JPH0481723B2 - - Google Patents

Info

Publication number
JPH0481723B2
JPH0481723B2 JP1208586A JP1208586A JPH0481723B2 JP H0481723 B2 JPH0481723 B2 JP H0481723B2 JP 1208586 A JP1208586 A JP 1208586A JP 1208586 A JP1208586 A JP 1208586A JP H0481723 B2 JPH0481723 B2 JP H0481723B2
Authority
JP
Japan
Prior art keywords
optical monitoring
window
optical
light
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1208586A
Other languages
Japanese (ja)
Other versions
JPS62170839A (en
Inventor
Kazuo Inoe
Kunihiro Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1208586A priority Critical patent/JPS62170839A/en
Publication of JPS62170839A publication Critical patent/JPS62170839A/en
Publication of JPH0481723B2 publication Critical patent/JPH0481723B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光を伴なう真空中での膜作成におけ
る光学モニタ方法および装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an optical monitoring method and apparatus for film formation in vacuum accompanied by light.

(従来の技術) 膜作成時に膜形成材料が膜作成装置の内壁に付
着する。光を伴なう場合には、この膜形成状態に
変化がないかを光学モニタしているが、検出光が
通過する窓(以後、光学モニタ用窓と呼ぶ)も膜
形成材料の付着のために曇つてくる。従来は、こ
の窓の曇り対策として、窓の曇りが少なくなるよ
うに種々の手段を膜作成装置内において講じてい
た。そして、光学モニタ用窓の曇り量は許容範囲
であるとして検出していなかつた。
(Prior Art) During film formation, a film forming material adheres to the inner wall of a film forming apparatus. When light is involved, optical monitoring is performed to see if there is any change in the state of film formation, but the window through which the detection light passes (hereinafter referred to as the optical monitoring window) is also used for the adhesion of the film forming material. It's getting cloudy. Conventionally, as a countermeasure against fogging of the window, various measures have been taken within the film forming apparatus to reduce fogging of the window. The amount of fogging on the optical monitoring window was not detected as it was within the permissible range.

(発明が解決しようとする問題点) 従来、光学モニタ用窓の曇りをなくす手段が講
じられてきたが、この窓の曇り量は検出してはい
なかつた。しかし、実際には、光学モニタ用窓の
曇り量は膜作成時間に伴なつて増加する。また、
光学モニタ用窓に付着した膜作成材料を取り除く
作業中は膜作成ができない。そこで、長時間連続
の膜作成および光学モニタに問題があり、量産に
向かなかつた。
(Problems to be Solved by the Invention) Conventionally, measures have been taken to eliminate fogging on an optical monitor window, but the amount of fogging on this window has not been detected. However, in reality, the amount of fogging on the optical monitoring window increases with the film formation time. Also,
It is not possible to create a film while removing the film-forming material that has adhered to the optical monitor window. However, there were problems with continuous film formation over a long period of time and optical monitoring, making it unsuitable for mass production.

本発明は、以上の問題点を考慮して、光を伴う
真空中での膜作成において、光学モニタ用窓の曇
り量の影響を受けずに再現性のある正確な光学モ
ニタ値を長時間連続に得ることを目的とする。
In consideration of the above problems, the present invention has been developed to continuously provide reproducible and accurate optical monitor values for a long time without being affected by the amount of fogging on the optical monitor window when creating a film in a vacuum accompanied by light. The purpose is to obtain.

(問題点を解決するための手段) 本発明は、以上の問題点を解決するために、膜
作成時に伴なう光の波長と異なる波長の光(電磁
波)を用いて光学モニタ用窓の反射率を測定し
て、光学モニタ用窓に膜作成材料が付着すること
により曇り量を検出し、光学モニタ値を補正する
ものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention uses light (electromagnetic waves) of a wavelength different from the wavelength of light involved in film creation to reduce the reflection of optical monitoring windows. The amount of fogging is detected by measuring the rate of fogging, and the film forming material adheres to the optical monitoring window, and the optical monitoring value is corrected.

(作用) 光学モニタ用窓に膜作成材料が付着するために
生じる曇りの量を検出して光学モニタ値を補正す
るので常に再現性のある正確な光学モニタ値が得
られる。
(Function) Since the optical monitor value is corrected by detecting the amount of fogging caused by the film-forming material adhering to the optical monitor window, accurate optical monitor values with reproducibility can always be obtained.

また、膜作成時に伴なう光の波長と異なる波長
の光(電磁波)を用いて光学モニタ用窓の曇り量
を検出するので、光学モニタ用窓の曇り量の検出
時に膜作成時に伴なう光の影響を受けず、従つ
て、特別に工夫することなしに、モニタが可能で
ある。
In addition, since the amount of fogging on the optical monitor window is detected using light (electromagnetic waves) with a wavelength different from that of the light that accompanies the film creation, it is possible to It is not affected by light and therefore can be monitored without special efforts.

