JPH0480522B2 - - Google Patents

Info

Publication number
JPH0480522B2
JPH0480522B2 JP63252282A JP25228288A JPH0480522B2 JP H0480522 B2 JPH0480522 B2 JP H0480522B2 JP 63252282 A JP63252282 A JP 63252282A JP 25228288 A JP25228288 A JP 25228288A JP H0480522 B2 JPH0480522 B2 JP H0480522B2
Authority
JP
Japan
Prior art keywords
magnetic
reference example
magnetic powder
slurry
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63252282A
Other languages
Japanese (ja)
Other versions
JPH01125805A (en
Inventor
Kazuo Nakada
Seigo Maruo
Kyoshi Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP63252282A priority Critical patent/JPH01125805A/en
Publication of JPH01125805A publication Critical patent/JPH01125805A/en
Publication of JPH0480522B2 publication Critical patent/JPH0480522B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は各種有機バインダーに対して改善され
た分散性を有する磁性粉末を含有する磁気記録媒
体に関する。 近年、磁気記録媒体においては益々高性能化が
要求されており、これに伴つて磁性材料として高
保持力の磁性粉末や高充填性の磁性粉末が要求さ
れている。 磁気記録媒体の記録素子として汎用されている
γ−Fe2O3やコバルト含有酸化鉄などの磁性粉末
は、その表面が親水性であるため、各種有機バイ
ンダーと混練して磁性塗料を調製する際、バイン
ダーへの濡れがわるく、またそれ自体の磁性のた
め粒子相互の磁気凝集があつて、バインダー中に
均一に分散されにくいという欠点があつた。 この対策として、機械的分散手段を用いて、凝
集塊をほぐす方法(特開昭50−22297、特開昭55
−157216、特開昭56−10903)が試みられている。
しかし、この方法も機械的分散操作を止めると凝
集がはじまるため、根本的解決にはならない。さ
らに、磁性粉末の粒子表面を有機バインダーとな
じみのよい界面活性剤などで磁性塗料調製前に被
覆する方法(特公昭53−19120、特開昭54−
37297、特開昭53−141196、特開昭54−82354、特
開昭54−85397)や磁性塗料調製時に分散剤とし
て界面活性剤を添加する方法(特開昭55−
151068、特開昭55−151069)が試みられている。 界面活性剤を粒子表面に被覆する方法として、
水系、非水系での浸漬処理、または粉末に直接ス
プレーする方法があるが、この場合、有機バイン
ダーとの混練中に被覆された界面活性剤の脱着が
起つて効果が持続できなかつたり、酢ビ塩ビ系樹
脂での分散性は改良されても、ウレタン樹脂では
効果が少ないといつた樹脂選択性の問題がある。 また、有機バインダー中における磁性粉末の濡
れをよくするため、磁性塗料調製時に多量の界面
活性剤を添加すると、テープの強度低下、ブリー
デイング、粉落ち等の欠点がある。 本発明者達は、このような欠点を改善するため
に種々検討した結果、磁性粉末の表面にあらかじ
めCu、Ag、Al、Ti、Zr、Sn、V、Nb、Ta、
Sb、Cr、Mo、W及びNiの水酸化物の少なくと
も1種を被覆させると、磁性塗料調製時に有機バ
インダー中における分散性が改善できることを見
い出し、本発明を完成したものである。 すなわち、本発明は、その表面に、Alの水酸
化物が酸化鉄系磁性粉末100重量部に対して0.5重
量部を超え20重量部以下の量で均一に被覆されて
いる酸化鉄糸磁性粉末を、結合樹脂中に分散され
た磁性層を基体上に設けてなる磁気記録媒体であ
る。 本発明に係る、表面に金属水酸化物を被覆させ
る磁性粉末としては、γ−Fe2O3、マグネタイ
ト、γ−Fe2O3とマグネタイトとの中間酸化物で
あるベルトライド化合物、前記磁性粉末にCoを
含有させたものが挙げられる。 γ−Fe2O3、マグネタイト、あるいはベルトラ
イド化合物は、針状水和酸化鉄を通常の方法によ
り脱水、還元、再酸化等の操作を適宜組み合わせ
て得られたものなどが使用できる。コバルト含有
磁性酸化鉄については、例えば、特公昭57−
37532、特公昭48−44040、特開昭54−13997、特
開昭54−106895、特開昭53−100197で知られるよ
うに、γ−Fe2O3などの磁性酸化鉄粉末を核晶と
してコバルトまたはコバルトと鉄などの金属化合
物を用いて被着し、乾燥乃至加熱処理をしたも
の、あるいは、例えば、特公昭41−6538、特公昭
49−4264、特開昭48−101599で知られるようにコ
バルトを固溶したものを使用することができる。 ここでいう水酸化物とは、水和水酸化物、水和
酸化物あるいは、これらの中間のものである水和
オキシ水酸化物を総称するものであり、厳密な意
味で陰性成分が水酸基であるような化合物に限る
ものではない。磁性粉末の表面に被覆させる水酸
化物の量は、一般に磁性粉末100重量部に対して
0.5重量部を超え20重量部以下の量であり、望ま
しくは0.5重量部を超え5重量部以下の量である。
水酸化物の量が20重量部を越えると、磁気凝集を
生じにくくし、分散性を向上させる上では効果が
あるが、水酸化物が非磁性物であるため、磁性粉
末の保磁力等の磁気特性が低下するため望ましく
ない。 磁性粉末の表面に金属水酸化物を被覆させる方
法は、特に限定するものではないが、金属水酸化
物が磁性粉末表面に均一に析出することが肝要
で、磁性粉末表面以外に析出し、磁性粉末との混
合物になる場合は効果が減少する。 すなわち、磁性粉末のスラリー中において金属
塩を酸またはアルカリで中和する方法や、スラリ
ー中で金属塩を加水分解する方法で処理する場
合、スラリーをよく攪拌し、磁性粉末の分解状態
を良好にしておくことが望ましい。また、前記の
中和反応や加水分解反応はできるだけ徐々に進む
ようにすることが、均一に被覆させる上からは効
果的である。そのためには、スラリーの温度、
PH、濃度やスラリーへの金属塩溶液、アルカリ溶
液の添加速度については適宜調整する必要があ
る。中和法や加水分解を併用して被覆させる場合
でも同様なことがいえる。被覆させる時の雰囲気
は、酸化性、不活性、還元性のいずれでもよく、
水酸化物の金属原子価の違いによつて、本発明の
効果が特に異なるものではない。 本発明に係る磁性粉末を用いて得られた磁気テ
ープは、金属水酸化物を被覆しない磁性粉末を用
いて得られた磁気テープに比べて、角形比
(Br/Bm)および配向性(OR)が向上してい
る。 また、本発明に係る磁性粉末を用いた磁性塗料
は金属水酸化物を被覆しない磁性粉末を用いた場
合に比べて粘度が低下している。これらのことか
ら本発明に係る磁性粉末は有機バインダー中にお
ける分散性が改善されていることがわかる。 本発明に係る磁性粉末を用いると、如何なる理
由で有機バインダー中における分散性が改善され
るのかは必ずしも明確でないが、(1)金属水酸化物
を被覆することにより、磁性粉末の有機バインダ
ー中における磁気凝集が生じにくくなる、(2)磁性
粉末と有機バインダーとの親和性が高まり、濡れ
がよくなる、(3)有機バインダー中において被覆さ
れた金属水酸化物が磁性粉末から脱離しにくく、
分散効果が持続しやすい、ことなどが推定され
る。 次に本発明の実施例について説明する。 実施例 1 針状γ−Fe2O3(保磁力Hc:360エルステツド、
飽和磁化:73emu/g、平均長軸長約0.4μm、針
状比約10:1)200gを約2を水に分散させて
スラリーとし、γ−Fe2O3100g/のスラリー
濃度に調整する。このスラリーの500mlを4つ口
フラスコに分取し、攪拌しながら60℃に昇温後、
Al濃度を4.17g/に調整したNaAlO2の水溶液
60mlを2ml/分の速度で30分間スラリーに滴下す
る。更に0.1規定NaOH水溶液120mlを2ml/分の
速度で1時間滴下してPH7まで中和し、γ−
Fe2O3の表面に均一にNaAlO2が中和された水酸
化物を被覆する。1時間熟成後ブフナーロートを
用いて濾過、洗浄する。100℃で1昼夜乾燥し、
乳鉢で粗砕後、擂潰機で2分間粉砕する。 このようにして得た磁性粉末を用いて、下記の
組成で磁性塗料を調製し、この塗料をポリエステ
ルフイルム上に塗布し、配向強度1000ガウスで配
向、乾燥して磁気テープを作成した。 磁性粉末 100重量部 塩ビ−酢ビ−ビニルアルコール共重合体
10.5 〃 ジオクチルフタレート 4 〃 大豆レシチン 1.6 〃 界面活性剤(特殊リン酸エステル型非イオン性ア
ニオン活性剤) 4 〃 トルエン 110 〃 メチルエチルケトン 100 〃 比較例 1 実施例1において、γ−Fe2O3100g/に調
整されたスラリーを、被覆処理に供することな
く、直ちにブフナーロートで濾過する。この磁性
粉末を100℃で1昼夜乾燥し、乳鉢で粗砕後、擂
潰機で2分間粉砕して、前記実施例1の場合と同
様にして、磁気テープを作成した。 参考例 1 針状γ−Fe2O3(保磁力Hc:360エルステツド、
飽和磁化:73emu/g、平均長軸長約0.4μm、針
状比約10:1)200gを約2の水に分散させて
スラリーとし、γ−Fe2O3100g/のスラリー
濃度に調整する。このスラリーの500mlを4つ口
フラスコに分取し、攪拌しながら60℃に昇温後、
V濃度を4.17g/に調整したVOSO4・nH2Oの
水溶液60mlを2ml/分の速度で30分間スラリーに
滴下する。更に0.1規定NaOH水溶液120mlを2
ml/分の速度で1時間滴下してPH7まで中和し、
γ−Fe2O3の表面に均一にVOSO4・nH2Oが中和
された水酸化物を被覆する。1時間熟成後ブフナ
ーロートを用いて濾過、洗浄する。100℃で1昼
