JPH0476483B2 - - Google Patents

Info

Publication number
JPH0476483B2
JPH0476483B2 JP60208328A JP20832885A JPH0476483B2 JP H0476483 B2 JPH0476483 B2 JP H0476483B2 JP 60208328 A JP60208328 A JP 60208328A JP 20832885 A JP20832885 A JP 20832885A JP H0476483 B2 JPH0476483 B2 JP H0476483B2
Authority
JP
Japan
Prior art keywords
magnetic core
magnetic
heat treatment
temperature
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60208328A
Other languages
Japanese (ja)
Other versions
JPS6267802A (en
Inventor
Katsuto Yoshizawa
Susumu Nakajima
Kyotaka Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60208328A priority Critical patent/JPS6267802A/en
Publication of JPS6267802A publication Critical patent/JPS6267802A/en
Priority to US07/085,405 priority patent/US4769091A/en
Publication of JPH0476483B2 publication Critical patent/JPH0476483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、スイツチング電源等に用いられてい
る可飽和リアクトル等に使用される経時変化が小
さく、特に高周波の制御磁化特性に優れた制御用
アモルフアス磁心の製造方法に関するものであ
る。 従来の技術 従来、制御用磁心としては50%Niパーマロイ
や80%Niパーマロイ巻磁心が主に使用されてい
たが、近年、高周波磁気特性に優れたアモルフア
ス巻磁心が望まれている。 制御用磁心に適したアモルフアス磁心として
は、たとえば特公昭60−19125に開示されている
(Fe−Ni−Co)90〜70−(Si、B、P、C)30〜10材、
(Feの含有量が3〜13%)や特公昭58−1183に開
示されているFe−Ni0.1〜40Si3〜16B5〜24材料等が知
られている。これらの材料の熱処理は、磁場中冷
却熱処理や急冷(空冷)熱処理等が行なわれてお
り、冷却途中で温度を一定に保持し、再び冷却す
るような多段の熱処理は行なわれていなかつた。 発明が解決しようとする問題点 前記従来の材料を使用し、冷却中に温度を一定
に保持せず1段階に熱処理して製造した磁心は、
制御用磁心として重要な特性である制御磁化特性
が高周波、特に50kHz以上で十分でない。すなわ
ち50kHz以上の高周波で駆動しているスイツチン
グ電源用可飽和リアクトル等に使用した場合、コ
アゲインが十分でなく、さらに温度上昇が激しい
という問題点を有する。このためリセツト電流の
増加や信頼性が低下するという問題点があつた。 そこで本発明は、材料および熱処理方法を各種
試験することにより、高周波の制御磁化特性に優
れたアモルフアス磁心の製造方法を提供すること
を目的とする。 問題点を解決するための手段 本発明は片ロール法等の液体急冷法により作成
した組成式:(Co1-a-b-cFeaMnbMoc100-x-ySixBy
で表わされ、 0≦a≦0.05、0.03≦b≦0.08、0.01≦c≦
0.04、0.04≦b+c≦0.10、 13≦x≦16、7.5≦Y≦9.5(at%) の関係を有する組成のアモルフアス合金からなる
磁心素材をキユーリ温度以上で保持後、磁路方向
に0.10e以上の交流あるいは直流の磁界を印加し
ながら、ステツプ状に温度を150℃以下にまで下
げ、多段熱処理を行ない制御磁化特性に優れた
Co基アモルフアス磁心を製造するものである。 本発明においてMnおよびMoは必須の元素で
あり、制御磁化特性および経時変化改善に大きな
硬化を有する。この硬化は磁心をキユリー温度以
上で保持後、磁路方向に0.10e以上の交流あるい
は直流の磁界を印加しながら、ステツプ状に温度
を150℃以下まで下げ、大段熱処理を行なつた場
合に最も顕著となる。また磁界の強さは、少なく
とも0.10e以上である必要があるが、これは磁界
が0.10e未満の場合に制御磁化特性改善の効果が
小さいためである。 ここで上記手段の熱処理を従来の熱処理と比較
して説明する。第1図は本発明による制御磁化特
性に優れたアモルフアス磁心の熱処理パターン(a)
と、従来の熱処理パターン(b)、(c)を比較した図面
である。 本発明による熱処理パターンはまず磁心をキユ
リー温度以上に保持し、次に磁路方向に磁場をか
けながら冷却し、キユリー温度以下になつた時点
からステツプ状に温度を下げていくパターンであ
る。 磁界はキユリー温度以上の温度であればどの時
点から印加しても良く、ステツプ状に温度を下げ
始めるのはキユリー温度以上からでも同様の効果
が得られ、本発明とは一とみなせる。 (b)はキユリー温度以上の温度で保持後急冷する
従来の熱処理パターンであり、角形性が悪く制御
磁化特性が劣るだけでなく経時変化が大きいため
実用的でない。 (c)は磁場をかけながらある温度で保持後一定速
度で冷却する従来のパターンであり、直流B−H
カーブの角形性は上昇し、直流のB−Hカーブの
保磁力は小さくなるが、高周波の制御磁化特性が
悪く好ましくない。 次に本発明の制御用磁心を評価するのに適した
測定回路を第2図により説明する。なお第3図は
任意の直流の制御電流Icが制御回路に流れている
