JPH047897Y2 - - Google Patents

Info

Publication number
JPH047897Y2
JPH047897Y2 JP1987149726U JP14972687U JPH047897Y2 JP H047897 Y2 JPH047897 Y2 JP H047897Y2 JP 1987149726 U JP1987149726 U JP 1987149726U JP 14972687 U JP14972687 U JP 14972687U JP H047897 Y2 JPH047897 Y2 JP H047897Y2
Authority
JP
Japan
Prior art keywords
metal layer
base material
abrasive
abrasive grains
abrasive sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987149726U
Other languages
Japanese (ja)
Other versions
JPS6452658U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987149726U priority Critical patent/JPH047897Y2/ja
Publication of JPS6452658U publication Critical patent/JPS6452658U/ja
Application granted granted Critical
Publication of JPH047897Y2 publication Critical patent/JPH047897Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は、エンドレスのベルトや回転体に貼着
して用いられる研摩シートに関するものである。 〔従来の技術〕 セラミツクス、ガラス、宝石などを研摩する研
摩シートは、従来、布、ポリエステルフイルムな
どの基材に、ダイヤモンドなどの砥粒を樹脂系接
着剤により接着固化したもの、或いは導電性金属
の基材表面に電気メツキ法により砥粒を固着した
ものなどが知られている。しかしながら、この従
来の研摩シートは、前者においては、砥粒密度が
不均一である上、砥粒の保持力も弱く耐久性に劣
る欠点があり、また後者においては、基材が金属
であるため可撓性に乏しく、かつ蓄熱して研摩焼
けを起こす欠点があつた。 そこで、これらの問題点を解決する手段とし
て、本出願人は先に、非導電性フイルム基材に、
導電性の金属層を形成し、該金属層の表面に所定
のマスキング剤によりパターン印刷を施したの
ち、超硬質砥粒を混入した所定メツキ浴に浸漬し
て、前記金属層の非マスキング部に砥粒の共析を
行い、その後前記パターン印刷部のマスキング剤
及び金属層を除去する研摩シートの製造方法を提
案し、一応所期の目的を達成した。 〔考案が解決しようとする問題点〕 しかし、この改良された研摩シートにおいても
なお、実用上、次のような問題点が残されている
ことが判明した。すなわち、上記の製造方法によ
り得られる研摩シートは、第3図及び第4図に示
す如く、非導電性フイルム基材1の表面に形成さ
せた導電性の金属層2及び該金属層の表面に共析
させた砥粒4により構成されるドツト状の砥石群
6が、千鳥状に分布形成されているため、研摩の
方向によつては上記の砥石群6が被研摩材にまつ
たく当たらない部分、いわゆる摩り残しを生ずる
欠点があつた。 〔問題点を解決するための手段〕 本考案は上記の問題点を解決するためになされ
たもので、その具体的手段として、非導電性フイ
ルム基材と、該基材の表面にパターン形成させた
ドツト状の導電性金属層及び該金属層の表面に共
析させた砥粒により構成される砥石群とからな
り、上記砥石群を、中心より外側に向つて順次渦
巻き状となるように、不連続的に分布形成した研
摩シートと提案するものである。 〔作用〕 斯かる構成の研摩シートにおいては、ドツト状
の砥石群が、中心より外側に向つて渦巻き状とな
るように分布しているので、研摩方向がいずれに
向いても、上記砥石群が殆んど被研摩材に当た
り、あるいは掠めることとなる。 〔実施例〕 以下に本考案の実施例を図面に基づいて説明す
る。第1図は本考案に係る研摩シートの砥石群の
分布形成パターンを示す正面図であり、第2図A
乃至Eはこの研摩シートの製造方法を説明するた
めの各工程における要部断面図である。 第2図Aにおいて、まず非導電性で、可撓性、
柔軟性、耐熱性を備え、引張強度も大きい、例え
ばポリイミド、ポリアミド、ポリエステル等のフ
イルム基材1に、メツキ、蒸着、接着或いはコー
テイング等の手段により、例えば銅などの導電性
金属層2を形成する。 次に同図Bに示すように、導電性金属層2の表
面に、パターン印刷3を施し、所定パターンに分
布形成した各ドツトの部分を除いて、マスキング
剤により上記金属層2をマスクする。この場合、
上記金属層2に分布形成されたドツト・パターン
は、第1図に示すように、中心より外側に向つて
順次渦巻き状となつていることが、本考案の特徴
である。 フイルム基材1に導電性金属層2を介してパタ
ーン印刷が施された後、該フイルム基材1は、砥
粒を含有するメツキ液が満たされた浴に浸漬さ
れ、所定の電流密度で所定時間電流を流し、電気
メツキが行われる。メツキ浴は、ニツケル、クロ
ム、銅、亜鉛等の金属メツキ液と、アニオン系又
はカチオン系の界面活性剤に所定量の砥粒を分散
させた分散液との混合溶液とからなる。配合され
る砥粒としては、ダイヤモンド、アルミナ、窒化
ボロン、立方晶形窒化ボロン(CBN)、チタンカ
ーバイド(TiC)、カーボランダム(SiC)等の超
硬質砥粒から適宜選択して用いられる。上記電気
メツキにより、第2図Cに示すように、マスキン
グ処理を施していない導電性金属層2の表面にメ
ツキ層5が電着され、砥粒4が共析する。メツキ
層5のメツキ処理は、砥粒4が上記金属層2の表
面に完全に保持固定され得る所定のメツキ厚さに
なるまで繰り返し行われる。 導電性金属層2の表面に砥粒4を共析させた
後、マスキング剤3を剥離して、同図Dのように
下地金属層を露出させ、その後この露出した金属
部分をエツチング等の手段により除去すると、同
図Eに示す如く、導電性金属層2と金属メツキ層
5と、共析した砥粒4とにより構成されるドツト
状の砥石群6が、フイルム基材1上に渦巻き状パ
ターンで不連続的に分布形成された研摩シートS
が得られる。そして、この単位研摩シートSは、
前後左右に多数密接配置して研摩シートを構成す
る。 上記の研摩シートは、所望の形状に、例えば円
形に切り抜いて、電動研摩器等の回転円盤台に貼
着固定したり、また帯状に切断して、研摩用基材
に固着し両端を接続したエンドレスベルトとして
使用する。 前述の如く、本考案の研摩シートは、非導電性
フイルム基材1と、該基材の表面に形成したドツ
ト状の砥石群6とからなり、上記砥石群6を、中
心より外側に向つて順次渦巻き状となるように分
布形成したので、研摩方向がいずれであつても、
砥石群6が確実に被研摩面を捕らえ、摩り残しを
極力減少せしめ得る。下表は、上記の砥石群を渦
巻き分布としたことによる研摩効率を数値で表わ
したものである。フイルム基材1の所定の座標位
置に、砥石(外径1.0mm)を第1図の渦巻き状パ
ターンとなるように68個配設する。そして、中心
を通る水平方向の一側を測定起点(No.1)とし、
反時計廻りに1.8°異なつた方向を第2測定点(No.
2)、以下同様に方向を異ならせて上記水平方向
の他側を測定終点(No.100)と定め、各方向にお
いて研摩した場合、砥石群が被研摩面を完全に捕
らえているときの評価率を100%、被研摩面にま
つたく当たらなかつたときのそれを0%として研
摩効率を評価した。