夜乾燥し、乳鉢で粗砕後、擂潰機で2分間粉砕す
る。 このようにして得た磁性粉末を用いて、前記実
施例1の場合と同様にして磁気テープを作成し
た。 参考例 2 参考例1において、V濃度を16.67g/に、
NaOH濃度を0.4規定に変えた以外は、前記参考
例1の場合と同様にして、磁気テープを作成し
た。 参考例 3 参考例1において、VOSO4・nH2Oの代わりに
Na2WO4・nH2Oを、NaOH水溶液の代わりに
HCl水溶液を用い、W濃度を4.17g/、HCl濃
度を0.1規定にした以外は、前記参考例1の場合
と同様にして磁気テープを作成した。 参考例 4 参考例3において、W濃度を16.67g/に、
HCl濃度を0.4規定にした以外は、前記参考例1
の場合と同様にして磁気テープを作成した。 参考例 5 参考例1において、VOSO4・nH2Oの代わりに
(NH46Mo7O24・nH2O、Mo濃度を4.17g/
に、処理液添加後0.1規定HNO3水溶液を用いて
PH2に調整した以外は、前記参考例1の場合と同
様にして磁気テープを作成した。 参考例 6 参考例1と同様にして得た、磁性粉末針状γ−
Fe2O3100g/のスラリー500mlを4つ口フラス
コに分取し、攪拌しながら60℃に昇温する。この
スラリーに、(NH42ZrO(CO32を溶解したZr濃
度4.17g/の水溶液60mlを1ml/分の速度で1
時間滴下する。30分間均一攪拌後90℃に昇温し、
1時間攪拌することによりγ−Fe2O3の表面にZr
の水和オキシ水酸化物を被覆した。このようにし
て得た磁性粉末を用いて前記参考例1と同様の方
法で磁気テープを作成した。 参考例 7 参考例6において、(NH42ZrO(CO32の代わ
りにTiCl4を用い、Ti濃度を4.1g/にした以外
は前記参考例1の場合と同様にして磁気テープを
作成した。 参考例 8 参考例6において、(NH42ZrO(CO32代わり
にNH4VO3を用い、V濃度を2.08g/にした以
外は前記参考例1の場合と同様にして磁気テープ
を作成した。 実施例1、比較例1および参考例1〜8で得ら
れた磁気テープについて角形比(Br/Bm)、配
向性(OR)を測定した結果を表−1に示す。
The present invention relates to magnetic recording media containing magnetic powders having improved dispersibility in various organic binders. In recent years, there has been a demand for higher performance in magnetic recording media, and along with this, magnetic powders with high coercive force and magnetic powders with high filling properties are required as magnetic materials. Magnetic powders such as γ-Fe 2 O 3 and cobalt-containing iron oxide, which are commonly used as recording elements in magnetic recording media, have hydrophilic surfaces, so they are used when mixing with various organic binders to prepare magnetic paints. However, it has the disadvantage that it has poor wettability to the binder, and due to its own magnetic property, particles tend to magnetically aggregate with each other, making it difficult to disperse them uniformly in the binder. As a countermeasure to this problem, a method of loosening the agglomerates using mechanical dispersion means (JP-A-50-22297, JP-A-55
-157216, Japanese Unexamined Patent Publication No. 56-10903) has been attempted.
However, this method does not provide a fundamental solution since aggregation begins when the mechanical dispersion operation is stopped. Furthermore, a method of coating the particle surface of magnetic powder with a surfactant or the like that is compatible with an organic binder before preparing magnetic paint (Japanese Patent Publication No. 53-19120;
37297, JP-A-53-141196, JP-A-54-82354, JP-A-54-85397) and a method of adding a surfactant as a dispersant during the preparation of magnetic paint (JP-A-55-1999).
151068, Japanese Unexamined Patent Publication No. 151069) has been attempted. As a method of coating the surface of particles with surfactant,
There are immersion treatments in aqueous and non-aqueous systems, and methods of spraying directly onto the powder, but in this case, the coated surfactant may be desorbed during kneading with the organic binder, resulting in a lack of sustained effect, or Even if the dispersibility of PVC resins has been improved, there are problems with resin selectivity, such as urethane resins being less effective. Furthermore, if a large amount of surfactant is added during the preparation of a magnetic coating material in order to improve the wetting of the magnetic powder in the organic binder, there are disadvantages such as decreased strength of the tape, bleeding, and powder falling off. As a result of various studies to improve these drawbacks, the inventors of the present invention found that the surface of the magnetic powder was coated with Cu, Ag, Al, Ti, Zr, Sn, V, Nb, Ta,
The present invention was completed based on the discovery that dispersibility in an organic binder during the preparation of a magnetic coating material can be improved by coating it with at least one of the hydroxides of Sb, Cr, Mo, W, and Ni. That is, the present invention provides iron oxide thread magnetic powder, the surface of which is uniformly coated with Al hydroxide in an amount exceeding 0.5 parts by weight and not more than 20 parts by weight per 100 parts by weight of iron oxide magnetic powder. A magnetic recording medium is provided on a substrate with a magnetic layer dispersed in a binding resin. Examples of the magnetic powder whose surface is coated with metal hydroxide according to the present invention include γ-Fe 2 O 3 , magnetite, a bertolide compound which is an intermediate oxide between γ-Fe 2 O 3 and magnetite, and the above magnetic powder. Examples include those containing Co. As the γ-Fe 2 O 3 , magnetite, or bertolide compound, those obtained by appropriately combining acicular hydrated iron oxide with operations such as dehydration, reduction, and reoxidation by conventional methods can be used. Regarding cobalt-containing magnetic iron oxide, for example,