場合の磁心の動作模式図である。第2図に示すよ
うに、試料の磁心にNL、Nc、Nvの3種類の巻
線を設ける。NLは磁気増幅器の出力巻線に相当
し、抵抗Rおよび、整流器Dを介し、周波数f
(周期Tp)の交流電源Egに接続されている。Eg
の値はゲート半周期Tgにおいて印加電圧の正弦
波電圧の90°以内の位相角で磁心が飽和に達する
ように大きな値に設定する。 Ncは制御巻線で、制御回路よりみた磁心イン
ダクタンスに比較し、十分大きな値のインダクタ
ンスLcを通して直電源Ecに接続し、拘束磁化条
件の直流起磁力を与えている。Nvは制御入力に
対応するリセツト磁束量Δφcm測定用巻線で、平
均値整流方式の交流電圧径Vに接続されている。
第4図に本測定回路により測定して得られる制御
磁化曲線の模式図を示す。 Hrmを逆数でわしβ0とおくとβ0=1/Hrm制
御用磁心としてはβ0大(Hr小)のほど制御電流
小となり特性が良いことになる。一方磁心の磁化
特性の角形の程度を示すパラメータをα0と置く。
α0=1−ΔBd/ΔBm 制御用磁心としてはα0大(ΔBd/ΔBm小)の
ほど制御不能磁束密度が小さく特性が良いことに
なる。 α0とβ0の積をGoで表わし、specific core gain
と呼ぶがGo=α0・β0 が大きいほど総合的にみて制御用磁心としてすぐ
れていると判断できる。 第4図においてゲート磁界の最大値 Hm=Nl・iL(max)/le ……(1) le;試料の平均磁路長 に対応する磁束密度の最大値Bmと制御磁界 Hrm=Nc・Ic/le ……(2) によつて決まる磁束密度のBcとの差の磁束密度
量をΔBcmとし、周期とTpとすれば、Nv回路の
磁束電圧計Vの読みは Ev∝f・Nv・A・Bcm ……(3) A;磁心の有効断面積 実際の制御用磁心においては磁界Hが正の領域
の特性、Hm−ΔBd特性と、磁界Hが負の領域の
特性、Hr−ΔB特性を把握することが必要であ
る。 ΔBd=Bm−Br ……(4) であり Ev∝f・Nv・A・Bd ……(5) である。 一方 ΔB=Bcm−ΔBd ……(6) である。 制御用磁心としては第4図に示す第1象限の曲
線が下側にある方がよく、また第2象限の曲線が
右側にありかつ傾斜が急なものが良い。 実施例 実施例 1 MnとMoとを含む6種類のCo基アモルフアス
磁心をキユリー温度以上に保持した後、磁路方向
に10eの交流の電界を印加しながら冷却し、キユ
リー温度以下から、2段階のステツプ状に温度を
150℃以下まで熱処理した。このようにして製造
した磁心の50kHzのspecific core gain Goを第1
表に示した。なお比較のため、従来の材料を使用
した磁心を1段階に熱処理し、その従来例のGo
を示した。 本発明のCo基アモルフアス合金中のSiは、合
金の鉄損を低減するのに効果があるが、過多に含
有されると合金のキユリー温度(Tc)を下げ、
角形比(Br/Bs)を著しく低下させる。以上の
様なことから、Si含有量は合金に望ましい特性を
付与するために13〜16原子%が望ましい。またB
含有量については7.5原子%より少ないと合金を
アモルフアス状態にすることがむずかしく、逆に
9.5原子%より多いと飽和磁束密度(Bs)の低下
をもたらすので、7.5〜9.5原子%が望ましくこの
範囲内で実施した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing an amorphous magnetic core for control use, which is used in saturable reactors used in switching power supplies, etc., and has small changes over time and has excellent control magnetization characteristics, especially at high frequencies. . Conventional Technology Conventionally, 50% Ni permalloy or 80% Ni permalloy wound cores have been mainly used as control magnetic cores, but in recent years, amorphous wound magnetic cores with excellent high frequency magnetic properties have been desired. Examples of amorphous magnetic cores suitable for control magnetic cores include (Fe-Ni-Co) 90-70 - (Si, B, P, C) 30-10 materials disclosed in Japanese Patent Publication No. 19125-1983,
(Fe content is 3 to 13%) and Fe-Ni 0.1-40 Si 3-16 B 5-24 material disclosed in Japanese Patent Publication No. 58-1183 are known. Heat treatments for these materials include cooling heat treatment in a magnetic field, rapid cooling (air cooling) heat treatment, etc., and multi-stage heat treatment in which the temperature is held constant during cooling and then cooled again has not been performed. Problems to be Solved by the Invention A magnetic core manufactured using the conventional material and heat-treated in one step without keeping the temperature constant during cooling is as follows:
