JPH0481655B2 - - Google Patents

Info

Publication number
JPH0481655B2
JPH0481655B2 JP63329982A JP32998288A JPH0481655B2 JP H0481655 B2 JPH0481655 B2 JP H0481655B2 JP 63329982 A JP63329982 A JP 63329982A JP 32998288 A JP32998288 A JP 32998288A JP H0481655 B2 JPH0481655 B2 JP H0481655B2
Authority
JP
Japan
Prior art keywords
screw shaft
screw
drive screw
roller
male thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63329982A
Other languages
Japanese (ja)
Other versions
JPH02173452A (en
Inventor
Katsuhide Sawada
Yusofu Hojatsuto
Yoshiharu Kuwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP32998288A priority Critical patent/JPH02173452A/en
Publication of JPH02173452A publication Critical patent/JPH02173452A/en
Publication of JPH0481655B2 publication Critical patent/JPH0481655B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2247Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with rollers
    • F16H25/2266Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with rollers arranged substantially in parallel to the screw shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2003Screw mechanisms with arrangements for taking up backlash
    • F16H25/2009Screw mechanisms with arrangements for taking up backlash with radial preloading

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Transmission Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、駆動ねじ軸の回転運動を直線運動に
変換するころがり差動ねじ送り機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rolling differential screw feeding mechanism that converts rotational motion of a drive screw shaft into linear motion.

例えば、測定機や工作機械などのテーブルやヘ
ツドの送り機構として利用できる。
For example, it can be used as a feeding mechanism for tables and heads of measuring machines, machine tools, etc.

[従来の技術] 一般に、回転運動を直線運動に変換する送り機
構は、次の3つのタイプ、つまり、A:すべりね
じ、B:ころがりねじ、C:非接触ねじ、に分類
することができる。
[Prior Art] In general, feed mechanisms that convert rotary motion into linear motion can be classified into the following three types: A: sliding screw, B: rolling screw, and C: non-contact screw.

A:すべりねじは、通常のねじ軸とナツトとを
組合わせた構造で、マイクロメータのスピンドル
送り機構などに利用されている。
A: A sliding screw has a structure that combines a normal screw shaft and a nut, and is used in micrometer spindle feeding mechanisms, etc.

B:ころがりねじは、さらに、ボールねじタ
イプと、遊星ローラねじタイプとに分けること
ができる。B−:ボールねじタイプは、ねじ軸
とナツトとの間に複数のボールを配置し、ねじ軸
の回転に伴つてこれらのボールがナツト内を循環
する構造である。B−:遊星ローラねじタイプ
は、ねじ軸とナツトとの間にこれらと噛合する複
数の遊星ローラを配置し、ねじ軸の回転に伴つて
遊星ローラがねじ軸に対して公転する構造であ
る。
B: Rolling screws can be further divided into ball screw types and planetary roller screw types. B-: The ball screw type has a structure in which a plurality of balls are arranged between the screw shaft and the nut, and these balls circulate within the nut as the screw shaft rotates. B-: The planetary roller screw type has a structure in which a plurality of planetary rollers that mesh with the screw shaft and the nut are arranged between the screw shaft and the nut, and the planetary rollers revolve around the screw shaft as the screw shaft rotates.

C:非接触ねじは、静圧ねじに代表されるよう
に、ねじ軸とナツトとの間にエアーを介在させる
構造である。
C: A non-contact screw, as typified by a static pressure screw, has a structure in which air is interposed between the screw shaft and the nut.

[発明が解決しようとする課題] 上述したA〜Cのタイプには、次のような欠点
がある。
[Problems to be Solved by the Invention] Types A to C described above have the following drawbacks.

A:すべりねじタイプは、構造が簡単であるこ
とから広く利用されているが、ねじ軸とナツトと
の接触面がすべりとなるので、効率や耐久性の面
で問題がある。また、ねじ軸の1回転当りのナツ
トの移動量、つまりリードは、ねじ軸のねじピツ
チである。
A: Sliding screw types are widely used because of their simple structure, but since the contact surface between the screw shaft and the nut slips, there are problems in terms of efficiency and durability. Further, the amount of movement of the nut per rotation of the screw shaft, ie, the lead, is the thread pitch of the screw shaft.

B−:ボールねじタイプは、効率がよいこと
から主に工作機械を中心に利用されているが、ボ
ールの循環による振動や騒音があること、ねじ軸
とナツトとの分離が困難なことなどの点で問題が
ある。また、リードは、ねじ軸のねじピツチであ
る。
B-: The ball screw type is mainly used in machine tools due to its high efficiency, but there are some problems such as vibration and noise due to the circulation of the balls, and difficulty in separating the screw shaft and nut. There is a problem with this point. Further, the lead is the thread pitch of the threaded shaft.

B−:遊星ローラねじタイプは、負荷容量が
大きいことから精密工作機械の高速精密送り機構
として利用される事例が多いが、最低3個の遊星
ローラが必要であることから構造が複雑であると
いう問題がある。しかも、これらの遊星ローラが
ねじ軸に対して公転する構造であるから、送り機
構自体が大型化するという問題がある。また、リ
ードは、ねじ軸とナツトの条数を変えれば変更で
きるものの、大幅な変更は期待できない。
B-: The planetary roller screw type is often used as a high-speed precision feed mechanism in precision machine tools because of its large load capacity, but the structure is complicated because it requires at least three planetary rollers. There's a problem. Moreover, since these planetary rollers are structured to revolve around the screw shaft, there is a problem that the feeding mechanism itself becomes large. Also, although the lead can be changed by changing the number of threads on the screw shaft and nut, drastic changes cannot be expected.

C:非接触ねじタイプは、ねじ軸とナツトとの
間にエアーを介在させなければならないので、エ
アーの供給が必要不可欠である。
C: Non-contact screw type requires air to be interposed between the screw shaft and the nut, so air supply is essential.

ここに、本発明の目的は、このような従来のね
じ送り機構の問題を解決したころがり差動ねじ送
り機構を提供することにある。つまり、効率や耐
久性に優れ、しかも、構造を簡単かつ小型化でき
る上、リードを広範囲内で任意に設定できるころ
がり差動ねじ送り機構を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rolling differential screw feeding mechanism that solves the problems of conventional screw feeding mechanisms. In other words, it is an object of the present invention to provide a rolling differential screw feeding mechanism that is excellent in efficiency and durability, has a simple and compact structure, and can arbitrarily set the lead within a wide range.