37532, JP-A No. 48-44040, JP-A No. 54-13997, JP-A No. 54-106895, and JP-A No. 53-100197, magnetic iron oxide powder such as γ-Fe 2 O 3 is used as a nucleus crystal. Those coated with cobalt or a metal compound such as cobalt and iron, and dried or heat-treated, or for example,
49-4264 and JP-A No. 48-101599, a solid solution containing cobalt can be used. The term hydroxide here is a general term for hydrated hydroxide, hydrated oxide, or hydrated oxyhydroxide, which is an intermediate between these, and in a strict sense, the negative component is a hydroxyl group. It is not limited to certain compounds. Generally, the amount of hydroxide to be coated on the surface of magnetic powder is based on 100 parts by weight of magnetic powder.
The amount is more than 0.5 parts by weight and not more than 20 parts by weight, preferably more than 0.5 parts by weight and not more than 5 parts by weight.
If the amount of hydroxide exceeds 20 parts by weight, it is effective in making magnetic agglomeration less likely to occur and improving dispersibility, but since hydroxide is a non-magnetic substance, the coercive force of magnetic powder etc. This is undesirable because the magnetic properties deteriorate. The method for coating the surface of the magnetic powder with metal hydroxide is not particularly limited, but it is important that the metal hydroxide precipitates uniformly on the surface of the magnetic powder, and that it does not precipitate on areas other than the surface of the magnetic powder, causing magnetic The effectiveness decreases when mixed with powder. In other words, when processing by neutralizing metal salts with acid or alkali in a slurry of magnetic powder, or by hydrolyzing metal salts in a slurry, the slurry must be thoroughly stirred to ensure a good decomposition state of the magnetic powder. It is desirable to keep it. Further, it is effective to allow the neutralization reaction and hydrolysis reaction to proceed as gradually as possible in order to achieve uniform coating. For this purpose, the temperature of the slurry,
It is necessary to adjust the pH, concentration, and rate of addition of the metal salt solution and alkaline solution to the slurry as appropriate. The same thing can be said when coating is performed using a neutralization method or hydrolysis. The atmosphere during coating may be oxidizing, inert, or reducing.
The effects of the present invention are not particularly different depending on the difference in the metal valence of the hydroxide. The magnetic tape obtained using the magnetic powder according to the present invention has a higher squareness ratio (Br/Bm) and orientation (OR) than a magnetic tape obtained using the magnetic powder not coated with metal hydroxide. is improving. Furthermore, the viscosity of the magnetic paint using the magnetic powder according to the present invention is lower than that of the magnetic paint using the magnetic powder not coated with metal hydroxide. From these results, it can be seen that the magnetic powder according to the present invention has improved dispersibility in an organic binder. It is not necessarily clear why the dispersibility in an organic binder is improved when using the magnetic powder according to the present invention, but (1) coating with a metal hydroxide improves the dispersibility of the magnetic powder in an organic binder. (2) The affinity between the magnetic powder and the organic binder increases, improving wetting. (3) The metal hydroxide coated in the organic binder is less likely to separate from the magnetic powder.
It is assumed that the diversification effect is likely to persist. Next, examples of the present invention will be described. Example 1 Acicular γ-Fe 2 O 3 (coercive force Hc: 360 oersted,
Saturation magnetization: 73 emu/g, average major axis length approximately 0.4 μm, needle ratio approximately 10:1) Disperse approximately 200 g in water to make a slurry, and adjust the slurry concentration to γ-Fe 2 O 3 100 g/g. . Pour 500ml of this slurry into a four-necked flask, raise the temperature to 60°C while stirring, and
Aqueous solution of NaAlO 2 with Al concentration adjusted to 4.17g/
Drop 60 ml into the slurry at a rate of 2 ml/min for 30 minutes. Furthermore, 120 ml of 0.1N NaOH aqueous solution was added dropwise at a rate of 2 ml/min for 1 hour to neutralize to pH 7, and γ-