[Industrial Application Field] The present invention relates to an abrasive sheet that is used by being attached to an endless belt or a rotating body. [Prior Art] Polishing sheets for polishing ceramics, glass, jewelry, etc. have conventionally been made by adhering and solidifying abrasive grains such as diamond to a base material such as cloth or polyester film, or by using conductive metal. It is known that abrasive grains are fixed to the surface of a base material by electroplating. However, in the former case, this conventional abrasive sheet has the drawbacks of uneven abrasive grain density, weak abrasive grain holding power, and poor durability, and in the latter case, because the base material is metal, It had the drawbacks of poor flexibility and heat accumulation, which caused polishing burns. Therefore, as a means to solve these problems, the present applicant first applied a method to a non-conductive film base material.
After forming a conductive metal layer and printing a pattern on the surface of the metal layer using a predetermined masking agent, the non-masking portions of the metal layer are immersed in a predetermined plating bath containing ultra-hard abrasive grains. We proposed a method for manufacturing an abrasive sheet in which abrasive grains are eutectoided and then the masking agent and metal layer in the pattern-printed area are removed, and we have achieved the intended purpose. [Problems to be solved by the invention] However, it has been found that even with this improved abrasive sheet, the following problems still remain in practical use. That is, as shown in FIGS. 3 and 4, the abrasive sheet obtained by the above manufacturing method includes a conductive metal layer 2 formed on the surface of a non-conductive film base material 1 and a conductive metal layer 2 formed on the surface of the metal layer. The dot-shaped grinding wheels 6 made up of eutectoid abrasive grains 4 are distributed in a staggered manner, so depending on the polishing direction, the grinding wheels 6 may not hit the material to be polished all at once. There was a drawback that some parts were left unfinished. [Means for solving the problems] The present invention has been made to solve the above problems, and as a specific means, it uses a non-conductive film base material and a pattern formed on the surface of the base material. A dot-shaped conductive metal layer and a grinding wheel group composed of abrasive grains eutectoided on the surface of the metal layer, and the grinding wheel group is arranged in a spiral shape from the center outward. This is proposed as a discontinuously distributed abrasive sheet. [Operation] In the abrasive sheet having such a structure, the dot-shaped groups of grinding wheels are distributed in a spiral shape outward from the center. Most of the time it hits or scrapes the material to be polished. [Examples] Examples of the present invention will be described below based on the drawings. FIG. 1 is a front view showing the distribution formation pattern of the grindstone group of the abrasive sheet according to the present invention, and FIG.
9 to E are sectional views of main parts in each step for explaining the manufacturing method of this abrasive sheet. In FIG. 2A, first, non-conductive, flexible,
A conductive metal layer 2 of, for example, copper is formed on a film base material 1 of polyimide, polyamide, polyester, etc., which has flexibility, heat resistance, and high tensile strength, by means of plating, vapor deposition, adhesion, coating, etc. do. Next, as shown in Figure B, pattern printing 3 is applied to the surface of the conductive metal layer 2, and the metal layer 2 is masked with a masking agent except for the dots distributed in a predetermined pattern. in this case,
