yaw being produced in a car body is of clockwise rotation and a detected yaw rate wy comes to plus, and when they are steered in the left direction and the vehicle is turned counterclockwise, the yaw rate omegay comes to minus, and symmetrical rear wheels RW1, RW2 are steered to the same phase with the symmetrical front wheels FW1, FW2. When the vehicle is in backward movement, the symmetrical front wheels FW1, FW2 are steered in the left direction, and if the vehicle is turning clockwise, the yaw being produced in the car body is of clockwise rotation, and the yaw rate omegay comes to plus, in addition, when they are steered in the right direction and vehicle in turned counterclockwise, the yaw rate omegay comes to minus, thus the symmetrical rear wheels RW1, RW2 are steered as the same phase with the symmetrical front wheels FW1, FW2.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、車体のヨーレートを検出するとともに同ヨー
レートに比例した大きさに後輪を操舵して、車両走行中
に車体に発生するヨーを抑制する四輪操舵車の後輪操舵
制御装置に関する。
The present invention relates to a rear wheel steering control device for a four-wheel steering vehicle that detects a yaw rate of a vehicle body and steers the rear wheels to a magnitude proportional to the yaw rate to suppress yaw generated in the vehicle body while the vehicle is running.

【従来技術】[Prior art]

従来、この種の装置は、例えば特開平2−144261
号公報に示されるように、車体のヨーレートを検出して
車体のヨー運動方向を正負の符号で表すとともに同ヨー
レートの大きさを絶対値により表す検出信号を出力する
ヨーレート検出手段と、前記検出信号により表されたヨ
ーレート値に比例係数を乗算して正負の符号により後輪
の操舵方向を表しかつ絶対値により後輪の中立位置から
の操舵角を表す目標後輪操舵角を算出する目標後輪操舵
角算出手段と、前記算出された目標後輪操舵角に後輪を
操舵する後輪操舵機構とを備え、車体に右(又は左)@
転方向のヨーが発生した場合には後輪を右(又は左)方
向に操舵して旋回走行中の車両の走行安定性、及び略直
進走行中の直進走行性を良好にしようとしている。
Conventionally, this type of device has been disclosed, for example, in Japanese Patent Application Laid-Open No. 2-144261.
As shown in the publication, yaw rate detection means detects the yaw rate of the vehicle body and outputs a detection signal representing the direction of yaw movement of the vehicle body using a positive or negative sign and representing the magnitude of the yaw rate using an absolute value, and the detection signal A target rear wheel steering angle is calculated by multiplying the yaw rate value expressed by a proportional coefficient, and the positive and negative signs represent the steering direction of the rear wheels, and the absolute value represents the steering angle from the rear wheel's neutral position. A steering angle calculating means and a rear wheel steering mechanism for steering the rear wheels to the calculated target rear wheel steering angle are provided, and the right (or left) @
When yaw in the turning direction occurs, the rear wheels are steered to the right (or left) to improve the running stability of the vehicle while turning and the straight-line running performance of the vehicle while running substantially straight.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかるに、上記従来の装置にあっては、車両の前進時の
みを考慮しており、車両の後退時のことは考慮されてい
ないので、車両の後退時に右(又は左)回転方向のヨー
が発生した場合には、後輪は右(又は左)方向に操舵さ
れ(jFE4B図破線参照)、この操舵方向は車両の旋
回半径を小さくする方向、すなわちヨーレートを増長さ
せる方向に対応する。その結果、車両の後退時には前記
車両の走行安定性及び直進走行性が低下する可能性があ
る。 本発明は上記問題に対処するためになされたもので、そ
の目的は、車体に発生するヨーに比例させて後輪を操舵
制御する四輪操舵車において、車両の前進時にも後退時
にも前記車両の走行安定性及、び直進走行性が良好とな
る後輪操舵制御装置を提供することにある。
However, in the above-mentioned conventional device, only the forward movement of the vehicle is taken into account, and the backward movement of the vehicle is not taken into account. In this case, the rear wheels are steered to the right (or left) (see the broken line in the diagram jFE4B), and this steering direction corresponds to a direction that reduces the turning radius of the vehicle, that is, a direction that increases the yaw rate. As a result, when the vehicle is reversing, the running stability and straight-line running performance of the vehicle may deteriorate. The present invention has been made in order to solve the above problem, and its purpose is to provide a four-wheel steering vehicle that controls the steering of the rear wheels in proportion to the yaw generated in the vehicle body. An object of the present invention is to provide a rear wheel steering control device that improves running stability and straight-line running performance.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、本発明の構成上の特徴は、
車体のヨーレートを検出して車体のヨー運動方向を正負
の符号で表すとともに同ヨーレートの大きさを絶対値に
より表す検出信号を出力するヨーレート検出手段と、前
記検出信号により表されたヨーレート値に比例係数を乗
算して正負の符号により後輪の操舵方向を表しかつ絶対
値により後輪の中立位置からの操舵角を表す目標後輪操
舵角を算出する目標後輪操舵角算出手段と、前記算出さ
れた目標後輪操舵角に後輪を操舵する後輪操舵機構とを
備えた四輪操舵車の後輪操舵制御装置において、前記目
標後輪操舵角算出手段により算出される目標後輪操舵角
の正負の符号を車両の前進時には前記検出信号と同じ符
号に設定しかつ車両の後退時には前記検出信号と異なる
符号に設定する符号設定手段を設けたことにある。
In order to achieve the above object, the structural features of the present invention are as follows:
yaw rate detection means for detecting the yaw rate of the vehicle body and outputting a detection signal representing the direction of yaw movement of the vehicle body with a positive or negative sign and representing the magnitude of the yaw rate as an absolute value; a target rear wheel steering angle calculating means for calculating a target rear wheel steering angle by multiplying a coefficient to represent a steering direction of the rear wheels by a positive or negative sign and representing a steering angle of the rear wheels from a neutral position by an absolute value; and a rear wheel steering mechanism for steering the rear wheels to a target rear wheel steering angle calculated by the target rear wheel steering angle calculating means. A sign setting means is provided for setting the positive and negative signs of the sign to the same sign as the detection signal when the vehicle is moving forward, and to a different sign from the detection signal when the vehicle is moving backward.