The surface of Fe 2 O 3 is uniformly coated with hydroxide in which NaAlO 2 is neutralized. After aging for 1 hour, filter and wash using a Buchner funnel. Dry at 100℃ for one day and night.
After coarsely crushing in a mortar, crush for 2 minutes in a crusher. Using the magnetic powder thus obtained, a magnetic paint was prepared with the following composition, and this paint was applied onto a polyester film, oriented at an orientation strength of 1000 Gauss, and dried to produce a magnetic tape. Magnetic powder 100 parts by weight PVC-vinyl acetate-vinyl alcohol copolymer
10.5 〃 Dioctyl phthalate 4 〃 Soybean lecithin 1.6 〃 Surfactant (special phosphate ester type nonionic anionic surfactant) 4 〃 Toluene 110 〃 Methyl ethyl ketone 100 〃 Comparative example 1 In Example 1, γ-Fe 2 O 3 100g/ The slurry thus prepared is immediately filtered through a Buchner funnel without being subjected to coating treatment. This magnetic powder was dried at 100° C. for a day and night, coarsely crushed in a mortar, and then crushed for 2 minutes in a crusher to prepare a magnetic tape in the same manner as in Example 1. Reference example 1 Acicular γ-Fe 2 O 3 (coercive force Hc: 360 oersted,
Saturation magnetization: 73 emu/g, average major axis length approximately 0.4 μm, needle ratio approximately 10:1) Disperse 200 g in approximately 2 parts water to make a slurry, and adjust the slurry concentration to 100 g/g of γ-Fe 2 O 3 . Pour 500ml of this slurry into a four-necked flask, raise the temperature to 60°C while stirring, and
60 ml of an aqueous solution of VOSO 4 .nH 2 O adjusted to a V concentration of 4.17 g/min is dropped into the slurry at a rate of 2 ml/min for 30 minutes. Furthermore, add 120ml of 0.1N NaOH aqueous solution
Neutralize to pH 7 by dropping at a rate of ml/min for 1 hour.
The surface of γ-Fe 2 O 3 is uniformly coated with hydroxide in which VOSO 4 ·nH 2 O has been neutralized. After aging for 1 hour, filter and wash using a Buchner funnel. Dry for one day and night at 100°C, coarsely crush in a mortar, and then crush for 2 minutes in a grinder. Using the thus obtained magnetic powder, a magnetic tape was prepared in the same manner as in Example 1 above. Reference Example 2 In Reference Example 1, the V concentration was set to 16.67 g/
A magnetic tape was prepared in the same manner as in Reference Example 1, except that the NaOH concentration was changed to 0.4N. Reference example 3 In reference example 1, instead of VOSO 4・nH 2 O
Na 2 WO 4・nH 2 O instead of NaOH aqueous solution
A magnetic tape was prepared in the same manner as in Reference Example 1, except that an aqueous HCl solution was used, the W concentration was 4.17 g/N, and the HCl concentration was 0.1N. Reference Example 4 In Reference Example 3, the W concentration was set to 16.67 g/
Reference example 1 above except that the HCl concentration was 0.4 normal
A magnetic tape was created in the same manner as in the case of . Reference Example 5 In Reference Example 1, instead of VOSO 4・nH 2 O, (NH 4 ) 6 Mo 7 O 24・nH 2 O, the Mo concentration was changed to 4.17 g/
using 0.1 N HNO 3 aqueous solution after adding the treatment solution.
A magnetic tape was prepared in the same manner as in Reference Example 1, except that the pH was adjusted to 2. Reference Example 6 Magnetic powder acicular γ- obtained in the same manner as Reference Example 1
500 ml of a slurry containing 100 g of Fe 2 O 3 is placed in a four-necked flask, and the temperature is raised to 60° C. while stirring. To this slurry, 60 ml of an aqueous solution containing (NH 4 ) 2 ZrO(CO 3 ) 2 with a Zr concentration of 4.17 g/min was added at a rate of 1 ml/min.
Drip for an hour. After stirring uniformly for 30 minutes, the temperature was raised to 90℃.
Zr was added to the surface of γ-Fe 2 O 3 by stirring for 1 hour.
of hydrated oxyhydroxide. A magnetic tape was prepared in the same manner as in Reference Example 1 using the thus obtained magnetic powder. Reference Example 7 In Reference Example 6, a magnetic tape was prepared in the same manner as in Reference Example 1, except that TiCl 4 was used instead of (NH 4 ) 2 ZrO (CO 3 ) 2 and the Ti concentration was 4.1 g/. Created. Reference Example 8 A magnetic tape was prepared in the same manner as in Reference Example 1, except that in Reference Example 6, NH 4 VO 3 was used instead of (NH 4 ) 2 ZrO (CO 3 ) 2 and the V concentration was 2.08 g/. It was created. Table 1 shows the results of measuring the squareness ratio (Br/Bm) and orientation (OR) of the magnetic tapes obtained in Example 1, Comparative Example 1, and Reference Examples 1 to 8.