The feature of the present invention is that the dot pattern distributed on the metal layer 2 is sequentially spiral from the center outward, as shown in FIG. After pattern printing is applied to the film base material 1 via the conductive metal layer 2, the film base material 1 is immersed in a bath filled with a plating solution containing abrasive grains, and is heated at a predetermined current density. Electroplating is performed by applying a current for a certain period of time. The plating bath consists of a mixed solution of a metal plating solution such as nickel, chromium, copper, zinc, etc., and a dispersion liquid in which a predetermined amount of abrasive grains are dispersed in an anionic or cationic surfactant. The abrasive grains to be mixed are appropriately selected from ultra-hard abrasive grains such as diamond, alumina, boron nitride, cubic boron nitride (CBN), titanium carbide (TiC), and carborundum (SiC). By the electroplating, the plating layer 5 is electrodeposited on the surface of the conductive metal layer 2 which has not been subjected to masking treatment, and the abrasive grains 4 are eutectoid, as shown in FIG. 2C. The plating process of the plating layer 5 is repeated until a predetermined plating thickness is reached that allows the abrasive grains 4 to be completely held and fixed on the surface of the metal layer 2. After the abrasive grains 4 are eutectoided on the surface of the conductive metal layer 2, the masking agent 3 is peeled off to expose the underlying metal layer as shown in FIG. As shown in FIG. Abrasive sheet S discontinuously distributed in a pattern
is obtained. This unit abrasive sheet S is
A large number of them are closely arranged in front, back, left and right to form an abrasive sheet. The above-mentioned abrasive sheet can be cut out into a desired shape, such as a circle, and fixed by pasting it on a rotating disc stand such as an electric sander, or cut into strips, fixed to a polishing base material, and connecting both ends. Use as an endless belt. As mentioned above, the abrasive sheet of the present invention is composed of a non-conductive film base material 1 and a dot-shaped grinding wheel group 6 formed on the surface of the base material, and the grinding wheel group 6 is rotated outward from the center. Since the distribution is formed in a sequential spiral shape, no matter which direction the polishing is carried out,
The grinding wheel group 6 can reliably grip the surface to be polished, and the amount of unpolished surfaces can be reduced as much as possible. The table below numerically represents the polishing efficiency obtained by using the whirlpool distribution of the above-mentioned grinding wheels. At predetermined coordinate positions on the film base material 1, 68 grindstones (outer diameter 1.0 mm) are arranged in a spiral pattern as shown in FIG. Then, one side of the horizontal direction passing through the center is set as the measurement starting point (No. 1),
The second measurement point (No.
2) Similarly, when the other side of the above horizontal direction is set as the measurement end point (No. 100) in different directions and polishing is performed in each direction, the evaluation is performed when the grinding wheels completely capture the surface to be polished. The polishing efficiency was evaluated by setting the rate at 100% and the time when the polishing surface did not hit the surface to be polished as 0%.