更に、光学モニタ用窓の曇り量を反射率から求
めるため、膜作成装置内には手を加えないで光学
モニタが行なえる。
Furthermore, since the amount of fogging on the optical monitoring window is determined from the reflectance, optical monitoring can be performed without making any changes to the interior of the film forming apparatus.

(実施例) 第1図は本発明の光学モニタ装置の第1の実施
例を示す構成ブロツク図である。第1図におい
て、1は膜作成装置であり、一例として直流スパ
ツタ装置を示している。膜作成装置1は、ターゲ
ツト11、陽極12、高圧電源13、ガス導入口
14、光学モニタ用窓2から基本的に構成されて
いる。膜作成装置1の内部を真空ポンプで真空に
引いた後、ターゲツト11と陽極12との間に高
圧電源13を用いて高電圧を印加すると両者の間
でグロー放電が生じる。このグロー放電により、
放電空間にガス導入口14から流入したアルゴン
がプラズマの状態になる。このプラズマ中のアル
ゴン正イオンがターゲツト表面に衝突してターゲ
ツト表面がスパツタ蒸発する。そして、スパツタ
された粒子が陽極12上に配置された基板15に
沈着してターゲツト材料からなる薄膜が形成され
る。絶縁体16はターゲツト11と膜作成装置1
とを絶縁するためものであり、ターゲツト11は
温度が上がりすぎないように水冷する必要があ
る。
(Embodiment) FIG. 1 is a structural block diagram showing a first embodiment of an optical monitor device of the present invention. In FIG. 1, reference numeral 1 denotes a film forming apparatus, and a direct current sputtering apparatus is shown as an example. The film forming apparatus 1 basically comprises a target 11, an anode 12, a high voltage power source 13, a gas inlet 14, and an optical monitoring window 2. After the inside of the film forming apparatus 1 is evacuated using a vacuum pump, a high voltage is applied between the target 11 and the anode 12 using the high voltage power supply 13, and a glow discharge is generated between the two. This glow discharge causes
Argon flowing into the discharge space from the gas inlet 14 becomes a plasma. The argon positive ions in this plasma collide with the target surface, causing spatter to evaporate on the target surface. The sputtered particles are then deposited on a substrate 15 disposed on the anode 12 to form a thin film of the target material. The insulator 16 is connected to the target 11 and the film forming device 1
The target 11 needs to be water-cooled to prevent the temperature from rising too high.

この膜形成時に生じるプラズマ光は、ターゲツ
ト材料やアルゴンに固有の輝線スペストルから成
る。この材料固有の波長の光の強度をモニタし
て、膜形成時に状態の変化等がないかを調べるの
が光学モニタ系4である。
The plasma light generated during film formation consists of bright line spectra specific to the target material and argon. The optical monitor system 4 monitors the intensity of light at a wavelength specific to the material to check for changes in the state during film formation.

光学モニタ系4は、一般に検出光3を集光レン
ズ41で集光した後、スリツト42を介して回
析格子43で回析され、所定の波長の回析光のみ
をスリツト44で分離抽出して光電管45に導い
ている。そして、光電管45で光のエネルギーが
電流値に変換され、電流増幅器46aで増幅され
て出力される。ここで、回析格子43の代わりに
プリズムを用いてもよく、また、回析格子43で
十分に回析されていれば、光電管45の前スリツ
ト44はなくてもよい。
The optical monitor system 4 generally collects the detection light 3 with a condensing lens 41 and then circulates it through a slit 42.
The light is diffracted by a diffraction grating 43, and only the diffracted light of a predetermined wavelength is separated and extracted by a slit 44 and guided to a phototube 45. The energy of the light is then converted into a current value by the phototube 45, amplified by the current amplifier 46a, and output. Here, a prism may be used instead of the diffraction grating 43, and the front slit 44 of the phototube 45 may be omitted if the diffraction grating 43 sufficiently diffracts the light.

本発明は、検出光3の量を検出する光学モニタ
系とは別の系を用いて検出光3の通過する光学モ
ニタ用窓2の曇り量を反射率の変化から求め、補
正する。すなわち、反射率測定器5を用いて、反
射率を求め、電流増幅器46bで出力値を増幅
後、窓の曇り量算出回路6へ導き、補正係数算出
回路7から増幅率が算出され、電流増幅器46a
の増幅率を変化させて出力値を補正する。
In the present invention, the amount of fogging of the optical monitoring window 2 through which the detection light 3 passes is determined from changes in reflectance using a system different from the optical monitor system that detects the amount of the detection light 3, and is corrected. That is, the reflectance is determined using the reflectance measuring device 5, the output value is amplified by the current amplifier 46b, and then guided to the window fogging amount calculation circuit 6, the amplification factor is calculated by the correction coefficient calculation circuit 7, and the output value is amplified by the current amplifier 46b. 46a
The output value is corrected by changing the amplification factor.