【発明の作用及び効果】[Operation and effects of the invention]

上記のように構成した本発明においては、符号設定手段
が、目標後輪操舵角算出手段により算出される目標後輪
操舵角の正負の符号を、車両の前進時にはヨーレート検
出手段により検出された検出信号と同じ符号に設定し、
かつ車両の後退時にはヨーレート検出手段により検出さ
れた検出信号と翼なる符号に設定するので、車体に作用
するヨーが右(又は左)回転方向であったとすると、車
両の前進時には後輪は右(又は左)方向へ操舵されると
ともに(第4A図参照)、車両の後退時には後輪は左(
右)方向へ操舵される(第4B図実線参照)。 この場合、これらの操舵方向はいずれも車体に発生して
いるヨーを抑制するものであるので、本発明によれば、
車両が前進する場合でも、車両が後退する場合でも、旋
回走行時の車両の走行安定性が良好になるとともに、略
直進走行中の車両の直進性が良好となる。 (実施例] 以下、本発明の一実施例を図面を用いて説明すると、第
1図は同実施例に係る四輪操舵車の全体を概略的に示し
ている。 この四輪操舵車は左右前輪FWI、FW2を操舵する前
輪操舵機構Aと、左右後輪RWI、RW2を操舵する後
輪操舵機構Bと、前輪操舵機構A及び後輪操舵機構Bを
電気的に制御する電気制御装置Cとを備えている。 前輪操舵機構Aは軸方向に変位して左右前輪FWl、F
W2を操舵するラックパー11を備えている。ラックパ
ー11はハウジング12に軸方向に変位可能に支持され
るとともに、操舵軸13を介してハンドル14に接続さ
れている。操舵軸13の下部には制御バルブ15が組み
付けられており、同バルブ15は、操舵軸13に作用す
る操舵トルクに応じて、油圧ポンプ16から吐出された
作動油をハウジング12内に設けたパワーシリンダ17
の一方の油室へ供給し、かつ同シリンダ17の他方の油
室からの作動油をリザーバ18へ排出する。パワーシリ
ンダ17は前記作動油の給排によりラックパー11を軸
方向に駆動して、ハンドル14による左右前輪FWI、
FW2の操舵を助勢する。 後輪操舵機構Bは軸方向に変位して左右後輪RWl、R
W2を操舵するりレーロッド21を備えている。リレー
ロッド21は、電磁切り換えバルブ22により作動油の
給排が制御されるパワーシリンダ23によって軸方向に
駆動されるようになっている。 電磁切り換えバルブ22はソレノイド22a。 22bを備えており、両ソレノイド22a、22bへの
非通電により中央位置(第1図の状態)に設定され、パ
ワーシリンダ230両油室に対する作動油の給排を禁止
するとともに、油圧ポンプ24からの作動油をリザーバ
18に還流させる。また、電磁切り換えバルブ22はソ
レノイド22mへの通電により左位置に設定され、油圧
ポンプ24からの作動油をパワーシリンダ23の左油室
へ供給するとともに、同シリンダ23の右油室内の作動
油をリザーバ18へ排出する。さらに、電磁切す換えバ
ルブ22はソレノイド22t)への通電により右位置に
設定され、油圧ポンプ24からの作動油をパワーシリン
ダ23の右油室へ供給するとともに、同シリンダ23の
左油室内の作動油をリザーバ18へ排出する。 電気制御装置Cは後退検出スイッチ31、車速センサ3
2、ヨーレートセンサ33、後輪操舵角センサ34及び
マイクロコンビコータ35を備えている。 後退検出スイッチ31は変速機(図示しない)のシフト
レバ−の位置を検出することにより車両の前進及び後退
を検出するもので、同前進及び後退を表す検出信号を出
力する。車速センサ32は変速機の出力軸の回転を検出
するピックアップセンサで構成され、同回転数すなわち
車速Vに反比例した間隔を有する1相のパルス列信号を
検出信号として出力する。ヨーレートセンサ33は車体
の鉛直軸回りの回転角速度を測定することにより車体の
ヨーレートωyを検出するもので、同ヨーレートωyを
表す検出信号を出力する。この場合、ヨーレートωyは
正及び負の符号により車体に作用しているヨーの右及び
左回転方向をそれぞれ表し、かつ絶対値により同ヨーの