The control magnetization characteristic, which is an important characteristic for a control magnetic core, is not sufficient at high frequencies, especially at frequencies above 50kHz. That is, when used in a saturable reactor for a switching power supply that is driven at a high frequency of 50 kHz or higher, there are problems in that the core gain is insufficient and the temperature rises rapidly. This has led to problems such as an increase in reset current and a decrease in reliability. Therefore, an object of the present invention is to provide a method for manufacturing an amorphous magnetic core with excellent high-frequency control magnetization characteristics by conducting various tests on materials and heat treatment methods. Means for Solving the Problems The present invention uses a composition formula created by a liquid quenching method such as a single roll method: (Co 1-abc Fe a Mn b Mo c ) 100-xy Si x B y
It is expressed as 0≦a≦0.05, 0.03≦b≦0.08, 0.01≦c≦
0.04, 0.04≦b+c≦0.10, 13≦x≦16, 7.5≦Y≦9.5 (at%) A magnetic core material made of an amorphous alloy with a composition having the following relationships is maintained at a temperature higher than the Curie temperature, and then the magnetic core material is 0.10e or more in the magnetic path direction. While applying an alternating current or direct current magnetic field, the temperature is lowered in steps to below 150°C, and multi-stage heat treatment is performed to achieve excellent controlled magnetization characteristics.
This is to manufacture a Co-based amorphous magnetic core. In the present invention, Mn and Mo are essential elements, and have great hardening properties for controlling magnetization characteristics and improving changes over time. This hardening is achieved by holding the magnetic core above the Curie temperature and then applying an AC or DC magnetic field of 0.10e or more in the direction of the magnetic path while lowering the temperature in steps to below 150°C and performing large-scale heat treatment. most noticeable. Further, the strength of the magnetic field needs to be at least 0.10e or more, because the effect of improving the controlled magnetization characteristics is small when the magnetic field is less than 0.10e. Here, the heat treatment of the above means will be explained in comparison with conventional heat treatment. Figure 1 shows the heat treatment pattern (a) of an amorphous amorphous magnetic core with excellent controlled magnetization characteristics according to the present invention.