反射率測定器5からは、検出光3の波長とは異
なる単一波長の電磁波を放射および感受すること
により、検出光3との干渉の影響を受けずに光学
モニタ用窓の曇り量が測定できる。
By emitting and sensing electromagnetic waves with a single wavelength different from the wavelength of the detection light 3, the reflectance measuring device 5 measures the amount of fogging on the optical monitoring window without being affected by interference with the detection light 3. can.

また、反射率測定器5は、電磁波を放射する素
子と感受する素子とが同一のものでもよいし、
別々のものでもよい。
Further, the reflectance measuring device 5 may have the same element that emits electromagnetic waves and the element that senses it, or
They may be separate.

特定の単一波長を用いるために、反射率測定系
は光学モニタ系4により簡素で小型化できる。ま
た本測定には光だけとは限らず電磁波であれば窓
の反射率が測定できる。
Since a specific single wavelength is used, the reflectance measurement system can be simplified and miniaturized by the optical monitor system 4. In addition, this measurement can measure the reflectance of windows not only with light but also with electromagnetic waves.

本発明では、反射率測定から光学モニタ用窓2
の曇り量を求めるために、予め、光学モニタ用窓
2を用いて反射測定用の波長の反射率と、検出光
3の波長の透過率との関係を求めておく必要があ
る。しかし、量産の場合には、この関係は一度だ
け求めれば後に補正する必要がなく、長時間連続
して光学モニタができる。
In the present invention, from reflectance measurement to optical monitoring window 2
In order to determine the amount of fogging, it is necessary to determine the relationship between the reflectance at the wavelength for reflection measurement and the transmittance at the wavelength of the detection light 3 using the optical monitoring window 2 in advance. However, in the case of mass production, if this relationship is determined only once, there is no need to correct it later, and optical monitoring can be performed continuously for a long time.

更に、反射率を利用しているため膜作成装置1
に手を加えないので膜形成に何らの影響も及ぼさ
ない。
Furthermore, since the reflectance is used, the film forming device 1
Since no modifications are made to the film, there is no effect on film formation.

第2図は本発明の光学モニタ装置の第2の実施
例を示す構成ブロツク図である。第2図におい
て、1は膜作成装置であり、この図では光学モニ
タ用窓2の近傍のみを表わしている。4は光学モ
ニタ系であり、細い多数の受光素子からなるマル
チデイテクタ47を有し、同時に複数の波長の光
強度が測定できる。この光学モニタ系4を用いれ
ば、膜作成時に生じる複数の波長が同時にモニタ
でき、多種材料からなる膜のモニタにも適してい
る。この場合に生じる光も材料固有の輝線スペク
トルから成つているので、膜作成時に生じる光の
波長と異なる波長の光を用いれば、同一系を用い
て光学モニタ用窓の曇り量を求めることができ
る。
FIG. 2 is a block diagram showing a second embodiment of the optical monitoring device of the present invention. In FIG. 2, reference numeral 1 denotes a film forming apparatus, and this figure only shows the vicinity of the optical monitoring window 2. Reference numeral 4 denotes an optical monitor system, which has a multi-detector 47 consisting of a large number of thin light-receiving elements, and can simultaneously measure light intensities of a plurality of wavelengths. By using this optical monitor system 4, it is possible to simultaneously monitor a plurality of wavelengths generated during film formation, and it is also suitable for monitoring films made of various materials. The light generated in this case also consists of an emission line spectrum unique to the material, so by using light with a wavelength different from that of the light generated during film creation, the amount of fogging on the optical monitoring window can be determined using the same system. .