【表】 表−1から明らかなように、本発明の磁気記録
媒体(実施例)や参考例で得られた磁気記録媒体
の角形比や配向性の値は、表面に被覆させる金属
元素の種類、被覆させる量、被覆させる方法によ
つて程度の差はあるものの、いずれも金属水酸化
物を被覆させない磁性粉末(比較例1)を用いた
場合と比べて向上している。このことから本発明
に係る磁性粉末は、有機バインダー中での分散性
が改善されていることがわかる。 次に、参考例および比較例1で得られた磁性塗
料について、E型粘度計(東京計器製コーンプレ
ート型)で粘度を測定した結果を表−2に示す。
[Table] As is clear from Table 1, the squareness ratio and orientation values of the magnetic recording media of the present invention (Example) and the magnetic recording media obtained in the Reference Examples are determined by the type of metal element coated on the surface. Although there are differences in degree depending on the amount of coating and the method of coating, both are improved compared to the case where magnetic powder not coated with metal hydroxide (Comparative Example 1) is used. This shows that the magnetic powder according to the present invention has improved dispersibility in the organic binder. Next, the viscosity of the magnetic paints obtained in Reference Example and Comparative Example 1 was measured using an E-type viscometer (cone plate type manufactured by Tokyo Keiki Co., Ltd.), and the results are shown in Table 2.