[課題を解決するための手段] そのため、本発明では、相対移動可能な二部材
の一方に、磁性体材料から形成された外周面に雄
ねじを有する駆動ねじ軸を相対移動方向に沿つて
かつ回転可能に設けるとともに、前記相対移動可
能な二部材の他方に、前記駆動ねじ軸の雄ねじと
同ピツチの雄ねじを有する非磁性体材料から形成
されたローラねじを磁性体材料からなる一対の側
板間に前記駆動ねじ軸の雄ねじに噛合させた状態
で駆動ねじ軸の回転に追従してころがり回転可能
に設け、このローラねじの雄ねじの有効径を駆動
ねじ軸の雄ねじの有効径に対して異なるように形
成し、前記両側板の前記ローラねじの配設位置よ
りも下方側を前記駆動ねじ軸の外周面に臨む形状
とする、とともにその上方側に磁気回路を形成す
る永久磁石を介装し、かつ前記永久磁石を含む両
側板を前記駆動ねじ軸の軸線に対して直交する方
向に弾性変位可能に非磁性体材料を介して前記二
部材の他方に支持した、ことを特徴とする。
[Means for Solving the Problems] Therefore, in the present invention, a drive screw shaft formed of a magnetic material and having a male thread on the outer peripheral surface is attached to one of the two relatively movable members along the direction of relative movement and rotated. A roller screw made of a non-magnetic material and having a male thread of the same pitch as the male thread of the drive screw shaft is provided between a pair of side plates made of a magnetic material on the other of the two relatively movable members. The roller screw is provided so that it can roll and rotate following the rotation of the drive screw shaft while meshing with the male thread of the drive screw shaft, and the effective diameter of the male thread of the roller screw is set to be different from the effective diameter of the male thread of the drive screw shaft. and a permanent magnet forming a magnetic circuit is interposed on the upper side thereof, and the lower side of the both side plates than the arrangement position of the roller screw faces the outer peripheral surface of the drive screw shaft, and It is characterized in that both side plates including the permanent magnets are supported on the other of the two members via a non-magnetic material so as to be elastically displaceable in a direction perpendicular to the axis of the drive screw shaft.

[作用] 駆動ねじ軸を回転させると、その駆動ねじ軸に
噛合したローラねじを介して二部材が相対移動す
る。このとき、駆動ねじ軸が回転すると、その駆
動ねじ軸に噛合したローラねじも駆動ねじ軸との
間の摩擦により回転するから、二部材の相対移動
量は、駆動ねじ軸の回転による移動量だけでな
く、ローラねじの回転量との相対関係で決まる。
[Operation] When the drive screw shaft is rotated, the two members move relative to each other via the roller screw meshed with the drive screw shaft. At this time, when the drive screw shaft rotates, the roller screw meshed with the drive screw shaft also rotates due to the friction between the two members, so the relative movement between the two members is only the amount of movement due to the rotation of the drive screw shaft. Rather, it is determined by the relative relationship with the amount of rotation of the roller screw.

そこで、この点を第1図を用いて具体的に説明
する。第1図に示すように、外周面に雄ねじ1を
有する駆動ねじ軸2の軸方向へ可動部材6を移動
可能に設け、この可動部材6に前記雄ねじ1と同
ピツチで互いに噛合する雄ねじ3を有するローラ
ねじ4を駆動ねじ軸2の回転に追従してころがり
回転可能に設け、駆動ねじ軸2を例えばモータ5
などによつて回転させると、可動部材6が駆動ね
じ軸2の軸方向へ移動される。
Therefore, this point will be specifically explained using FIG. 1. As shown in FIG. 1, a movable member 6 is provided so as to be movable in the axial direction of a drive screw shaft 2 having a male thread 1 on its outer peripheral surface, and a male thread 3 that meshes with the male thread 1 at the same pitch is provided on the movable member 6. A roller screw 4 having a roller screw 4 is provided so as to be able to roll and rotate following the rotation of the drive screw shaft 2, and the drive screw shaft 2 is connected to a motor 5, for example.
When the movable member 6 is rotated by, for example, the movable member 6 is moved in the axial direction of the drive screw shaft 2.

このとき、駆動ねじ軸2が回転すると、ローラ
ねじ4も駆動ねじ軸2との間の摩擦により回転す
るから、可動部材6の移動量は、駆動ねじ軸2の
回転による移動量だけでなく、ローラねじ4の回
転量との相対関係で決まる。
At this time, when the drive screw shaft 2 rotates, the roller screw 4 also rotates due to friction with the drive screw shaft 2, so the amount of movement of the movable member 6 is not only the amount of movement due to the rotation of the drive screw shaft 2; It is determined by the relative relationship with the amount of rotation of the roller screw 4.

ここで、駆動ねじ軸2の回転による移動量と、
ローラねじ4の回転による移動量とが同一方向で
あれば機構全体としてのリード(駆動ねじ軸2の
1回転当りの可動部材6の移動量)が増加し、逆
方向であればリードが減少することになる。
Here, the amount of movement due to the rotation of the drive screw shaft 2,
If the amount of movement due to the rotation of the roller screw 4 is in the same direction, the lead of the entire mechanism (the amount of movement of the movable member 6 per rotation of the drive screw shaft 2) increases, and if it is in the opposite direction, the lead decreases. It turns out.

いま、雄ねじ1,3のピツチをp,P、雄ねじ
1の有効径(駆動ねじ軸2の軸心からローラねじ
4と接する点までの距離の2倍)をd、雄ねじ3
の有効径(ローラねじ4の軸心から駆動ねじ軸2
と接する点までの距離の2倍)をD、駆動ねじ軸
2およびローラねじ4のそれぞれのねじ条数を
s,Sとする。ただし、s,Sは、ねじ方向が右
ねじの場合を+、左ねじの場合を−とする。
Now, the pitches of the male screws 1 and 3 are p and P, the effective diameter of the male screw 1 (twice the distance from the axis of the drive screw shaft 2 to the point where it contacts the roller screw 4) is d, and the male screw 3 is
effective diameter (from the axial center of the roller screw 4 to the drive screw shaft 2
(twice the distance to the point of contact with) is D, and the number of threads of the drive screw shaft 2 and roller screw 4 is s and S, respectively. However, s and S are + when the screw direction is right-handed and - when the screw direction is left-handed.