第2図において、3は検出光であり波長はλ0
ある。8は単一波長光源であり、放射された光の
波長はλ1である。両者は、集光レンズ41、スリ
ツト42を通つて回析格子43で回析され、マル
チデイテクタ47に達する。マルチデイテクタ4
7により、それぞれの強度に応じて電流値に変換
される。ここで波長λ1の光の反射量に対応する電
流値を増幅率一定の電流増幅器46bで増幅後光
学モニタ用窓の曇り量算出回路6へ導き、補正係
数算出回路7によつて増幅率を算出し、電流増幅
器46aの増幅率を変化させて出力値を補正す
る。従つて長時間連続して正確な光学モニタ値を
得ることができる。また、一般光学モニタ系をそ
のまま利用しており、実行が容易である。
In FIG. 2, numeral 3 represents detection light and its wavelength is λ 0 . 8 is a single wavelength light source, and the wavelength of the emitted light is λ 1 . Both light beams pass through a condensing lens 41 and a slit 42, are diffracted by a diffraction grating 43, and reach a multi-detector 47. Multi detector 4
7, it is converted into a current value according to each intensity. Here, the current value corresponding to the amount of reflection of the light of wavelength λ 1 is amplified by the current amplifier 46b with a constant amplification factor, and then guided to the fogging amount calculation circuit 6 of the optical monitor window, and the amplification factor is determined by the correction coefficient calculation circuit 7. The output value is corrected by changing the amplification factor of the current amplifier 46a. Therefore, accurate optical monitor values can be obtained continuously for a long period of time. In addition, a general optical monitor system is used as is, making it easy to implement.

第2図においては、検出光3と単一波長光源8
からの光と経路が一致していない。そのため、単
一波長光源8からの光の波長がλ1でも光学モニタ
系4のマルチデイテクタ47上では波長λ1の検出
位置からずれた位置で検出されるが、検出光3の
波長λ0の検出装置と異なれば互いに干渉しない。
また、波長λ1からなる単一波長光源8からの光の
モニタをマルチデイテクタ47上での波長λ1の検
出位置で行う必要はなく、波長λ1の光がマルチデ
イテクタ47上に到達している部分でモニタすれ
ばよい。
In FIG. 2, the detection light 3 and the single wavelength light source 8
The light from and the path do not match. Therefore, even if the wavelength of the light from the single wavelength light source 8 is λ 1 , it is detected on the multi-detector 47 of the optical monitor system 4 at a position shifted from the detection position of the wavelength λ 1 , but the wavelength of the detected light 3 is λ 0 If the detection devices are different, they will not interfere with each other.
Furthermore, it is not necessary to monitor the light from the single wavelength light source 8 consisting of the wavelength λ 1 at the detection position of the wavelength λ 1 on the multi-detector 47, and the light with the wavelength λ 1 reaches the multi-detector 47. All you have to do is monitor what is happening.

この第2の実施例も第1の実施例と同様に、反
射率測定から光学モニタ用窓2の曇り量を求める
ために、予め光学モニタ用窓を用いて反射率測定
用の光の波長の反射率と検出光3の波長の透過率
との関係を求めておく必要がある。また、反射率
を利用しているため膜作成装置1に手を加えない
ので膜形成に何ら影響も及ぼさない。
Similarly to the first embodiment, in this second embodiment, in order to determine the amount of fogging on the optical monitor window 2 from reflectance measurement, the wavelength of the light for reflectance measurement is determined in advance using the optical monitor window. It is necessary to determine the relationship between the reflectance and the transmittance of the wavelength of the detection light 3. Further, since reflectance is used, no modifications are made to the film forming apparatus 1, so that there is no effect on film formation.

第3図は本発明の光学モニタ装置の第3の実施
例を示す構成ブロツク図である。第3図では、光
学モニタ系4において、光電管45が複数個存在
する。本光学モニタ系4は第2図のマルチデイテ
クタ47を用いたようにある時刻のスペクトル強
度分布を求めることができないが、同時に光電管
45の数の波長を精度よくモニタできる。この光
学モニタ系4においても第2の実施例と同様に同
一系を用いて波長λ0の検出光3と波長λ1の光との
強度を得ることができ、予め求めた光学モニタ用
窓2の反射率測定用の光の波長の反射率と検出光
3の波長の透過率との関係から光学モニタ用窓の
曇り量算出回路6と補正係数算出回路7によつて
増幅率を算出し、電流を増幅器46aの増幅率を
変化させて出力値を補正する。
FIG. 3 is a block diagram showing a third embodiment of the optical monitoring device of the present invention. In FIG. 3, in the optical monitor system 4, a plurality of phototubes 45 are present. Although this optical monitoring system 4 cannot determine the spectral intensity distribution at a certain time like the multi-detector 47 shown in FIG. 2, it can simultaneously monitor as many wavelengths as the number of phototubes 45 with high accuracy. In this optical monitoring system 4 as well, the same system as in the second embodiment can be used to obtain the intensities of the detection light 3 with the wavelength λ 0 and the light with the wavelength λ 1 . Calculating the amplification factor from the relationship between the reflectance of the wavelength of the light for measuring the reflectance and the transmittance of the wavelength of the detection light 3 by the fogging amount calculation circuit 6 and the correction coefficient calculation circuit 7 of the optical monitor window, The output value of the current is corrected by changing the amplification factor of the amplifier 46a.