【表】 参考例 9 針状γ−Fe2O3(BET比表面積31m2/g、針状
比10:1)200gを2の水に分散させてスラリ
ーとし、非酸化性雰囲気にて硫酸コバルト及び硫
酸第一鉄の水溶液を添加、次いでNaOH水溶液
を滴下して、γ−Fe2O3粒子表面にコバルト及び
鉄を被着させた。被着量は、γ−Fe2O3中の鉄に
対してCo原子が5重量%、Fe原子として10重量
%であつた。この被着スラリーを濾過、水洗し、
この湿ケーキをオートクレーブ中に入れて、N2
置換、密閉した後、130℃で6時間水蒸気の存在
下で加熱処理した。このようにして得られたコバ
ルト含有磁性酸化鉄の湿ケーキ水に分散させて
150g/のスラリーとし、N2ガスを吹き込み、
60℃に加温した。このスラリーを攪拌下非酸化性
雰囲気にてNaOH水溶液と、SnCl2・nH2Oとを
PH8.5に保持しつつ、1時間で滴下し、その後引
き続き一時間攪拌して熟成し、粒子表面を均一に
SnCl2・nH2Oが中和された水酸化物をSnとして、
0.7重量%被覆処理した。次いで、濾過水洗し60
℃で8時間乾燥して磁性粉末を得た。 参考例 10 参考例9において、SnCl2・nH2O水溶液の代
わりにSbCl3の塩酸酸性水溶液を用い、これと
NaOH水溶液をPH7.5に保持しつつ滴下し、被覆
量をSbとして0.7重量%とした以外は、前記参考
例9と同様にして磁性粉末を得た。 参考例 11 参考例9において、SnCl2.nH2O水溶液の代わ
りにCuSO4・5H2Oの水溶液を用い、空気雰囲気
下Cuとして0.7重量%被覆した以外は、前記参考
例9と同様にして磁性粉末を得た。 参考例 12 参考例9において、SnCl2.nH2O水溶液の代わ
りにNiSO4・7H2Oの水溶液を用い、空気雰囲気
下Niとして0.7重量%被覆した以外は、前記参考
例9と同様にして磁性粉末を得た。 参考例 13 針状γ−Fe2O3(BET比表面積31m2/g、針状
比10:1)200gを2の水に分散させてスラリ
ーとし、非酸化性雰囲気にて硫酸コバルト及び硫
酸第一鉄の水溶液を添加、次いでNaOH水溶液
を滴下して、γ−Fe2O3粒子表面にコバルト及び
鉄を被着させた。被着量は、γ−Fe2O3中の鉄に
対してCo原子が5重量%、Fe原子として10重量
%であつた。この被着スラリーを濾過、水洗し、
この湿ケーキをリパルプし水に分散させて、150
g/のスラリーとし、N2ガスを吹き込み、60
℃に加温した。このスラリーを攪拌下非酸化性雰
囲気にてNaOH水溶液と、VOSO4・nH2OとをPH
7.5に保持しつつ、1時間で滴下し、その後引き
続き一時間攪拌して熟成し、粒子表面に均一に
VO(OH)2・nH2Oを被覆する。被覆量はコバル
ト含有磁性酸化鉄粉末に対してVとして0.8量%
である。熟成後、濾過水洗し、この湿ケーキを別
容器に入れた水と共に、オートクレーブ中に入れ
て、N2置換、密閉した後、130℃で6時間水蒸気
の存在下で加熱処理した。次いで60℃で8時間乾
燥して磁性粉末を得た。 参考例 14 参考例13と同様にして、γ−Fe2O3表面にコバ
ルトおよび鉄を被着した。この被着スラリーを濾
過水洗し、この湿ケーキをオートクレーブ中にて
参考例13と同様な方法により130℃で6時間水蒸
気の存在下で加熱処理した。このようにして得ら
れたコバルト含有磁性酸化鉄の湿ケーキを水に分
散させて150g/のスラリーとし、参考例13と
同様な方法により粒子表面に均一にVO(OH)2
nH2OをVとして、0.8重量%被覆処理した。次い
で、濾過水洗し60℃で8時間乾燥して磁性粉末を
得た。 参考例 15 参考例14において、VOSO4・nH2O水溶液の代
わりにNa2MoO4のアルカリ性水溶液を用い、こ
れと硫酸水溶液をPH8.5に保持しつつ空気雰囲気
下で滴下し、被覆量をMoとして0.7重量%とした
以外は、前記参考例14と同様にして磁性粉末を得
た。 参考例 16 参考例15において、NaMoO4のアルカリ性水
溶液の代わりにNaWO4のアルカリ性水溶液を用
いたほかは、前記参考例15と同様にして磁性粉末
を得た。 比較例 2 参考例13において、コバルト及び鉄を被着後濾
過水洗し、被覆処理に供する事なく、この湿ケー
キを別容器に入れた水と共に、オートクレーブ中
を入れ、参考例13と同様にして磁性粉末を得た。 前記参考例9〜16及び比較例2で得られた磁性
粉末について、通常の方法で飽和磁化(σS)を測
定した後、下記の配合割合に従つて、磁性塗料を
調製し、この塗料を通常の方法によりポリエステ
ルフイルム上に塗布し、配向した後乾燥して約
6μの磁性塗膜を有する磁気テープを作成した。 磁性粉 24重量部 ポリウレタン樹脂 5 〃 塩ビ−酢ビ共重合体 1.2 〃 分散剤 0.5 〃 混合溶剤 トルエン/MEK 69.3 〃 得られたそれぞれの磁気テープについて通常の
方法により角形比(Br/Bm)、配向性(OR)、
反転磁界分布(SFD)を測定した結果を表−3
に示した。
[Table] Reference example 9 Disperse 200 g of acicular γ-Fe 2 O 3 (BET specific surface area 31 m 2 /g, acicular ratio 10:1) in 2 water to make a slurry, and add cobalt sulfate in a non-oxidizing atmosphere. and an aqueous solution of ferrous sulfate, and then a NaOH aqueous solution was dropped to deposit cobalt and iron on the surfaces of the γ-Fe 2 O 3 particles. The deposited amount was 5% by weight of Co atoms and 10% by weight of Fe atoms based on iron in γ-Fe 2 O 3 . This adhering slurry is filtered, washed with water,
Place this wet cake in an autoclave and add N2
After replacement and sealing, heat treatment was performed at 130°C for 6 hours in the presence of steam. The cobalt-containing magnetic iron oxide thus obtained was dispersed in wet cake water.
Make 150g/slurry, blow N2 gas into it,
It was heated to 60°C. This slurry was mixed with NaOH aqueous solution and SnCl 2 .nH 2 O in a non-oxidizing atmosphere while stirring.
While maintaining the pH at 8.5, drop the mixture over 1 hour, then continue to stir for 1 hour to age the particles to make the particle surface uniform.
SnCl2nH2O is neutralized hydroxide as Sn,
A coating treatment of 0.7% by weight was carried out. Next, filter and wash with water for 60 minutes.
A magnetic powder was obtained by drying at ℃ for 8 hours. Reference Example 10 In Reference Example 9, a hydrochloric acid aqueous solution of SbCl 3 was used instead of the SnCl 2・nH 2 O aqueous solution, and this and
Magnetic powder was obtained in the same manner as in Reference Example 9, except that an aqueous NaOH solution was added dropwise while maintaining the pH at 7.5, and the coating amount was 0.7% by weight as Sb. Reference Example 11 The same procedure as Reference Example 9 was carried out, except that an aqueous solution of CuSO 4 .5H 2 O was used instead of an aqueous solution of SnCl 2 .nH 2 O, and 0.7% by weight of Cu was coated in an air atmosphere. A magnetic powder was obtained. Reference Example 12 The same procedure as Reference Example 9 was carried out, except that an aqueous solution of NiSO 4 .7H 2 O was used instead of an aqueous solution of SnCl 2 .nH 2 O, and 0.7% by weight of Ni was coated in an air atmosphere. A magnetic powder was obtained. Reference example 13 200 g of acicular γ-Fe 2 O 3 (BET specific surface area 31 m 2 /g, acicular ratio 10:1) was dispersed in 2 water to make a slurry, and cobalt sulfate and sulfuric acid were added in a non-oxidizing atmosphere. An aqueous solution of iron was added, and then an aqueous NaOH solution was dropped to deposit cobalt and iron on the surfaces of the γ-Fe 2 O 3 particles. The deposited amount was 5% by weight of Co atoms and 10% by weight of Fe atoms based on iron in γ-Fe 2 O 3 . This adhering slurry is filtered, washed with water,
This wet cake was repulped and dispersed in water, and 150
Make a slurry of 60 g/g/g and blow N2 gas into
Warmed to ℃. This slurry was mixed with NaOH aqueous solution and VOSO 4 · nH 2 O in a non-oxidizing atmosphere with stirring.
While maintaining the temperature at 7.5, it was added dropwise for 1 hour, and then stirred for 1 hour to mature, and the particles were evenly distributed on the surface of the particles.
Cover with VO(OH) 2 ·nH 2 O. The coating amount is 0.8% as V based on the cobalt-containing magnetic iron oxide powder.
It is. After aging, the cake was filtered and washed with water, and the wet cake was placed in an autoclave together with water in a separate container, replaced with N2 , sealed, and then heated at 130° C. for 6 hours in the presence of steam. Next, it was dried at 60°C for 8 hours to obtain magnetic powder. Reference Example 14 In the same manner as Reference Example 13, cobalt and iron were deposited on the γ-Fe 2 O 3 surface. The deposited slurry was filtered and washed with water, and the wet cake was heated in an autoclave in the same manner as in Reference Example 13 at 130° C. for 6 hours in the presence of steam. The cobalt-containing magnetic iron oxide wet cake thus obtained was dispersed in water to make a 150 g/slurry, and VO(OH) 2 .
The coating was carried out in an amount of 0.8% by weight using nH 2 O as V. Next, it was filtered, washed with water, and dried at 60°C for 8 hours to obtain a magnetic powder. Reference Example 15 In Reference Example 14, an alkaline aqueous solution of Na 2 MoO 4 was used instead of the VOSO 4 nH 2 O aqueous solution, and this and a sulfuric acid aqueous solution were added dropwise in an air atmosphere while maintaining the pH at 8.5 to determine the coating amount. Magnetic powder was obtained in the same manner as in Reference Example 14, except that the Mo content was 0.7% by weight. Reference Example 16 Magnetic powder was obtained in the same manner as in Reference Example 15, except that an alkaline aqueous solution of NaWO 4 was used instead of the alkaline aqueous solution of NaMoO 4 . Comparative Example 2 In Reference Example 13, after coating cobalt and iron, the cake was filtered and washed with water, and without being subjected to coating treatment, this wet cake was placed in an autoclave with water in a separate container, and the same procedure as in Reference Example 13 was carried out. A magnetic powder was obtained. After measuring the saturation magnetization (σ S ) of the magnetic powders obtained in Reference Examples 9 to 16 and Comparative Example 2 by a conventional method, a magnetic paint was prepared according to the following blending ratio, and this paint was It is coated on a polyester film using the usual method, oriented and then dried to approx.
A magnetic tape with a 6μ magnetic coating was prepared. Magnetic powder 24 parts by weight Polyurethane resin 5 PVC-vinyl acetate copolymer 1.2 Dispersant 0.5 Mixed solvent Toluene/MEK 69.3 Each obtained magnetic tape was tested for squareness ratio (Br/Bm) and orientation using a conventional method. gender (OR),
Table 3 shows the results of measuring switching magnetic field distribution (SFD).
It was shown to.