大きさを表している。 後輪操舵角センサ34はリレーロッド21の軸方向の変
位量を測定することにより左右後輪RWI。 RW’2の操舵角(後輪操舵角θr)を検出するもので
、同操舵角θrを表す検出信号を出力する。後輪操舵角
θrは正及び負の符号により左右後輪RWI。 RW2の右及び左操舵方向をそれぞれ表し、かつ絶対値
により後輪操舵角θrの大きさを表している。 マイクロコンピュータ35はCPU、ROM。 RA M、  インターフェース回路などからなり、第
2図のフローチャートに対応したプログラムを実行する
。なお、ROMには前記プログラムと共にテーブルが用
意されており、同テーブルには、第3図のグラフに示す
ように、車速■が「0」から正の大きな値に変化するに
従って「0」から正の大きな値に変化する比例係数Kが
記憶されている。 次に、上記のように構成した実施例の動作を説明する。 イグニツシ冒ンスイッチ(図示しない)が閉成されると
、マイクロコンピュータ35は、ステップ40にてプロ
グラムの実行を開始し、ステップ41〜45からなる循
環処理を実行して左右後輪RWI、RW2を操舵制御す
る。 この循環処理においては、ステップ41にて車速センサ
32、ヨーレートセンサ33及び後輪操舵角センサ34
からの各検出信号が入力されて、車速V、ヨーレートω
y及び後輪操舵角θrの設定処理が実行される。この場
合、車速Vの設定においては、1相のパルス列信号から
なる検出信号の各パルス間の時間を計測して、同計測値
を逆数変換することにより車速Vが算出される。このス
テップ41の処理後、ステップ42にて前記算出車速V
に基づいてマイクロコンビ1−夕45のROM内のテー
ブルが参照されて、車速Vに対応した比例係数Kが決定
され、ステップ43にて後退検出スイッチ31からの検
出信号が読み込まれて、同検出信号に基づき車両が後退
状態にあるか否かが判定される。 今、車両が前進中であれば、前記ステップ43にて「N
O」と判定され、ステップ44にて目標後輪操舵角θr
*が下記演算の実行によりK・ωyに設定される。 011社に・ωy 次に、ステップ45にて前記算出した目標後輪操舵角o
r傘と前記ステップ41にて設定された後輪操舵角θr
との差θfト11 fが算出されて、面差θr傘−θr
に基づいて左右後輪RWI、RW2が操舵制御される。 この場合、前記差θr傘−θrが正(又は負)であれば
、ンレノイド22b(又は22a)を通電することによ
り電磁切り換えバルブ22が右位置(又は左位置)に設
定され、油圧ポンプ24からの作動油がパワーシリンダ
23の右油室(又は左油室)へ供給されるとともに、同
シリンダ23の左油室(又は右油室)内の作動油がリザ
ーバ18へ排出されて、左右後輪RWI、RW2は右方
向(又は左方向)へ操舵される。これにより、ステップ
41〜45からなる循環処理中、左右後輪RWI、RW
2は目標後輪操舵角θr*に操舵されることになる。 この車両前進中の場合、第4A図で示すように、左右前
輪FWI、FW2が右方向へ操舵されて車両が右旋回中
であれば、車体Iこ発生するヨーは右回りであって検出
ヨーレートωyは正となり、比例係数には「0」以上で
あるので、目標後輪操舵角θre (= K・ωy)も
rOJ以上となる。その結果、左右後輪RWI、RW2
は中立又は右方向すなわち左右前輪FW1.FW2に対
して同相に操舵される。また、この車両前進中、前記と
は逆に、左右前輪FWI、FW2が左方向へ操舵されて
車両が左旋回する場合には、ヨーレートωyは負となっ
て目標後輪操舵角θf*(m−K・ωy)は「0」以下
になるので、左右後輪RWI、RW2は中立又は左方向
、すなわちこの場合も、左右前輪FWI。 FWに対して同相に操舵される。その結果、前進旋回中
の車両の走行安定性又は前進路直進中の車両の直進性が
良好となる。 一方、車両が後退していれば、前記ステップ43にてr
YEsJと判定され、ステップ46にて目標後輪操舵角
θr*が下記演算の実行により−K・ωyに設定される
とともに、ステップ45の処理により左右後輪RW1.