第4図は本発明の光学モニタ装置の第4の実施
例を示す構成ブロツク図である。第4図におい
て、スプリツタ9が設けられている以外は第1図
と同じ構成である。このスプリツタ9により、膜
作成装置1と光学モニタ系4との間で、検出光3
と光学モニタ用窓2の曇り量検出のための反射率
測定器5から放射される電磁波との経路が等しく
なる。すなわち、反射率測定器5から放射された
電磁波は、スプリツタ9により検出光3と同じ経
路になり、光学モニタ用窓2で反射、再びスプリ
ツタ9で反射して反射率測定器5にもどる。これ
に対して、第1の実施例では検出光3と光学モニ
タ用窓2の曇り量検出のための電磁波が等しい経
路ではなく、かつ、光学モニタ用窓上の同一部分
をみてはいない。そこで、第4図のように両者の
経路を等しくすることにより、一層正確な光学モ
ニタが可能になる。
FIG. 4 is a block diagram showing a fourth embodiment of the optical monitoring device of the present invention. In FIG. 4, the configuration is the same as in FIG. 1 except that a splitter 9 is provided. This splitter 9 allows the detection light 3 to be split between the film forming device 1 and the optical monitor system 4.
The path of the electromagnetic wave emitted from the reflectance measuring device 5 for detecting the amount of fogging on the optical monitoring window 2 becomes equal. That is, the electromagnetic waves emitted from the reflectance measuring device 5 are routed along the same path as the detection light 3 by the splitter 9, reflected by the optical monitoring window 2, reflected again by the splitter 9, and returned to the reflectance measuring device 5. On the other hand, in the first embodiment, the detection light 3 and the electromagnetic waves for detecting the amount of fog on the optical monitoring window 2 do not take the same path, and do not look at the same part on the optical monitoring window. Therefore, by making both paths equal as shown in FIG. 4, more accurate optical monitoring becomes possible.

しかし、本構成ではスプリツタ9によつて検出
光3および光学モニタ用窓2の曇り量検出用の電
磁波の一部が反射率測定器にもどるので、反射率
測定器5のうち電磁波放射源側に悪影響を及ぼす
場合がある。この場合は、スプリツタ9を偏向ス
プリツタにし、かつ、スプリツタ9と反射率測定
器5との間に偏向板を置いてやることにより、こ
の影響を軽減できる。
However, in this configuration, the detection light 3 and a part of the electromagnetic waves for detecting the amount of fog on the optical monitor window 2 are returned to the reflectance measuring device by the splitter 9, so that the electromagnetic wave radiation source side of the reflectance measuring device 5 is returned to the reflectance measuring device. It may have an adverse effect. In this case, this effect can be reduced by making the splitter 9 a polarizing splitter and placing a polarizing plate between the splitter 9 and the reflectance measuring device 5.

本実施例の場合、予め求める光学モニタ用窓2
の反射率測定用の電磁波の波長の反射率と検出光
3の波長の透過率との関係は、実際の測定系と同
一系、すなわち、スプリツタ9および偏向板も含
めた系で求めないといけない。それはスプリツタ
9および偏向板が波長および偏向面に依存するた
めである。
In the case of this embodiment, the optical monitor window 2 determined in advance
The relationship between the reflectance at the wavelength of the electromagnetic wave and the transmittance at the wavelength of the detection light 3 for reflectance measurement must be determined using the same system as the actual measurement system, that is, the system including the splitter 9 and the deflection plate. . This is because the splitter 9 and the polarizing plate depend on the wavelength and the polarizing plane.

第5図は本発明の光学モニタ装置の第5の実施
例を示す構成ブロツク図である。第5図におい
て、スプリツタ9が設けられている以外は第2図
と同じ構成である。このスプリツタ9によつて、
光学モニタ用窓2の曇り量測定用の単一波長光源
8から放射された光が反射され、検出光3と同じ
経路になる。この結果、両者の経路がずれていた
ために生じていた精度の悪さが改善される。すな
わち、予め求める光学モニタ用窓2の反射率測定
用の光の波長の反射率と検出光3の波長の透過率
との関係を、両者の経路がずれた状態で求めると
再現性が悪いのである。
FIG. 5 is a block diagram showing a fifth embodiment of the optical monitoring device of the present invention. In FIG. 5, the configuration is the same as in FIG. 2 except that a splitter 9 is provided. By this splitter 9,
Light emitted from a single-wavelength light source 8 for measuring the amount of fog on the optical monitoring window 2 is reflected and follows the same path as the detection light 3. As a result, the poor accuracy caused by the deviation between the two routes is improved. In other words, if the relationship between the reflectance of the wavelength of the light for measuring the reflectance of the optical monitoring window 2 and the transmittance of the wavelength of the detection light 3, which is determined in advance, is determined with the paths of the two shifted, the reproducibility will be poor. be.