この条件において、駆動ねじ軸2が1回転した
ときの移動量はpsである。そのとき、ローラねじ
4はd/D回転するから、ローラねじ4の回転に
よる移動量はd/D・pSである。従つて、機構
全体としてのリードΔxは、 Δx=p(s+d/D・S) ……(1) となる。
Under this condition, the amount of movement when the drive screw shaft 2 rotates once is ps. At this time, since the roller screw 4 rotates d/D, the amount of movement due to the rotation of the roller screw 4 is d/D·ps. Therefore, the lead Δx for the entire mechanism is Δx=p(s+d/D·S) (1).

従つて、(1)式から、雄ねじ1の有効径dに
対して雄ねじ3の有効径Dを変化させれば、リー
ドの大きさを選択できることが判る。本発明で
は、ローラねじの有効径を駆動ねじ軸の有効径に
対して異なるように形成してあるから、ローラね
じの有効径を選択することにより任意にリードに
設定できる。
Therefore, from equation (1), it can be seen that the size of the lead can be selected by changing the effective diameter D of the male thread 3 with respect to the effective diameter d of the male thread 1. In the present invention, since the effective diameter of the roller screw is formed to be different from the effective diameter of the drive screw shaft, the lead can be arbitrarily set by selecting the effective diameter of the roller screw.

例えば、駆動ねじ軸2の雄ねじ1およびローラ
ねじ4の雄ねじ3のピツチp,Pをp=P=1.5
[mm]、駆動ねじ軸2の雄ねじ1の有効径dをd=
15[mm]とし、かつ、s=S=1つまりねじ条数
が共に1条でねじ方向が同一とし、ローラねじ4
の雄ねじ3の有効径Dを変化させると、リード
Δxは、第2図に示す傾向となる。
For example, the pitches p and P of the male thread 1 of the drive screw shaft 2 and the male thread 3 of the roller screw 4 are p=P=1.5.
[mm], the effective diameter d of the male thread 1 of the drive screw shaft 2 is d=
15 [mm], and s = S = 1, that is, the number of threads is both 1 thread and the thread direction is the same, and the roller screw is 4.
When the effective diameter D of the male thread 3 is changed, the lead Δx has the tendency shown in FIG.

また、雄ねじ1,3のピツチp,Pおよび駆動
ねじ軸2の雄ねじ1の有効径dを上記条件と同一
とし、かつ、s=1,S=−1つまりねじ条数が
1条でねじ方向が逆とし、ローラねじ4の有効径
Dを変化させると、リードΔxは、第3図に示す
傾向となる。
In addition, the pitches p and P of the male screws 1 and 3 and the effective diameter d of the male screw 1 of the drive screw shaft 2 are the same as the above conditions, and s=1 and S=-1, that is, the number of threads is 1 thread and the thread direction is If this is reversed and the effective diameter D of the roller screw 4 is changed, the lead Δx will have the tendency shown in FIG. 3.

さらに、かかる駆動ねじ軸2とローラねじ4と
の両雄ねじ1,3は、ローラねじ4を回転支持す
る一対の磁性体材料からなる側板25A,25B
と上方側の永久磁石29と磁性体材料からなる駆
動ねじ軸2とから形成され、かつ非磁性体材料を
介して二部材の他方に駆動ねじ軸の軸線に対して
直交する方向に弾性変位可能に支持された磁気回
路によつて、適宜な圧接力で確実に密接されてい
る。
Further, the male screws 1 and 3 of the drive screw shaft 2 and the roller screw 4 are connected to a pair of side plates 25A and 25B made of a magnetic material that rotatably support the roller screw 4.
It is formed from an upper permanent magnet 29 and a drive screw shaft 2 made of a magnetic material, and is elastically displaceable in a direction perpendicular to the axis of the drive screw shaft to the other of the two members via a non-magnetic material. A magnetic circuit supported by the two ensures that they are brought into close contact with each other with an appropriate pressure force.

このことから、駆動ねじ軸2の雄ねじ1の有効
径dに対してローラねじ4の雄ねじ3の有効径D
を異ならせれば、リードを広範囲内で任意に設定
できることが判る。また、ローラねじは駆動ねじ
軸の回転に追従してころがり回転するので、すべ
りねじに比べ効率や耐久性にも優れ、さらに、ロ
ーラねじは1個でよく、かつ、公転しない構造で
あるから、構造的には簡単かつ小型化できる。
From this, the effective diameter D of the male thread 3 of the roller screw 4 is relative to the effective diameter d of the male thread 1 of the drive screw shaft 2.
It can be seen that the lead can be arbitrarily set within a wide range by varying the values. In addition, roller screws roll and rotate following the rotation of the drive screw shaft, so they are more efficient and durable than sliding screws.Furthermore, only one roller screw is required, and the structure does not revolve. Structurally, it is simple and can be miniaturized.

[実施例] 以下、本発明を実施例に基づいて詳細に説明す
る。
[Examples] Hereinafter, the present invention will be described in detail based on Examples.

第1実施例 第1実施例を第4図〜第7図に示す。本実施例
では、テーブル送り装置に適用した例で、第4図
に示す如く、ベツド11に対してテーブル21が
第4図中左右方向へ往復移動可能に設けられてい
る。
First Example A first example is shown in FIGS. 4 to 7. In this embodiment, the present invention is applied to a table feeding device, and as shown in FIG. 4, a table 21 is provided to be movable back and forth in the left and right directions in FIG. 4 with respect to the bed 11.

これら相対移動する二部材の一方側、ここでは
ベツド11側には、外周面に雄ねじ12を有する
駆動ねじ軸13が前記テーブル21の往復移動方
向に沿つてかつ回転可能に設けられている。雄ね
じ12は、ピツチがp、有効径がd、右ねじ1条
つまりs=1である。駆動ねじ軸13は、全体が
磁性体材料から形成されているとともに、両端が
前記ベツド11に設けられたブラケツト14(第
4図中左端は図示省略)に回転可能に支持され、
かつ、一端に連結されたモータ15により回転駆
動される。
A drive screw shaft 13 having a male thread 12 on its outer circumferential surface is rotatably provided on one side of these two relatively movable members, in this case on the bed 11 side, along the reciprocating direction of the table 21. The male thread 12 has a pitch of p, an effective diameter of d, and one right-handed thread, that is, s=1. The drive screw shaft 13 is entirely made of a magnetic material, and both ends are rotatably supported by a bracket 14 (the left end in FIG. 4 is not shown) provided on the bed 11.
Moreover, it is rotationally driven by a motor 15 connected to one end.