【表】【table】

【表】【table】

【表】【table】

〔考案の効果〕[Effect of idea]

上記の構成からなる本考案によれば、フイルム
基材に、ドツト状の砥石群を、中心より外側に向
つて順次渦巻き状となるように分布形成したの
で、研摩方向がいずれに向いても、砥石群が確実
に被研摩面を捕らえ、従来の研摩シートにみられ
た摩り残しを極力減少することができ、また、第
1図に示す単位研摩シートを、前後左右に多数密
接配置して研摩シートを構成する場合、スペー
ス・フアクタに優る効果がある。 また、本考案の研摩シートは、非導電性フイル
ム基材と、該基材の表面にパターン形成させたド
ツト状の導電性金属層及び該金属の表面に共析さ
せた砥粒により構成される砥石群とからなるの
で、可撓性、柔軟性に優れ、かつ砥石群のドツ
ト・パターン以外の部分のフイルム基材が空気に
触れることから、シートの蓄熱が防止され、研削
焼けによる研摩効率の低下及び基材からの砥粒の
脱落を防止でき、耐久性に優る効果がある。
According to the present invention having the above configuration, the dot-shaped grinding wheels are distributed on the film base material in a spiral pattern from the center outward, so that no matter which direction the polishing direction is directed, The group of grinding wheels reliably grips the surface to be polished, minimizing the amount of residual wear seen with conventional abrasive sheets. In addition, a large number of unit abrasive sheets shown in Figure 1 are arranged closely in the front, back, left and right for polishing. When constructing a sheet, there is an effect over the space factor. The abrasive sheet of the present invention is composed of a non-conductive film base material, a dot-shaped conductive metal layer patterned on the surface of the base material, and abrasive grains eutectoided on the surface of the metal. Because it consists of a group of grinding wheels, it has excellent flexibility and pliability, and the part of the film base other than the dot pattern of the group of grinding wheels is exposed to air, which prevents heat accumulation in the sheet and reduces polishing efficiency due to grinding burn. It is possible to prevent the abrasive grains from deteriorating and falling off from the base material, and has the effect of improving durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る研摩シートの砥石群の分
布形成パターンの実施例を示す正面図、第2図A
乃至Eはこの研摩シートの製造方法を説明するた
めの各工程における要部断面図である。第3図及
び第4図は、従来の研摩シートの砥石群の分布形
成パターンを示す正面図及び断面図である。 1……非導電性フイルム基材、2……導電性金
属層、3……パターン印刷、4……砥粒、5……
メツキ層、6……砥石群。
FIG. 1 is a front view showing an example of the distribution formation pattern of the grindstone group of the abrasive sheet according to the present invention, and FIG.
9 to E are cross-sectional views of main parts in each step for explaining the manufacturing method of this abrasive sheet. FIG. 3 and FIG. 4 are a front view and a cross-sectional view showing the distribution formation pattern of grindstone groups of a conventional abrasive sheet. DESCRIPTION OF SYMBOLS 1... Non-conductive film base material, 2... Conductive metal layer, 3... Pattern printing, 4... Abrasive grain, 5...
Metsuki layer, 6... Grindstone group.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 非導電性フイルム基材と、該基材の表面にパタ
ーン形成させたドツト状の導電性金属層及び該金
属層の表面に共析させた砥粒により構成される砥
石群とからなり、上記砥石群を、中心より外側に
向つて順次渦巻き状となるように、不連続的に分
布形成したことを特徴とする研摩シート。
The above-mentioned grinding wheel consists of a non-conductive film base material, a dot-shaped conductive metal layer patterned on the surface of the base material, and a grinding wheel group composed of abrasive grains eutectoided on the surface of the metal layer. An abrasive sheet characterized in that the groups are discontinuously distributed in a spiral shape from the center outward.
JP1987149726U 1987-09-30 1987-09-30 Expired JPH047897Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987149726U JPH047897Y2 (en) 1987-09-30 1987-09-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987149726U JPH047897Y2 (en) 1987-09-30 1987-09-30