この第5の実施例も第4の実施例と同様に、単
一波長光源8に光が当ると悪影響を及ぼす場合が
あり、この場合には、スプリツタ9を偏光スプリ
ツタにし、かつ、スプリツタ9と単一波長光源8
との間に偏光板を置いてやることにより、この影
響を軽減できる。
Similarly to the fourth embodiment, in this fifth embodiment, when light hits the single wavelength light source 8, it may have an adverse effect.In this case, the splitter 9 is made into a polarization splitter, and Single wavelength light source 8
This effect can be reduced by placing a polarizing plate between the two.

予め求める上記関係は、もちろん、実際の測定
系と同一系、すなわち、スプリツタ9等を含めた
系でもとめないといけない。また、本構成は第3
の実施例にも適用できる。
Of course, the above relationship determined in advance must be determined in the same system as the actual measurement system, that is, in a system including the splitter 9 and the like. In addition, this configuration is the third
It can also be applied to the embodiments.

光学モニタ系4と光学モニタ用窓2の曇り量測
定系とが異なる場合において、検出光3と反射率
測定器5からの電磁波とが光学モニタ用窓の同一
部分に当るようにするには、第4の実施例のよう
にしなくとも第6図aに示すように光学モニタ用
窓2に検出光3が傾いて入射するか、第6図bに
示すように反射測定器5の放射側と感受側を分離
して配置すればよい。しかし、この場合には、光
学モニタ用窓2の曇り量測定用の電磁波の位置合
わせがむずかしい欠点があり、第4の実施例の方
がはるかに容易である。
In the case where the optical monitor system 4 and the fogging amount measurement system of the optical monitor window 2 are different, in order to make the detection light 3 and the electromagnetic waves from the reflectance measuring device 5 hit the same part of the optical monitor window, Even if it is not done as in the fourth embodiment, the detection light 3 may be incident on the optical monitoring window 2 at an angle as shown in FIG. The sensing side may be placed separately. However, in this case, there is a drawback that it is difficult to align the electromagnetic waves for measuring the amount of fog on the optical monitoring window 2, and the fourth embodiment is much easier.

同様に、光学モニタ系4と光学モニタ用窓2の
曇り量測定系とが同一である場合において、光学
モニタ用窓2で反射された単一波長光源8からの
光と検出光3の経路を一致させるには、第5の実
施例以外に第6図cに示すように光学モニタ用窓
2に検出光3が傾いて入射するようにすればよ
い。しかし、この場合にも、光学モニタ用窓2の
曇り量測定用の光の位置合わせがむずかしい欠点
がある。さらに、一般に光の波長によつて屈折率
が異なるため、前記経路を一致させても前記2つ
の光が光学モニタ用窓2の膜作成装置側の同一部
分に照射されないという問題がある。よつて、再
現性と正確性の点で実施例が勝つている。
Similarly, when the optical monitoring system 4 and the fogging measurement system for the optical monitoring window 2 are the same, the path of the light from the single wavelength light source 8 reflected by the optical monitoring window 2 and the detection light 3 is In order to make them match, the detection light 3 may be made to enter the optical monitoring window 2 at an angle, as shown in FIG. 6c, in addition to the fifth embodiment. However, even in this case, there is a drawback that it is difficult to align the light for measuring the amount of fog on the optical monitoring window 2. Furthermore, since the refractive index of light generally differs depending on the wavelength, there is a problem that even if the paths are matched, the two lights do not irradiate the same part of the optical monitoring window 2 on the film forming apparatus side. Therefore, the example wins in terms of reproducibility and accuracy.

以上、本発明の実施例について説明した。上記
実施例では増幅器が電流増幅器の場合について記
した。しかし、電磁波の感受装置からの出力が電
圧ならば、増幅記は電圧増幅器である。
The embodiments of the present invention have been described above. In the above embodiment, the amplifier is a current amplifier. However, if the output from the electromagnetic wave sensing device is a voltage, the amplification device is a voltage amplifier.

また、第2、第3、第5の実施例では、光学モ
ニタ用窓2の曇り量を求めるために本測定用の光
(波長λ1)を受けた受光素子からの出力を増幅す
る増幅率が一定の電流増幅器46bを使用してい
るが、第7図に示すように、光学モニタ出力値を
得る増幅率が可変の電流増幅器46aからの出力
を利用してもよい。この場合は、電流増幅器の増
幅率を感知する機構が電流増幅器46自体か窓の
曇り量算出回路にある必要がある。
In addition, in the second, third, and fifth embodiments, an amplification factor is used to amplify the output from the light receiving element that receives the main measurement light (wavelength λ 1 ) in order to determine the amount of fogging on the optical monitoring window 2. Although the current amplifier 46b with a constant value is used, as shown in FIG. 7, the output from the current amplifier 46a with a variable amplification factor for obtaining the optical monitor output value may be used. In this case, a mechanism for sensing the amplification factor of the current amplifier needs to be provided in the current amplifier 46 itself or in the window fogging amount calculation circuit.