RW2は目標後輪操舵角θr*に操舵制御される。 θr1w −K・ωy この車両後退中の場合、第4B図で示すように、左右前
輪FWI、FW2が左方向へ操舵されて車両が右旋回中
であれば、車体に発生するヨーは右回りであって検出ヨ
ーレートωyは正となり、比例係数には「0」以上であ
るので、目標後輪操舵角θr* (−−K、・ωy)は
「0」以下となる。その結果、左右後輪RWI、RW2
は中立又は左方向すなわち左右前輪FWI、FW2に対
して同相に操舵される。また、この車両後退中に、左右
前輪FWl、FW2が右方向へ操舵されて車両が左旋回
する場合には、ヨーレートωyは負となって目標後輪操
舵角θre (−−K・ωy)は「0」以上になるので
、左右後輪RWI、RW2は中立又は右方向、すなわち
、この場合も、左右前輪FWI、FWに対して同相に操
舵される。これにより、この車両後退の場合も、前記車
両の走行安定性及び直進性が良好となる。 なお、上記実施例においては、ステップ44゜46にお
ける演算式を異ならせることにより、目標後輪操舵角θ
r*の正負の符号を車両の前進時と後退時とで異ならせ
るようにしたが、ステップ44.46の処理に代えて、
ステップ43の判定により車両後退時にのみ比例係数に
の符号を正から負に変更し、その後、同変更された又は
そのままの比例係数Kをヨーレートωyに乗算するよう
にして目標後輪操舵角θr*を算出するようにしても、
同算出目標後輪操舵角θr$は上記実施例の場合と同じ
になり、この場合も上記実施例と同じ効果を期待できる
。また、ステップ42.43間にて、比例係数にとヨー
レートωyとを乗算しておき、ステップ44.46の処
理に代えて、ステップ43の判定により車両後退時にの
み前記乗算結果K・ωyの符号を正から負に(又は負か
ら正に)変更するようにして目標後輪操舵角θr*を算
出するようにしても、同算出目標後輪操舵角θτ傘は上
記実施例の場合と同じになり、この場合も上記実施例と
同じ効果を期待できる。 さらに、車両の前進及び後退を車速Vの正負の符号で表
しておき、かつ同符号により比例係数Kが正負に設定さ
れるようして、車両の前進及び後退に応じて目標後輪操
舵角θr*の符号を異ならせるようにしてもよい。この
場合、車速センサ32を変速機の出力軸の回転に応じて
2相のパルス列信号を発生するピックアップセンサで構
成しておき、ステップ41にて車速Vを計算する際に、
前記出力軸の回転方向をも考慮して、車両の前進時には
正の値により車速の大きさを表し、かつ車両の後退時に
は負の値により車速の大きさを表す値に車速Vを設定す
るようにする。また、マイクロコンピュータ45のRO
M内のテーブルには、第5図に示すように、車速Vが正
のとき正の値を示し、かつ車速Vが負のとき負の値を示
す比例係数Kを記憶させておくようにし、ステップ43
.44.46の処理に代えて、ステップ42の処理によ
り設定した正又は負の比例係数Kを単にヨーレートωy
に乗算することにより目標後輪操舵角θr*(=K・ω
y)を算出するようにすればよい。その結果、この場合
も、車両の前進時には目標後輪操舵角θrIとヨーレー
トωyの正負の符号が一致するとともに、車両の後退時
には目標後輪操舵角θr*とヨーレートωyの正負の符
号が具なるものに設定され、左右後輪RWI、RW2は
上記実施例と同様に操舵制御されて、同実施例と同一の
効果が達成される。 また、この場合、第5図に示すように、比例係数Kが「
0」から負又は正に変化し始める車速Vが、その絶対値
において、正の場合よりも負の場合に小さくなるように
設定するとよい。これにより、車両が後退する場合には
、車速Vの絶対値■1が小さ(でも、左右後輪RWI、
RW2が左右前輪FWI、FW2に対して同相に操舵さ
れることになり、車両の走行安定性及び直進性が車両が
前進する場合に比べてより良好となる。
In the present invention configured as described above, the sign setting means sets the positive or negative sign of the target rear wheel steering angle calculated by the target rear wheel steering angle calculating means to the sign detected by the yaw rate detecting means when the vehicle is moving forward. Set it to the same sign as the signal,
In addition, when the vehicle is moving backward, the detection signal detected by the yaw rate detection means is set to the wing sign, so if the yaw acting on the vehicle body is in the right (or left) rotation direction, when the vehicle is moving forward, the rear wheels will rotate to the right (or left). When the vehicle is moving backwards, the rear wheels are steered to the left (or left) (see Figure 4A).
right) direction (see solid line in Figure 4B). In this case, since all of these steering directions suppress the yaw occurring in the vehicle body, according to the present invention,
Whether the vehicle is moving forward or backward, the running stability of the vehicle when turning is improved, and the straightness of the vehicle when running substantially straight is also improved. (Embodiment) An embodiment of the present invention will be described below with reference to the drawings. Fig. 1 schematically shows the entirety of a four-wheel steering vehicle according to the embodiment. A front wheel steering mechanism A that steers the front wheels FWI and FW2, a rear wheel steering mechanism B that steers the left and right rear wheels RWI and RW2, and an electric control device C that electrically controls the front wheel steering mechanism A and the rear wheel steering mechanism B. The front wheel steering mechanism A is axially displaced to control the left and right front wheels FWl, F.