一方、テーブル21側には、第5図および第6
図に示す如く、板ばね23を介して非磁性体材料
からなる支持部材24が取付けられている。板ば
ね23は、基端側が取付台22を介して前記テー
ブル21に固定されているとともに、先端側つま
り支持部材24側が前記駆動ねじ軸13の軸線に
対して直交する方向へ弾性変形できるようになつ
ている。
On the other hand, on the table 21 side, there are
As shown in the figure, a support member 24 made of a non-magnetic material is attached via a leaf spring 23. The leaf spring 23 has its proximal end fixed to the table 21 via the mounting base 22, and its distal end, that is, the supporting member 24 side, is elastically deformable in a direction perpendicular to the axis of the drive screw shaft 13. It's summery.

つまり、詳細後記の永久磁石29、両側板25
A,25B、駆動ねじ軸13からなる磁気回路を
弾性変位させることができる。
In other words, the permanent magnet 29, both side plates 25, which will be described in detail later.
A, 25B, and the magnetic circuit consisting of the drive screw shaft 13 can be elastically displaced.

支持部材24側の両側には、磁性体材料からな
る側板25A,25Bが固定されている。両側板
25A,25B間には、非磁性体材料からなる支
持軸26を介して前記駆動ねじ軸13の雄ねじ1
2と同ピツチの雄ねじ27を有する非磁性体材料
からなるローラねじ28が前記駆動ねじ軸13の
雄ねじ12に噛合された状態で駆動ねじ軸13の
回転に追従してころがり回転可能に設けられてい
る。また、両側板25A,25Bのローラねじ2
8が配設された位置よりも上方側には、側板25
Aから駆動ねじ軸13を通り側板25Bへ戻る磁
気回路を構成する永久磁石29が取付けられてい
る。その下方側は駆動ねじ軸13の外周面に臨む
形状とされている。
Side plates 25A and 25B made of a magnetic material are fixed to both sides of the support member 24 side. The male screw 1 of the drive screw shaft 13 is inserted between the side plates 25A and 25B via a support shaft 26 made of a non-magnetic material.
A roller screw 28 made of a non-magnetic material and having a male thread 27 of the same pitch as 2 is provided so as to be able to roll and rotate following the rotation of the drive screw shaft 13 while being engaged with the male thread 12 of the drive screw shaft 13. There is. In addition, the roller screws 2 on both side plates 25A and 25B
A side plate 25 is located above the position where 8 is disposed.
A permanent magnet 29 is attached that constitutes a magnetic circuit that runs from A to the drive screw shaft 13 and returns to the side plate 25B. Its lower side is shaped to face the outer peripheral surface of the drive screw shaft 13.

ローラねじ28と支持軸26との間には、ラジ
アルベアリング31が介装されている。また、ロ
ーラねじ28の両端面と各側板25A,25Bと
の間には、それぞれスラストベアリング32が介
装されている。
A radial bearing 31 is interposed between the roller screw 28 and the support shaft 26. Furthermore, thrust bearings 32 are interposed between both end surfaces of the roller screw 28 and each side plate 25A, 25B.

ここで、ローラねじ28に形成された雄ねじ2
7と駆動ねじ軸13に形成された雄ねじ12と
は、ピツチP,pが同じ(P=p)であるが、ね
じ方向が逆の1条ねじ(S=−1,s=1)に形
成されている。つまり、雄ねじ12は右ねじ1条
に、雄ねじ27は左ねじ1条にそれぞれ形成され
ている。しかも、雄ねじ27の有効径Dは、雄ね
じ12の有効径dより僅か大きい寸法に形成され
ている。
Here, the male thread 2 formed on the roller screw 28 is
7 and the male thread 12 formed on the drive screw shaft 13 are formed into a single thread thread (S=-1, s=1) with the same pitches P and p (P=p) but opposite thread directions. has been done. That is, the male thread 12 is formed with one right-hand thread, and the male thread 27 is formed with one left-hand thread. Moreover, the effective diameter D of the male thread 27 is slightly larger than the effective diameter d of the male thread 12.

また、雄ねじ12,27のねじ山形状は、第7
図Aに示す如く、互いの有効円上で点接触する円
弧面形状にそれぞれ形成されている。この場合、
第7図Bに示す如く、雄ねじ12,27のいずれ
か一方、例えば雄ねじ27のねじ山形状を三角形
状とし、いずれか他方、つまり雄ねじ12のねじ
山形状をその三角形状の斜辺に点接触する円弧面
形状としてもよい。
Moreover, the thread shape of the male screws 12 and 27 is
As shown in Figure A, they are each formed into an arcuate shape that makes point contact on each other's effective circles. in this case,
As shown in FIG. 7B, one of the male screws 12 and 27, for example, the male screw 27, has a triangular thread shape, and the thread shape of the other, that is, the male thread 12, is brought into point contact with the oblique side of the triangle. It may also have a circular arc shape.

次に、本実施例の作用を説明する。 Next, the operation of this embodiment will be explained.

永久磁石29によつて、駆動ねじ軸13と側板
25A,25Bとの間に磁気回路が形成されてい
るので、その磁気回路の磁力によて駆動ねじ軸1
3とローラねじ28とが互いに押圧された状態と
なつている。つまり、この押圧力により、ローラ
ねじ28を駆動ねじ軸13へ押圧する予圧が与え
られている。
Since a magnetic circuit is formed between the drive screw shaft 13 and the side plates 25A and 25B by the permanent magnet 29, the drive screw shaft 1 is
3 and the roller screw 28 are pressed against each other. In other words, this pressing force provides a preload for pressing the roller screw 28 against the drive screw shaft 13.