(発明の効果) 本発明は、膜形成材料が付着するために生じる
光学モニタ用窓の曇り量を検出して光学モニタ値
を補正するので常に再現性のある正確な光学モニ
タ値が得られる。
(Effects of the Invention) The present invention corrects the optical monitor value by detecting the amount of fogging on the optical monitor window caused by the adhesion of the film-forming material, so that accurate optical monitor values with reproducibility can always be obtained.

そして、長時間連続してモニタができるので量
産に適している。
Moreover, since it can be continuously monitored for a long time, it is suitable for mass production.

また、膜作成時に伴なう光の波長と異なる波長
の電磁波を用いて光学モニタ用窓の曇り量を検出
するので、両者がお互いに干渉しない。従つて、
干渉によつてモニタ値の精度が悪くなることはな
い。
Furthermore, since the amount of fogging on the optical monitoring window is detected using electromagnetic waves having a wavelength different from that of the light accompanying the film formation, the two do not interfere with each other. Therefore,
The accuracy of the monitored value will not deteriorate due to interference.

更に、光学モニタ用窓の曇り量を反射率から求
めるため、膜作成装置に何らの手を加えることな
しに光学モニタが行なえる。従つて、光学モニタ
することによつて膜形成に何らの影響も与えな
い。
Furthermore, since the amount of fogging on the optical monitoring window is determined from the reflectance, optical monitoring can be performed without any modification to the film forming apparatus. Therefore, optical monitoring does not have any influence on film formation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第5図はそれぞれ本発明の第1から
第5の実施例の構成ブロツク図である。第6図は
電磁波の経路を示す図であり、第7図は光学モニ
タ出力補正系の実施例である。 1……膜作成装置、2……光学モニタ用窓、3
……検出光、4……光学モニタ系、5……反射率
測定器、6……窓の曇り量算出回路、7……補正
係数算出回路、8……単一波長光源、9……スプ
リツタ、11……ターゲツト、12……陽極、1
3……高圧電源、14……ガス導入口、15……
基板、16……絶縁体、41……集光レンズ、4
2……スリツト、43……回析格子、44……ス
リツト、45……光電管、46……電流増幅器、
47……マルチデイテクタ。
FIGS. 1 to 5 are block diagrams of the first to fifth embodiments of the present invention, respectively. FIG. 6 is a diagram showing the path of electromagnetic waves, and FIG. 7 is an example of an optical monitor output correction system. 1...Film forming device, 2...Optical monitor window, 3
...Detected light, 4...Optical monitor system, 5...Reflectance measuring device, 6...Window fogging amount calculation circuit, 7...Correction coefficient calculation circuit, 8...Single wavelength light source, 9...Splitter , 11...target, 12...anode, 1
3...High voltage power supply, 14...Gas inlet, 15...
Substrate, 16... Insulator, 41... Condensing lens, 4
2...Slit, 43...Diffraction grating, 44...Slit, 45...Phototube, 46...Current amplifier,
47...Multi detector.

Claims (1)