Publications (2)

Publication Number Publication Date
JPS6452658U JPS6452658U (en) 1989-03-31
JPH047897Y2 true JPH047897Y2 (en) 1992-02-28

Family

ID=31422221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987149726U Expired JPH047897Y2 (en) 1987-09-30 1987-09-30

Country Status (1)

Country Link
JP (1) JPH047897Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193269A (en) * 1996-12-27 1998-07-28 Asahi Diamond Ind Co Ltd Electrodeposition tool and manufacture therefor
JP3086670B2 (en) * 1997-09-12 2000-09-11 大阪ダイヤモンド工業株式会社 Super abrasive whetstone
KR100908273B1 (en) * 2007-09-20 2009-07-20 새솔다이아몬드공업 주식회사 Method of Making Diamond Grinding Tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182753A (en) * 1985-02-07 1986-08-15 Canon Inc Polishing plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186163U (en) * 1984-05-18 1985-12-10 株式会社 エフエスケ− flexible abrasive sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182753A (en) * 1985-02-07 1986-08-15 Canon Inc Polishing plate

Also Published As

Publication number Publication date
JPS6452658U (en) 1989-03-31

Similar Documents

Publication Publication Date Title
US2820746A (en) Method of making an abrasive tool
JP3016588B2 (en) Composite material
US5250084A (en) Abrasive tools and process of manufacture
US4047902A (en) Metal-plated abrasive product and method of manufacturing the product
EP0546732B1 (en) Abrasive articles incorporating abrasive elements comprising abrasive particles partially embedded in a metal binder
US3517464A (en) Method of making abrasive tools by electro-deposition
JP3387851B2 (en) Grinding wheel and method of manufacturing the same
JPH01289672A (en) Grinding sheet having separately positioned abrasive grain
US5976001A (en) Interrupted cut abrasive tool
JPH047897Y2 (en)
CN109290970B (en) Preparation method of electroplated diamond abrasive belt with mixed particle size
KR880010873A (en) Electrodeposition whetstone
JPS6150773A (en) Diamond endless belt
JPH0771788B2 (en) Whetstone
JPS58100689A (en) Manufacture of electrodeposited grindstone
JPH0771789B2 (en) Whetstone
JPH0673818B2 (en) Method for manufacturing thin blade rotary whetstone for cutting
JP3086670B2 (en) Super abrasive whetstone
JPS6258872B2 (en)
JP3281563B2 (en) Vitrified bond tool and manufacturing method thereof
JP3260252B2 (en) Rotary dresser
JPS63221978A (en) Electrodeposited grindstone
JPH046499B2 (en)
JPS6035579Y2 (en) spiral polishing plate
JPS6067060A (en) Formation of decoration grinding pattern onto stainless steel plate