この状態において、モータ15の駆動によつて
駆動ねじ軸13を回転させると、その駆動ねじ軸
13の雄ねじ12とローラねじ28の雄ねじ27
とが互いに噛合つているので、駆動軸13の回転
に追従してローラねじ28がころがり回転しなが
ら駆動ねじ軸13の軸線方向へ移動される。つま
り、テーブル21が移動される。このとき、雄ね
じ12,27は互いに逆ねじで、かつ、雄ねじ2
7の有効径Dが雄ねじ12の有効径dに対して僅
かに大きいので、雄ねじ12のピツチpよりもは
るかに小さい微小リードでテーブル21が移動さ
れる。
In this state, when the drive screw shaft 13 is rotated by the drive of the motor 15, the male thread 12 of the drive screw shaft 13 and the male thread 27 of the roller screw 28 are rotated.
Since the roller screws 28 are in mesh with each other, the roller screw 28 is moved in the axial direction of the drive screw shaft 13 while rolling and rotating following the rotation of the drive shaft 13. In other words, the table 21 is moved. At this time, the male threads 12 and 27 are opposite threads, and the male thread 2
7 is slightly larger than the effective diameter d of the male screw 12, the table 21 is moved with a minute lead that is much smaller than the pitch p of the male screw 12.

例えば、雄ねじ12,27のピツチp,Pをp
=P=1.5[mm]、雄ねじ12の有効径dをd=15
[mm]、雄ねじ27の有効径DをD=16[mm]とす
ると、リードΔxは、(1)式から、 Δx=1.5(1−15/16×1) =0.09375 ≒0.1[mm] となる。
For example, the pitches p and P of the male screws 12 and 27 are set to p
=P=1.5 [mm], effective diameter d of male thread 12 is d=15
[mm], and the effective diameter D of the male thread 27 is D = 16 [mm]. From equation (1), the lead Δx is: Δx = 1.5 (1-15/16 x 1) = 0.09375 ≒ 0.1 [mm] Become.

従つて、本実施例によれば、ベツド11に駆動
ねじ軸13を設けるとともに、テーブル21にロ
ーラねじ28を駆動ねじ軸13の回転に追従して
ころがり回転可能に設け、駆動ねじ軸13の雄ね
じ12とローラねじ28の雄ねじ27とを互いに
逆ねじに、かつ、ローラねじ28の雄ねじ27の
有効径Dを駆動ねじ軸13の雄ねじ12の有効径
dより大きい形成したので、駆動ねじ軸13の回
転により、雄ねじ12のピツチpよりも小さいリ
ードでテーブル21を移動させることができる。
Therefore, according to this embodiment, the drive screw shaft 13 is provided on the bed 11, and the roller screw 28 is provided on the table 21 so as to be able to roll and rotate following the rotation of the drive screw shaft 13. 12 and the male thread 27 of the roller screw 28 are oppositely threaded, and the effective diameter D of the male thread 27 of the roller screw 28 is larger than the effective diameter d of the male thread 12 of the drive screw shaft 13. By rotating, the table 21 can be moved with a lead smaller than the pitch p of the male screw 12.

特に、ローラねじ28の雄ねじ27の有効径D
を駆動ねじ軸13の雄ねじ12の有効径dより僅
か大きく形成したので、雄ねじ12のピツチpよ
りもはるかに小さい微小リードでテーブル21を
移動させることができる。例えば、雄ねじ12,
27のピツチp,Pをp=P=1.5[mm]、雄ねじ
12の有効径dをd=15[mm]、雄ねじ27の有効
径DをD=16[mm]とすれば、リードΔxを雄ねじ
12のピツチp=1.5[mm]の約1/15の値、つまり
0.1[mm]という微小リードでテーブル21を移動
させることができる。
In particular, the effective diameter D of the male thread 27 of the roller screw 28
is formed to be slightly larger than the effective diameter d of the male screw 12 of the drive screw shaft 13, so the table 21 can be moved with a minute lead that is much smaller than the pitch p of the male screw 12. For example, male thread 12,
If the pitches p and P of 27 are p = P = 1.5 [mm], the effective diameter d of the male thread 12 is d = 15 [mm], and the effective diameter D of the male thread 27 is D = 16 [mm], then the lead Δx is The value is approximately 1/15 of the pitch p of male screw 12 = 1.5 [mm], that is,
The table 21 can be moved with a minute lead of 0.1 mm.

しかも、ローラねじ28の雄ねじ27の有効径
Dを駆動ねじ軸13の雄ねじ12の有効径dより
大きく形成したので、リードは0より大きくかつ
雄ねじ12のピツチpより小さくなる。この状態
では、第11図に示すように、駆動ねじ軸13の
回転によりローラねじ28には、移動方向の力C
と、駆動ねじ軸13から離れようとする力Dと、
回転方向の力とが発生する。ローラねじ28の有
効径Dが駆動ねじ軸13の有効径dより小さい
と、回転方向の力はFとなり、ローラねじ28の
回転方向と逆向きとなるが、有効径Dが有効径d
より大きければ、回転方向の力はEとなり、つま
りローラねじ28の回転方向と同方向となるの
で、滑らせる傾向がなくリードはより安定する。
Moreover, since the effective diameter D of the male thread 27 of the roller screw 28 is made larger than the effective diameter d of the male thread 12 of the drive screw shaft 13, the lead is larger than 0 and smaller than the pitch p of the male thread 12. In this state, as shown in FIG. 11, the rotation of the drive screw shaft 13 applies a force C in the moving direction to the roller screw 28.
, a force D that tends to separate from the drive screw shaft 13,
A force in the rotational direction is generated. If the effective diameter D of the roller screw 28 is smaller than the effective diameter d of the drive screw shaft 13, the force in the rotational direction becomes F, which is opposite to the rotational direction of the roller screw 28, but the effective diameter D is smaller than the effective diameter d.
If it is larger, the force in the rotational direction will be E, that is, in the same direction as the rotational direction of the roller screw 28, so there will be no tendency for it to slip, and the reed will be more stable.

また、永久磁石29によつて駆動ねじ軸12と
側板25A,25Bとの間に磁気回路を構成し、
この磁気回路の磁力を利用してローラねじ28を
駆動ねじ軸13に押圧する予圧を得るようにした
ので、例えば予圧を得るために、ばねなどを利用
してローラねじ28を駆動ねじ軸13に押圧した
ときに生じる反力の処理が全く必要ない利点があ
る。
Further, a magnetic circuit is configured between the drive screw shaft 12 and the side plates 25A, 25B by a permanent magnet 29,
Since the magnetic force of this magnetic circuit is used to obtain a preload for pressing the roller screw 28 against the drive screw shaft 13, for example, in order to obtain the preload, a spring or the like is used to push the roller screw 28 against the drive screw shaft 13. It has the advantage that there is no need to deal with the reaction force that occurs when it is pressed.