It is equipped with a rack par 11 for steering W2. The rack par 11 is supported by a housing 12 so as to be axially displaceable, and is connected to a handle 14 via a steering shaft 13. A control valve 15 is assembled in the lower part of the steering shaft 13, and the valve 15 controls the hydraulic fluid discharged from the hydraulic pump 16 according to the steering torque acting on the steering shaft 13 to the power supply installed in the housing 12. cylinder 17
The hydraulic oil is supplied to one oil chamber of the cylinder 17, and the hydraulic oil from the other oil chamber of the same cylinder 17 is discharged to the reservoir 18. The power cylinder 17 drives the rack par 11 in the axial direction by supplying and discharging the hydraulic oil, and controls the left and right front wheels FWI by the handle 14.
Assists the steering of FW2. The rear wheel steering mechanism B is displaced in the axial direction to control the left and right rear wheels RWl, R.
A steering rod 21 is provided for steering W2. The relay rod 21 is driven in the axial direction by a power cylinder 23 whose supply and discharge of hydraulic oil is controlled by an electromagnetic switching valve 22. The electromagnetic switching valve 22 is a solenoid 22a. 22b is set at the center position (the state shown in FIG. 1) by de-energizing both solenoids 22a and 22b, and prohibits the supply and discharge of hydraulic oil to both oil chambers of the power cylinder 230, and also prevents the hydraulic The hydraulic oil is returned to the reservoir 18. Further, the electromagnetic switching valve 22 is set to the left position by energizing the solenoid 22m, and supplies the hydraulic oil from the hydraulic pump 24 to the left oil chamber of the power cylinder 23, and also supplies the hydraulic oil in the right oil chamber of the cylinder 23. Discharge to reservoir 18. Further, the electromagnetic switching valve 22 is set to the right position by energizing the solenoid 22t), and supplies hydraulic oil from the hydraulic pump 24 to the right oil chamber of the power cylinder 23, and also supplies the hydraulic oil from the hydraulic pump 24 to the left oil chamber of the cylinder 23. Drain the hydraulic oil into the reservoir 18. The electric control device C includes a reverse detection switch 31 and a vehicle speed sensor 3.
2, a yaw rate sensor 33, a rear wheel steering angle sensor 34, and a micro combi coater 35. The backward movement detection switch 31 detects forward movement and backward movement of the vehicle by detecting the position of a shift lever of a transmission (not shown), and outputs a detection signal representing the movement forward and backward. The vehicle speed sensor 32 is composed of a pickup sensor that detects the rotation of the output shaft of the transmission, and outputs a one-phase pulse train signal having an interval inversely proportional to the same rotation speed, that is, the vehicle speed V, as a detection signal. The yaw rate sensor 33 detects the yaw rate ωy of the vehicle body by measuring the rotational angular velocity of the vehicle body around the vertical axis, and outputs a detection signal representing the yaw rate ωy. In this case, the yaw rate ωy uses positive and negative signs to represent the right and left rotational directions of yaw acting on the vehicle body, and its absolute value represents the magnitude of the yaw. The rear wheel steering angle sensor 34 determines the RWI of the left and right rear wheels by measuring the amount of displacement of the relay rod 21 in the axial direction. It detects the steering angle of RW'2 (rear wheel steering angle θr) and outputs a detection signal representing the same steering angle θr. The rear wheel steering angle θr is determined by the positive and negative signs of the left and right rear wheels RWI. The right and left steering directions of RW2 are respectively represented, and the magnitude of the rear wheel steering angle θr is represented by an absolute value. The microcomputer 35 is a CPU and a ROM. It consists of a RAM, an interface circuit, etc., and executes a program corresponding to the flowchart in FIG. In addition, a table is prepared in the ROM along with the above program, and as shown in the graph in Figure 3, as the vehicle speed changes from "0" to a large positive value, the table changes from "0" to a positive value. A proportionality coefficient K that changes to a large value is stored. Next, the operation of the embodiment configured as described above will be explained. When the ignition switch (not shown) is closed, the microcomputer 35 starts executing the program in step 40, and executes a circulation process consisting of steps 41 to 45 to control the left and right rear wheels RWI, RW2. Control the steering. In this circulation process, in step 41, the vehicle speed sensor 32, yaw rate sensor 33, and rear wheel steering angle sensor 34 are
Each detection signal is input from the vehicle speed V, yaw rate ω
Setting processing for y and rear wheel steering angle θr is executed. In this case, in setting the vehicle speed V, the vehicle speed V is calculated by measuring the time between each pulse of the detection signal consisting of a one-phase pulse train signal and reciprocally converting the measured value. After the processing in step 41, in step 42 the calculated vehicle speed V
Based on this, the table in the ROM of the microcombi 1-2 45 is referred to, and the proportional coefficient K corresponding to the vehicle speed V is determined.In step 43, the detection signal from the reverse detection switch 31 is read and the same detection is performed. Based on the signal, it is determined whether the vehicle is in a backward state. If the vehicle is currently moving forward, in step 43, "N"
O”, and the target rear wheel steering angle θr is determined in step 44.