【表】 参考例 17 参考例13で得た磁性粉末を用い、実施例1の場
合と同様にして塩ビ−酢ビ−ビニルアルコール共
重合体を主成分とするバインダー組成の磁気テー
プを作成し、角形比(Br/Bm)、配向性(OR)
等を測定し、表−4に結果を示した。 比較例 3 比較例2で得た磁性粉末を用い、実施例1の場
合と同様にして塩ビ−酢ビ−ビニルアルコール共
重合体を主成分とするバインダー組成の磁気テー
プを作成し、角形比(Br/Bm)、配向性(OR)
等を測定し、表−4に結果を示した。
[Table] Reference Example 17 Using the magnetic powder obtained in Reference Example 13, a magnetic tape with a binder composition mainly composed of vinyl chloride-vinyl acetate-vinyl alcohol copolymer was prepared in the same manner as in Example 1. Squareness ratio (Br/Bm), orientation (OR)
etc., and the results are shown in Table 4. Comparative Example 3 Using the magnetic powder obtained in Comparative Example 2, a magnetic tape having a binder composition mainly composed of vinyl chloride-vinyl acetate-vinyl alcohol copolymer was prepared in the same manner as in Example 1, and the squareness ratio ( Br/Bm), orientation (OR)
etc., and the results are shown in Table 4.