また、ローラねじ28の雄ねじ27および駆動
ねじ軸13の雄ねじ12のねじ山形状を、互いに
円弧面形状、あるいは、一方を三角形状とし、他
方を円弧面形状としたので、駆動ねじ軸13とロ
ーラねじ28とを常に有効円上で点接触させるこ
とができる。駆動ねじ軸13とローラねじ28と
が接する点、つまり有効径が変動すると、(1)
式からリードΔxが変動するので、駆動ねじ軸1
3とローラねじ28とを常に有効円上で点接触さ
せることができることは、リードΔxを安定させ
ることができる。
In addition, since the thread shapes of the male thread 27 of the roller screw 28 and the male thread 12 of the drive screw shaft 13 are mutually arcuate, or one is triangular and the other is an arc, the drive screw shaft 13 and the roller Point contact with the screw 28 can always be made on the effective circle. When the point where the drive screw shaft 13 and the roller screw 28 touch, that is, the effective diameter changes, (1)
Since the lead Δx fluctuates from the formula, the drive screw shaft 1
3 and the roller screw 28 can always be brought into point contact on the effective circle, which can stabilize the lead Δx.

また、ローラねじ28は駆動ねじ軸13の回転
に追従して回転するので、つまり従来のすべりね
じのように接触面がすべり接触するのでなく、こ
ろがり接触なので、効率が高く、かつ、摩耗など
の耐久性にも優れた効果がある。
In addition, since the roller screw 28 rotates following the rotation of the drive screw shaft 13, that is, the contact surfaces do not make sliding contact as in conventional sliding screws, but roll contact, resulting in high efficiency and reduced wear. It also has excellent durability.

また、ローラねじ28は1個でよく、かつ、駆
動ねじ軸13に対して公転しない構造であるか
ら、構造的には簡単に、かつ、小型化できる。つ
まり、遊星ローラねじの場合には、複数の遊星ロ
ーラを必要とし、かつ、これらの遊星ローラが駆
動ねじ軸に対して公転する構造であるから、構造
的にも複雑で、かつ、大型化するが、本実施例の
場合には、これらと異なるので、構造的には簡単
に、かつ、小型化できる。
Further, since only one roller screw 28 is required and the roller screw 28 has a structure that does not revolve around the drive screw shaft 13, the structure can be simplified and miniaturized. In other words, in the case of a planetary roller screw, multiple planetary rollers are required, and these planetary rollers revolve around the drive screw shaft, making it structurally complex and large. However, in the case of this embodiment, since it is different from these, the structure can be simplified and miniaturized.

また、ローラねじ28と駆動ねじ軸12とを容
易に分離することができることから、組立てや分
解も容易である。この点、ボールねじの場合に
は、軸とナツトとの分離が困難である。
Further, since the roller screw 28 and the drive screw shaft 12 can be easily separated, assembly and disassembly are also easy. In this respect, in the case of a ball screw, it is difficult to separate the shaft and nut.

また、上記実施例では、ローラねじ28にラジ
アルベアリング31とスラストベアリング32と
を用いたが、アンギユラ玉軸受やピポツト玉軸受
などを用いてもよい。
Further, in the above embodiment, the radial bearing 31 and the thrust bearing 32 are used for the roller screw 28, but an angular ball bearing, a pivot ball bearing, or the like may be used.

第2実施例 第2実施例を第8図〜第10図に示す。なお、
これらの図の説明に当つて、第1実施例と同一構
成要件については、同一符号を付し、その説明を
省略する。
Second Embodiment A second embodiment is shown in FIGS. 8 to 10. In addition,
In the explanation of these figures, the same components as those in the first embodiment are given the same reference numerals, and the explanation thereof will be omitted.

本実施例では、図示されていないテーブル21
側に、ホルダ41を介して前記駆動ねじ軸13の
雄ねじ12と同ピツチの雄ねじ27を有する3つ
のローラねじ28A,28B,28Cを、前記駆
動ねじ軸13の雄ねじ12に噛合させた状態で駆
動ねじ軸13の回転に追従してころがり回転可能
に設けてある。
In this embodiment, a table 21 (not shown)
Three roller screws 28A, 28B, and 28C having male threads 27 of the same pitch as the male threads 12 of the drive screw shaft 13 are driven in a state in which they are meshed with the male threads 12 of the drive screw shaft 13 via the holder 41 on the side. It is provided so that it can roll and rotate following the rotation of the screw shaft 13.

各ローラねじ28A,28B,28Cは、前記
ホルダ41の前記駆動ねじ軸13を中心とする
120度間隔位置にそれぞれ回動可能に支持されて
いる。また、各ローラねじ28A,28B,28
Cの外周面に形成された雄ねじ27は、駆動ねじ
軸13の雄ねじ12に対して逆ねじで、有効径D
が雄ねじ12の有効径dより僅か大きい寸法に形
成されている。
Each roller screw 28A, 28B, 28C is centered on the drive screw shaft 13 of the holder 41.
They are rotatably supported at 120 degree intervals. In addition, each roller screw 28A, 28B, 28
The male thread 27 formed on the outer peripheral surface of C is a reverse thread with respect to the male thread 12 of the drive screw shaft 13, and has an effective diameter D.
is formed to have a size slightly larger than the effective diameter d of the male thread 12.