* is set to K·ωy by executing the following calculation. 011 company・ωy Next, in step 45, the calculated target rear wheel steering angle o
r umbrella and the rear wheel steering angle θr set in step 41 above.
The difference θf and 11 f is calculated, and the surface difference θr umbrella −θr
Based on this, the left and right rear wheels RWI and RW2 are steered. In this case, if the difference θr - θr is positive (or negative), the electromagnetic switching valve 22 is set to the right position (or left position) by energizing the renoid 22b (or 22a), and the hydraulic pump 24 Hydraulic oil is supplied to the right oil chamber (or left oil chamber) of the power cylinder 23, and the hydraulic oil in the left oil chamber (or right oil chamber) of the same cylinder 23 is discharged to the reservoir 18, and the hydraulic oil is supplied to the left and right rear oil chambers. Wheels RWI and RW2 are steered to the right (or left). As a result, during the circulation process consisting of steps 41 to 45, the left and right rear wheels RWI, RW
2 will be steered to the target rear wheel steering angle θr*. When the vehicle is moving forward, as shown in Figure 4A, if the left and right front wheels FWI and FW2 are steered to the right and the vehicle is turning to the right, the yaw generated by the vehicle body is clockwise and detected. Since the yaw rate ωy is positive and the proportional coefficient is greater than or equal to 0, the target rear wheel steering angle θre (=K·ωy) is also greater than or equal to rOJ. As a result, left and right rear wheels RWI, RW2
is neutral or rightward, that is, left and right front wheels FW1. It is steered in the same phase as FW2. Further, while the vehicle is moving forward, if the left and right front wheels FWI, FW2 are steered to the left and the vehicle turns left, the yaw rate ωy becomes negative and the target rear wheel steering angle θf*(m -K・ωy) becomes "0" or less, so the left and right rear wheels RWI, RW2 are neutral or leftward, that is, in this case, the left and right front wheels are FWI. It is steered in phase with the FW. As a result, the running stability of the vehicle while turning forward or the straightness of the vehicle traveling straight on the forward road becomes better. On the other hand, if the vehicle is moving backward, r
It is determined as YESJ, and in step 46 the target rear wheel steering angle θr* is set to -K·ωy by executing the calculation below, and in step 45 the left and right rear wheels RW1.
RW2 is steered to a target rear wheel steering angle θr*. θr1w −K・ωy When the vehicle is moving backwards, as shown in Figure 4B, if the left and right front wheels FWI and FW2 are steered to the left and the vehicle is turning to the right, the yaw generated on the vehicle body will be clockwise. Therefore, the detected yaw rate ωy is positive, and the proportional coefficient is greater than or equal to 0, so the target rear wheel steering angle θr* (−K,·ωy) is less than or equal to 0. As a result, left and right rear wheels RWI, RW2
is steered neutrally or to the left, that is, in phase with respect to the left and right front wheels FWI, FW2. Furthermore, when the left and right front wheels FWl and FW2 are steered to the right while the vehicle is moving backwards and the vehicle turns left, the yaw rate ωy becomes negative and the target rear wheel steering angle θre (--K・ωy) becomes Since the value becomes "0" or more, the left and right rear wheels RWI and RW2 are steered in the neutral or right direction, that is, in this case as well, the left and right rear wheels RWI and RW2 are steered in the same phase as the left and right front wheels FWI and FW. Thereby, even when the vehicle backs up, the running stability and straight-line performance of the vehicle are improved. In the above embodiment, the target rear wheel steering angle θ is determined by different calculation formulas in steps 44 and 46.