【表】 表−3から明らかなように、コバルト含有酸化
鉄を用いた場合においても、表面に被覆させる金
属の種類などによつて程度の差はあるものの、金
属水酸化物を被覆させない場合(比較例)と比
べ、Br/BmやOR等の数値が向上している事が
わかる。 なお、表−4は、参考としてバインダー組成を
変えた場合の磁気特性を示した。
[Table] As is clear from Table 3, even when cobalt-containing iron oxide is used, there are differences in degree depending on the type of metal to be coated on the surface, but when metal hydroxide is not coated ( It can be seen that the values of Br/Bm, OR, etc. are improved compared to the comparative example). For reference, Table 4 shows the magnetic properties when the binder composition was changed.

Claims (1)

【特許請求の範囲】[Claims] その表面に、Alの水酸化物が酸化鉄系磁性粉
末100重量部に対して0.5重量部を超え20重量部以
下の量で均一に被覆されている酸化鉄系磁性粉末
を、結合樹脂中に分散させた磁性層を基体上に設
けてなる磁気記録媒体。
Iron oxide magnetic powder, whose surface is uniformly coated with Al hydroxide in an amount exceeding 0.5 parts by weight and not more than 20 parts by weight per 100 parts by weight of iron oxide magnetic powder, is placed in a binding resin. A magnetic recording medium in which a dispersed magnetic layer is provided on a substrate.
JP63252282A 1988-10-06 1988-10-06 Magnetic powder having improved dispersibility Granted JPH01125805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63252282A JPH01125805A (en) 1988-10-06 1988-10-06 Magnetic powder having improved dispersibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63252282A JPH01125805A (en) 1988-10-06 1988-10-06 Magnetic powder having improved dispersibility

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56159619A Division JPS5860506A (en) 1981-10-07 1981-10-07 Magnetic powder with improved dispersibility

Publications (2)

Publication Number Publication Date
JPH01125805A JPH01125805A (en) 1989-05-18
JPH0480522B2 true JPH0480522B2 (en) 1992-12-18

Family

ID=17235081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63252282A Granted JPH01125805A (en) 1988-10-06 1988-10-06 Magnetic powder having improved dispersibility

Country Status (1)

Country Link
JP (1) JPH01125805A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818217B2 (en) * 1989-09-14 1998-10-30 コニカ株式会社 Magnetic recording media
US6258476B1 (en) * 1999-09-02 2001-07-10 International Fuel Cells, Llc Porous carbon body with increased wettability by water
KR20030080346A (en) * 2002-04-08 2003-10-17 주식회사 삼우테크놀로지 A Component Of Electromagnetic Wave Absorber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819733A (en) * 1981-07-28 1983-02-04 Toshiba Corp Magnetic recording medium and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819733A (en) * 1981-07-28 1983-02-04 Toshiba Corp Magnetic recording medium and its manufacture

Also Published As

Publication number Publication date
JPH01125805A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US4778734A (en) Barium ferrite magnetic powder and magnetic recording medium containing the same
JPS6332242B2 (en)
US4851292A (en) Plate-like barium ferrite particles suitable for use in magnetic recording and process for producing the same
JPS5856232A (en) Magnetic recording medium
JP2918619B2 (en) Method for producing metal magnetic powder and coating film for magnetic recording medium
JPH0480522B2 (en)
JPH033361B2 (en)
JPS6149251B2 (en)
JPS6250889B2 (en)
JPS6331085B2 (en)
JPH037121B2 (en)
JP2906075B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPS5854487B2 (en) Method for producing acicular magnetic iron oxide particle powder for magnetic recording materials
JPS63226008A (en) Magnetic powder with improved dispersibility
JPH0230563B2 (en)
JPH0755829B2 (en) Magnetic particle powder and method for producing the same
JPH0380725B2 (en)
JP3417981B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH04184903A (en) Manufacture of magnetic particle power for magnetic recording
JPH0266902A (en) High coercive force platelike magnetoplumbite type ferrite particle powder and manufacture thereof
JPH0157482B2 (en)
JPH0425687B2 (en)
JPS6331086B2 (en)
JPS61154013A (en) Manufacture of needle iron fine particle for magnetic recording
JPH01235211A (en) Ferromagnetic powder and magnetic recording medium using it