ホルダ41は、中心に前記駆動ねじ軸13を挿
通させるための貫通孔42を有する円筒形状に形
成されている。また、その周囲壁には、貫通孔4
2との間に薄肉部を残して外周面から貫通孔42
の手前まで達するスリツト43が形成されている
とともに、このスリツト43から離れた位置に貫
通孔42から外周面まで達するすり割り溝44が
形成されている。すり割り溝44を挟んでボルト
45が螺合されている。従つて、ボルト45を締
付けていけば、スリツト43の薄肉部によつてホ
ルダ41の径が縮小される。つまり、各ローラね
じ28A,28B,28Bは必要な予圧(圧力)
が与えられながら駆動ねじ軸13の雄ねじ12に
噛合される。
The holder 41 is formed into a cylindrical shape having a through hole 42 in the center through which the drive screw shaft 13 is inserted. In addition, there are through holes 4 in the surrounding wall.
2 and the through hole 42 from the outer peripheral surface, leaving a thin part between the
A slit 43 is formed that reaches to the front of the slit 43, and a slotted groove 44 that extends from the through hole 42 to the outer circumferential surface is formed at a position away from the slit 43. A bolt 45 is screwed together with a slotted groove 44 in between. Therefore, as the bolt 45 is tightened, the diameter of the holder 41 is reduced by the thin portion of the slit 43. In other words, each roller screw 28A, 28B, 28B has the necessary preload (pressure)
is engaged with the male thread 12 of the drive screw shaft 13 while being given the following.

従つて、本実施例によれば、第1実施例で述べ
た作用効果のほかに、3つのローラねじ28A,
28B,28Cを駆動ねじ軸13を挟んで等間隔
位置に設けてあるから、比較的大重量のテーブル
でも確実に移動させることができる。
Therefore, according to this embodiment, in addition to the effects described in the first embodiment, the three roller screws 28A,
Since 28B and 28C are provided at equal intervals across the drive screw shaft 13, even a relatively heavy table can be moved reliably.

なお、上記各実施例では、駆動ねじ軸13の雄
ねじ12を右ねじとし、ローラねじ28,28
A,28B,28Cの雄ねじ27を左ねじとした
が、この逆でもよく、さらに、同一方向でもよ
い。同一方向とした場合でも、第2図に示す傾向
となるので、雄ねじ12の有効径dに対して雄ね
じ27の有効径Dを選択すれば、雄ねじ12のピ
ツチp以上の範囲でリードを任意に設定すること
ができる。
In each of the above embodiments, the male screw 12 of the drive screw shaft 13 is a right-handed screw, and the roller screws 28, 28 are
Although the male threads 27 of A, 28B, and 28C are left-handed threads, they may be in the opposite direction, or may be in the same direction. Even when the directions are the same, the tendency shown in Fig. 2 will result, so if the effective diameter D of the male thread 27 is selected relative to the effective diameter d of the male thread 12, the lead can be adjusted arbitrarily within a range equal to or larger than the pitch p of the male thread 12. Can be set.

また、上記各実施例では、雄ねじ12および雄
ねじ27を共に1条ねじとしたが、ねじの条数は
これに限られるものではない。
Further, in each of the above embodiments, both the male thread 12 and the male thread 27 are single-thread threads, but the number of threads is not limited to this.

なお、本発明は、上記実施例で述べたテーブル
送り装置に限らず、例えば工作機械のコラムやヘ
ツドなどでもよく、相対移動する二部材の送り機
構一般に適用することができる。
Note that the present invention is not limited to the table feeding device described in the above embodiment, but may be applied to a column or head of a machine tool, for example, and can be applied to general feeding mechanisms of two members that move relative to each other.

[発明の効果] 以上の通り、本発明によれば、相対移動可能な
二部材の一方に磁性体材料からなる駆動ねじ軸を
設けるとともに、他方に駆動ねじ軸の雄ねじと同
ピツチの雄ねじを有する非磁性体材料からなるロ
ーラねじを駆動ねじ軸に噛合させた状態で駆動ね
じ軸の回転に追従してころがり回転可能に設け、
かつローラねじを永久磁石と両側板と駆動ねじ軸
を含む磁気回路で駆動ねじ軸に圧接させる、とと
もにこのローラねじの雄ねじの有効径を駆動ねじ
軸の雄ねじの有効径に対して異なるように形成し
たので、リードを広範囲内で任意に設定すること
ができる。しかも、ローラねじは駆動ねじ軸の回
転に追従してころがり回転するので、すべりねじ
に比べ効率や耐久性にも優れ、また、ローラねじ
は1個でよく、かつ、公転しない構造であるか
ら、構造的には簡単かつ小型化できる。
[Effects of the Invention] As described above, according to the present invention, one of the two relatively movable members is provided with a drive screw shaft made of a magnetic material, and the other has a male thread with the same pitch as the male thread of the drive screw shaft. A roller screw made of non-magnetic material is provided so that it can roll and rotate following the rotation of the drive screw shaft while meshing with the drive screw shaft.
The roller screw is brought into pressure contact with the drive screw shaft by a magnetic circuit including a permanent magnet, both side plates, and the drive screw shaft, and the effective diameter of the male thread of the roller screw is formed to be different from the effective diameter of the male thread of the drive screw shaft. Therefore, the lead can be set arbitrarily within a wide range. Moreover, since roller screws roll and rotate following the rotation of the drive screw shaft, they are superior in efficiency and durability compared to sliding screws.Furthermore, only one roller screw is required, and the structure does not revolve. Structurally, it is simple and can be miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の技術的根拠を説明するための
図、第2図はローラねじの雄ねじを駆動ねじ軸の
雄ねじに対してねじ方向を同じとしかつ有効径を
変えたときのリードを示す図、第3図はローラね
じの雄ねじを駆動ねじ軸の雄ねじに対してねじ方
向を逆としかつ有効径を変えたときのリードを示
す図である。第4図〜第7図は本発明の第1実施
例を示すもので、第4図は全体構成を示す正面
図、第5図はその側面図、第6図は傾斜図、第7
図A,Bは駆動ねじ軸の雄ねじとローラねじの雄
ねじとのねじ山形状を示す図である。第8図〜第
10図は本発明の第2実施例を示すもので、第8
図は要部を示す斜視図、第9図はその正面図、第
10図は第9図の−線断面図である。第11
図は駆動ねじ軸の回転によりローラねじに発生す
る力を説明するための図である。 11,21……ベツドおよびテーブル(相対移
動可能な二部材)、1,12……駆動ねじ軸の雄
ねじ、2,13……駆動ねじ軸、3,27……ロ
ーラねじの雄ねじ、4,28,28A〜28C…
…ローラねじ、p,P……ピツチ、d,D……有
効径、s,S……条数。
Figure 1 is a diagram for explaining the technical basis of the present invention, and Figure 2 shows the lead when the male thread of the roller screw is threaded in the same direction as the male thread of the drive screw shaft and the effective diameter is changed. Figures 3 and 3 are diagrams showing leads when the thread direction of the male thread of the roller screw is reversed with respect to the male thread of the drive screw shaft and the effective diameter is changed. 4 to 7 show a first embodiment of the present invention, in which FIG. 4 is a front view showing the overall configuration, FIG. 5 is a side view, FIG. 6 is a tilted view, and FIG.
Figures A and B are diagrams showing the thread shapes of the male thread of the drive screw shaft and the male thread of the roller screw. 8 to 10 show a second embodiment of the present invention, and FIG.
9 is a front view thereof, and FIG. 10 is a sectional view taken along the line -- in FIG. 9. 11th
The figure is a diagram for explaining the force generated on the roller screw due to rotation of the drive screw shaft. 11, 21... Bed and table (two members movable relative to each other), 1, 12... Male thread of drive screw shaft, 2, 13... Drive screw shaft, 3, 27... Male thread of roller screw, 4, 28 ,28A~28C...
...roller screw, p, P...pitch, d, D...effective diameter, s, S...number of threads.