Although the sign of r* is made to be different when the vehicle is moving forward and when it is moving backward, instead of the processing in steps 44 and 46,
Based on the judgment in step 43, the sign of the proportional coefficient is changed from positive to negative only when the vehicle is moving backwards, and then the changed or unchanged proportional coefficient K is multiplied by the yaw rate ωy, so that the target rear wheel steering angle θr* Even if you try to calculate
The calculated target rear wheel steering angle θr$ is the same as in the above embodiment, and the same effects as in the above embodiment can be expected in this case as well. In addition, between steps 42 and 43, the proportional coefficient is multiplied by the yaw rate ωy, and instead of the process in step 44 and 46, the sign of the multiplication result K・ωy is determined only when the vehicle is moving backward according to the determination in step 43. Even if the target rear wheel steering angle θr* is calculated by changing from positive to negative (or from negative to positive), the calculated target rear wheel steering angle θτ remains the same as in the above embodiment. Therefore, in this case as well, the same effect as in the above embodiment can be expected. Furthermore, forward movement and backward movement of the vehicle are represented by positive and negative signs of the vehicle speed V, and the proportional coefficient K is set to be positive and negative according to the same sign, so that the target rear wheel steering angle θr is set according to the forward movement and backward movement of the vehicle. The signs of * may be different. In this case, the vehicle speed sensor 32 is configured with a pickup sensor that generates a two-phase pulse train signal according to the rotation of the output shaft of the transmission, and when calculating the vehicle speed V in step 41,
Taking into consideration the rotational direction of the output shaft, the vehicle speed V is set to a value that represents the magnitude of the vehicle speed with a positive value when the vehicle is moving forward, and a value that represents the magnitude of the vehicle speed with a negative value when the vehicle is retreating. Make it. In addition, the RO of the microcomputer 45
As shown in FIG. 5, the table in M stores a proportionality coefficient K that shows a positive value when the vehicle speed V is positive and a negative value when the vehicle speed V is negative. Step 43
.. 44. Instead of the process in step 46, the positive or negative proportionality coefficient K set in the process in step 42 is simply expressed as the yaw rate ωy.
By multiplying by the target rear wheel steering angle θr*(=K・ω
y) may be calculated. As a result, in this case as well, when the vehicle is moving forward, the positive and negative signs of the target rear wheel steering angle θrI and the yaw rate ωy match, and when the vehicle is moving backward, the positive and negative signs of the target rear wheel steering angle θr* and the yaw rate ωy are the same. The left and right rear wheels RWI, RW2 are controlled in the same manner as in the above embodiment, and the same effects as in the embodiment are achieved. Moreover, in this case, as shown in FIG. 5, the proportionality coefficient K is "
It is preferable to set the vehicle speed V, which starts changing from 0'' to negative or positive, so that its absolute value is smaller in the negative case than in the positive case. As a result, when the vehicle is moving backwards, the absolute value ■1 of the vehicle speed V is small (but the left and right rear wheels RWI,
RW2 is steered in the same phase as the left and right front wheels FWI, FW2, and the running stability and straight-line performance of the vehicle are better than when the vehicle is moving forward.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る四輪操舵車の全体概略
図、第2図は第1図のマイクロコンピュータにて実行さ
れるプログラムのフローチャート、第3図は前記実施例
に係るヨーレート比例係数の変化特性を示すグラフ、第
4A図及び第4B図は車両の前進時及び後退時における
後輪の操舵状態を説明するための作動説明図、第5図は
前記実施例の変形例に係るヨーレート比例係数の変化特
性を示すグラフである。 符  号  の  説  明 A・・・前輪操舵機構、B・・・後輪操舵機構、C・・
・電気制御装置、FWI、FW2・・・前輪、RWI、
RW2・・・後輪、31・・・後退検出スイッチ、32
・・・車速センサ、33・・・ヨーレートセンサ、34
・・・後輪操舵角センサ、35・・・マイクロコンピュ
ータ。 出願人  トヨタ自動車株式会社 代理人  弁理士 長谷照−(外1名)第4AIQ ・後輪操舵機構 ・電気制御装置 ・車速センサ ・ヨーレートセンサ ・後輪操舵角センサ ・マイクロコンピュータ 第 図 に 第4B図
FIG. 1 is an overall schematic diagram of a four-wheel steering vehicle according to an embodiment of the present invention, FIG. 2 is a flowchart of a program executed by the microcomputer shown in FIG. 1, and FIG. 3 is a yaw rate according to the embodiment. Graphs showing the change characteristics of the proportionality coefficient, FIGS. 4A and 4B are operation explanatory diagrams for explaining the steering state of the rear wheels when the vehicle moves forward and backward, and FIG. 5 shows a modification of the above embodiment. It is a graph which shows the change characteristic of the yaw rate proportionality coefficient. Explanation of symbols A...Front wheel steering mechanism, B...Rear wheel steering mechanism, C...