【特許請求の範囲】 1 膜作成装置の光学モニタ用窓を介して出射さ
れる膜作成時に生じる光を測定することにより膜
作成時のモニタを行う光学モニタ方法において、
検出光が通過する膜作成装置の窓に膜形成材料が
付着して曇る量を、膜作成時に生じる光の波長と
異なる波長の電磁波を用いて窓の反射率を測定す
ることにより求め、前記膜作成時に生じた光の測
定値を補正することを特徴とする光学モニタ方
法。 2 膜作成装置の光学モニタ用窓を通して出射さ
れる膜作成時に発生する光を受光し測定する第1
の手段と、 膜作成時に発生する光の波長と異なる波長の曇
り測定用の電磁波を光学モニタ用窓に対して放射
する手段と、前記光学モニタ用窓で反射した前記
曇り測定用の電磁波を感受し、その感受量にもと
づき光学モニタ窓の曇り量を求める手段とからな
る第2の手段と、 求めた曇り量にもとづき、前記第1の手段の出
力に補正を施す第3の手段と を設けたことを特徴とする光学モニタ装置。 3 前記曇り測定用の電磁波の経路を、前記光学
モニタ用窓を通して出射される膜作成時に発生す
る光の経路に、少なくとも前記光学モニタ用窓の
近傍で一致させる手段を設けたことを特徴とする
特許請求の範囲第2項記載の光学モニタ装置。 4 前記第1の手段の膜作成時に発生する光の受
光部および前記第2の手段の曇り測定用電磁波の
反射波を感受する感受部を、複数の波長の光を同
時に検出できる1個の感受部により構成するとと
もに、前記曇り測定用の電磁波の経路と、前記光
学モニタ用窓を通して出射される膜作成時に発生
する光の経路とを、光学モニタ用窓から前記感受
部までの範囲で一致させる手段を設けたことを特
徴とする特許請求の範囲第2項記載の光学モニタ
装置。
[Scope of Claims] 1. An optical monitoring method for monitoring film formation by measuring light generated during film formation that is emitted through an optical monitoring window of a film formation apparatus,
The amount of clouding due to adhesion of the film-forming material to the window of the film-forming device through which the detection light passes is determined by measuring the reflectance of the window using electromagnetic waves with a wavelength different from that of the light generated during film-forming. An optical monitoring method characterized by correcting a measured value of light generated at the time of creation. 2 A first unit that receives and measures the light generated during film formation that is emitted through the optical monitoring window of the film formation device.
means for emitting electromagnetic waves for fogging measurement with a wavelength different from the wavelength of light generated during film formation to an optical monitoring window; and means for sensing the electromagnetic waves for fogging measurement reflected by the optical monitoring window. and a second means comprising a means for determining the amount of fogging of the optical monitor window based on the amount of sensitivity, and a third means for correcting the output of the first means based on the determined amount of fogging. An optical monitor device characterized by: 3. Means is provided for making the path of the electromagnetic waves for cloudiness measurement coincide with the path of light generated during film formation that is emitted through the optical monitoring window at least in the vicinity of the optical monitoring window. An optical monitor device according to claim 2. 4. A light-receiving part for the light generated during film formation of the first means and a sensing part for sensing the reflected wave of the electromagnetic wave for fogging measurement of the second means are combined into one sensing part capable of simultaneously detecting light of a plurality of wavelengths. The path of the electromagnetic waves for cloudy measurement and the path of light generated during film formation that is emitted through the optical monitoring window are made to match in the range from the optical monitoring window to the sensing section. 3. The optical monitor device according to claim 2, further comprising means.
JP1208586A 1986-01-24 1986-01-24 Method and device for optical monitor Granted JPS62170839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1208586A JPS62170839A (en) 1986-01-24 1986-01-24 Method and device for optical monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1208586A JPS62170839A (en) 1986-01-24 1986-01-24 Method and device for optical monitor

Publications (2)

Publication Number Publication Date
JPS62170839A JPS62170839A (en) 1987-07-27
JPH0481723B2 true JPH0481723B2 (en) 1992-12-24

Family

ID=11795743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208586A Granted JPS62170839A (en) 1986-01-24 1986-01-24 Method and device for optical monitor

Country Status (1)

Country Link
JP (1) JPS62170839A (en)

Also Published As

Publication number Publication date
JPS62170839A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
US4126396A (en) Device for the non-dispersive optical determination of the concentration of gas and smoke components
US4243882A (en) Infrared multilayer film thickness measuring method and apparatus
JPH01202633A (en) Radiation thermometer
JPH0439004B2 (en)
CA1082486A (en) Arrangement and photometer for measuring and controlling the thickness of optically active thin layers
US4222667A (en) Fizeau fringe light evaluator and method
JPS62232506A (en) Apparatus for measuring thickness of surface layer
GB2206429A (en) System determining properties or identity of a sample
EP0223485B1 (en) Absorption gauge for determining the thickness, moisture content or other parameter of a film or coating
US5592285A (en) Optical source position and direction sensor
US5055692A (en) System for measuring ambient pressure and temperature
JPH0481723B2 (en)
JPH11162954A (en) Method and equipment for measuring thin film by optical means and film formation equipment
RU2672036C1 (en) Method of measuring the thickness of coating in the process of plasma-electrolytic oxidation and the device for its implementation
JPH0410003B2 (en)
JPS6073407A (en) Film thickness monitor
JPH076063B2 (en) Light detection method and device
JPS5948928A (en) Control device of thickness of weak absorption thin film
JPS62278436A (en) Fluorescence light measuring method and apparatus
JPH0456145A (en) Measuring device for substrate temperature in plasma
JP2895816B2 (en) ICP emission spectrometer
JP2003121116A (en) Vacuum ultraviolet optical film thickness monitor and vacuum film forming apparatus provided therewith
JPH0443222B2 (en)
JPS6280522A (en) Spectrofluorophotometer
RU2655U1 (en) AIR POLLUTION CONCENTRATION METER

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term