Claims (1)

【特許請求の範囲】 1 相対移動可能な二部材の一方に、磁性体材料
から形成された外周面に雄ねじを有する駆動ねじ
軸を相対移動方向に沿つてかつ回転可能に設ける
とともに、 前記相対移動可能な二部材の他方に、前記駆動
ねじ軸の雄ねじと同ピツチの雄ねじを有する非磁
性体材料から形成されたローラねじを磁性体材料
からなる一対の側板間に前記駆動ねじの雄ねじに
噛合させた状態で駆動ねじ軸の回転に追従してこ
ろがり回転可能に設け、 このローラねじの雄ねじの有効径を駆動ねじ軸
の雄ねじの有効径に対して異なるように形成し、 前記両側板の前記ローラねじの配設位置よりも
下方側を前記駆動ねじ軸の外周面に臨む形状とす
る、とともにその上方側に磁気回路を形成する永
久磁石を介装し、 かつ前記永久磁石を含む両側板を前記駆動ねじ
軸の軸線に対して直交する方向に弾性変位可能に
非磁性体材料を介して前記二部材の他方に支持し
た、ことを特徴とするころがり差動ねじ送り機
構。
[Scope of Claims] 1. A driving screw shaft made of a magnetic material and having a male thread on the outer peripheral surface is rotatably provided on one of the two relatively movable members along the relative movement direction, and the relative movement A roller screw made of a non-magnetic material and having a male thread of the same pitch as the male thread of the drive screw shaft is meshed with the male thread of the drive screw between a pair of side plates made of a magnetic material as the other of the two possible members. The roller screw is provided so as to be able to roll and rotate following the rotation of the drive screw shaft in a state where the roller screw is rotated by rolling, and the effective diameter of the male screw of the roller screw is formed to be different from the effective diameter of the male screw of the drive screw shaft, and the roller of the both side plates is The lower side of the screw arrangement position is shaped so as to face the outer circumferential surface of the drive screw shaft, and the upper side thereof is interposed with a permanent magnet that forms a magnetic circuit, and both side plates containing the permanent magnet are shaped as described above. A rolling differential screw feeding mechanism, characterized in that it is supported on the other of the two members via a non-magnetic material so as to be elastically displaceable in a direction perpendicular to the axis of the drive screw shaft.
JP32998288A 1988-12-27 1988-12-27 Rolling differential screw feed mechanism Granted JPH02173452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32998288A JPH02173452A (en) 1988-12-27 1988-12-27 Rolling differential screw feed mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32998288A JPH02173452A (en) 1988-12-27 1988-12-27 Rolling differential screw feed mechanism

Publications (2)

Publication Number Publication Date
JPH02173452A JPH02173452A (en) 1990-07-04
JPH0481655B2 true JPH0481655B2 (en) 1992-12-24

Family

ID=18227446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32998288A Granted JPH02173452A (en) 1988-12-27 1988-12-27 Rolling differential screw feed mechanism

Country Status (1)

Country Link
JP (1) JPH02173452A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215196A (en) * 1992-02-07 1993-08-24 Masaru Kishimoto Rectilinear driving device
FI101416B (en) * 1994-01-14 1998-06-15 Instrumentarium Corp Moving means for effecting a linear moving movement
JP4723853B2 (en) * 2004-12-10 2011-07-13 Gknドライブラインジャパン株式会社 Torque transmission device
JP4542970B2 (en) * 2005-08-25 2010-09-15 日立オートモティブシステムズ株式会社 Rotational linear motion conversion mechanism
JP5096609B2 (en) * 2011-11-24 2012-12-12 Ntn株式会社 Electric brake device
WO2017002870A1 (en) * 2015-06-30 2017-01-05 ミネベア株式会社 Screw structure, feeding device, medical apparatus, and infusion pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3295385A (en) * 1964-12-16 1967-01-03 Boeing Co Automatic anti-friction dual ratio motion converter
JPS4410659Y1 (en) * 1966-10-25 1969-04-30

Also Published As

Publication number Publication date
JPH02173452A (en) 1990-07-04

Similar Documents

Publication Publication Date Title
US3597990A (en) Zero-lash right-angle movement
JPH0619873Y2 (en) Ball screw spline unit
JPH0470505B2 (en)
JPH0481655B2 (en)
CN107498365B (en) Double-nut precise ball screw pair
US5022277A (en) Screw and nut machine
JPH02173453A (en) Rolling differential screw feed mechanism
JPH024821B2 (en)
JPH0361749A (en) Feed screw mechanism
JP2001182798A (en) Feed screw unit and feed device provided therewith
JPH022659B2 (en)
JPS6090648A (en) Transfer apparatus permitting minute feed and speedy feed
JPS63300836A (en) Fine positioning mechanism
JPH04210151A (en) Ball screw
JPH02225854A (en) Static-pressure fluid bearing
JP3523318B2 (en) Roller rack device
JPH0786403B2 (en) Variable lead screw feed mechanism
JPH01116369A (en) Removing device for backlash
JPS62255611A (en) Elastic bearing
JPS60177838A (en) Minute and rapid speed feeding mechanism
JPH08285027A (en) Direct-acting device
JPH11277359A (en) Intermediate support for ball screw device
JPS5921322Y2 (en) ball screw
JPH07317869A (en) Linear drive device
JPH0730263Y2 (en) Moving table unit