・Electrical control device, FWI, FW2...Front wheel, RWI,
RW2...Rear wheel, 31...Backward detection switch, 32
... Vehicle speed sensor, 33 ... Yaw rate sensor, 34
...Rear wheel steering angle sensor, 35...Microcomputer. Applicant Toyota Motor Corporation Representative Patent Attorney Teru Hase (1 other person) No. 4 AIQ - Rear wheel steering mechanism - Electric control device - Vehicle speed sensor - Yaw rate sensor - Rear wheel steering angle sensor - Microcomputer Figure and Figure 4B

Claims (1)

【特許請求の範囲】  車体のヨーレートを検出して車体のヨー運動方向を正
負の符号で表すとともに同ヨーレートの大きさを絶対値
により表す検出信号を出力するヨーレート検出手段と、 前記検出信号により表されたヨーレート値に比例係数を
乗算して正負の符号により後輪の操舵方向を表しかつ絶
対値により後輪の中立位置からの操舵角を表す目標後輪
操舵角を算出する目標後輪操舵角算出手段と、 前記算出された目標後輪操舵角に後輪を操舵する後輪操
舵機構と を備えた四輪操舵車の後輪操舵制御装置において、前記
目標後輪操舵角算出手段により算出される目標後輪操舵
角の正負の符号を車両の前進時には前記検出信号と同じ
符号に設定しかつ車両の後退時には前記検出信号と異な
る符号に設定する符号設定手段 を設けたことを特徴とする四輪操舵車の後輪操舵制御装
置。
[Scope of Claims] Yaw rate detection means for detecting a yaw rate of a vehicle body and outputting a detection signal representing the direction of yaw movement of the vehicle body using a positive or negative sign and representing the magnitude of the yaw rate using an absolute value; Target rear wheel steering angle is calculated by multiplying the calculated yaw rate value by a proportional coefficient to calculate the target rear wheel steering angle, where the positive and negative signs represent the steering direction of the rear wheels, and the absolute value represents the steering angle from the neutral position of the rear wheels. In a rear wheel steering control device for a four-wheel steering vehicle, comprising a calculation means and a rear wheel steering mechanism for steering the rear wheels to the calculated target rear wheel steering angle, the target rear wheel steering angle calculated by the target rear wheel steering angle calculation means is 4. A sign setting means is provided for setting the positive or negative sign of the target rear wheel steering angle to the same sign as the detection signal when the vehicle is moving forward, and to a different sign from the detection signal when the vehicle is moving backward. Rear wheel steering control device for wheel steering vehicles.
JP2198211A 1990-07-26 1990-07-26 Rear-wheel steering controller for four-wheel steering vehicle Pending JPH0485179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2198211A JPH0485179A (en) 1990-07-26 1990-07-26 Rear-wheel steering controller for four-wheel steering vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2198211A JPH0485179A (en) 1990-07-26 1990-07-26 Rear-wheel steering controller for four-wheel steering vehicle

Publications (1)

Publication Number Publication Date
JPH0485179A true JPH0485179A (en) 1992-03-18

Family

ID=16387339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2198211A Pending JPH0485179A (en) 1990-07-26 1990-07-26 Rear-wheel steering controller for four-wheel steering vehicle

Country Status (1)

Country Link
JP (1) JPH0485179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771003B1 (en) * 2003-11-25 2007-10-30 주식회사 만도 The method for sensing forward/backward direction of vehicle by yaw-rate model
CN107985431A (en) * 2017-12-19 2018-05-04 甘肃建投新能源科技股份有限公司 The limit-type chassis attachment device of Three Degree Of Freedom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771003B1 (en) * 2003-11-25 2007-10-30 주식회사 만도 The method for sensing forward/backward direction of vehicle by yaw-rate model
CN107985431A (en) * 2017-12-19 2018-05-04 甘肃建投新能源科技股份有限公司 The limit-type chassis attachment device of Three Degree Of Freedom
CN107985431B (en) * 2017-12-19 2024-01-05 甘肃建投新能源科技股份有限公司 Three-degree-of-freedom limiting type chassis connecting device

Similar Documents

Publication Publication Date Title
JPH01202581A (en) Rear wheel steering angle control method in front-rear-wheel-steering vehicle
EP0467413B1 (en) Electric control apparatus for four-wheel steering system
JP2779020B2 (en) Power steering control device
JPH0485179A (en) Rear-wheel steering controller for four-wheel steering vehicle
JP2661342B2 (en) Rear-wheel steering control device for four-wheel steering vehicles
JPS61181778A (en) Rear-wheel steering controller for vehicles
JP2717100B2 (en) Rear wheel steering device
JP3564612B2 (en) Control method of rear wheel steering device
JP7180334B2 (en) Steering system, steering support device
JPS62137275A (en) Rear wheel steering control device for front and rear wheel steering vehicle
JPS62191272A (en) Rear wheel steering device for vehicle
JPS59128053A (en) Four-wheel steering gear of vehicle
JP2536197B2 (en) Rear wheel steering system for front and rear wheel steering vehicles
JP2005193779A (en) Vehicle steering device
JP2536203B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
JPH034428B2 (en)
JP2532106B2 (en) Steering control device for four-wheel steering vehicle
JPH034429B2 (en)
JP2894006B2 (en) Vehicle steering reaction control system
JP2564932B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
JPS621675A (en) Four-wheel steering gear for vehicles
JP2817143B2 (en) 4-wheel steering system
JP2870844B2 (en) Rear wheel steering device
JPH075087B2 (en) Rear wheel steering control device for front and rear wheel steering vehicles
JPS6364879A (en) Discriminating device for condition of road surface