This is a drawing comparing the conventional heat treatment patterns (b) and (c). The heat treatment pattern according to the present invention is a pattern in which the magnetic core is first held above the Curie temperature, then cooled while applying a magnetic field in the direction of the magnetic path, and the temperature is lowered in steps from the point at which it becomes below the Curie temperature. The magnetic field may be applied at any point as long as the temperature is above the Curie temperature, and the same effect can be obtained even if the temperature starts to be lowered in steps from above the Curie temperature, and this can be considered as part of the present invention. (b) is a conventional heat treatment pattern in which the material is held at a temperature higher than the Curie temperature and then rapidly cooled, which is not practical because it not only has poor squareness and poor control magnetization characteristics but also large changes over time. (c) is a conventional pattern in which a magnetic field is applied, the temperature is held at a certain temperature, and then the pattern is cooled at a constant rate.
Although the squareness of the curve increases and the coercive force of the DC B-H curve decreases, the high frequency control magnetization characteristics are poor and undesirable. Next, a measurement circuit suitable for evaluating the control magnetic core of the present invention will be explained with reference to FIG. Note that FIG. 3 is a schematic diagram of the operation of the magnetic core when an arbitrary DC control current Ic is flowing through the control circuit. As shown in Figure 2, three types of windings, N L , Nc, and Nv, are provided on the magnetic core of the sample. N L corresponds to the output winding of the magnetic amplifier, and is connected to the frequency f through a resistor R and a rectifier D.
(period Tp) is connected to AC power source Eg. Egg
The value of is set to a large value so that the magnetic core reaches saturation at a phase angle within 90° of the sinusoidal voltage of the applied voltage in the gate half period Tg. Nc is a control winding, which is connected to the direct power source Ec through an inductance Lc that is sufficiently large compared to the core inductance seen from the control circuit, and provides a direct current magnetomotive force under the constrained magnetization condition. Nv is a winding for measuring the reset magnetic flux amount Δφcm corresponding to the control input, and is connected to the AC voltage diameter V of the average value rectification method.
FIG. 4 shows a schematic diagram of a controlled magnetization curve obtained by measurement using this measurement circuit. If Hrm is expressed as a reciprocal and β 0 is set, then β 0 = 1/Hrm As a control magnetic core, the larger β 0 (smaller Hr) is, the smaller the control current is, and the better the characteristics. On the other hand, a parameter indicating the degree of rectangularity of the magnetization characteristics of the magnetic core is set as α 0 .
α 0 =1−ΔBd/ΔBm As for the control magnetic core, the larger α 0 (the smaller ΔBd/ΔBm), the smaller the uncontrollable magnetic flux density and the better the characteristics. Expressing the product of α 0 and β 0 in Go, specific core gain
However, the larger Go = α 0 · β 0 , the better it can be judged as a control magnetic core. In Figure 4, the maximum value of the gate magnetic field Hm = Nl・i L (max)/le ...(1) le; Maximum value Bm of magnetic flux density corresponding to the average magnetic path length of the sample and control magnetic field Hrm = Nc・Ic /le ……(2) If the magnetic flux density difference between the magnetic flux density and Bc is ΔBcm, and the period is Tp, the reading of the magnetic flux voltmeter V of the Nv circuit is Ev∝f・Nv・A・Bcm...(3) A: Effective cross-sectional area of the magnetic core In an actual control magnetic core, the characteristics in the region where the magnetic field H is positive, the Hm-ΔBd characteristic, and the characteristics in the region where the magnetic field H is negative, the Hr-ΔB characteristic. It is necessary to understand. ΔBd=Bm−Br...(4) and Ev∝f・Nv・A・Bd...(5). On the other hand, ΔB=Bcm−ΔBd...(6). As for the control magnetic core, it is preferable that the curve in the first quadrant shown in FIG. 4 is on the lower side, and the curve in the second quadrant is on the right side and has a steep slope. Examples Example 1 After holding six types of Co-based amorphous magnetic cores containing Mn and Mo above the Curie temperature, they are cooled while applying an alternating current electric field of 10e in the direction of the magnetic path, and are then heated in two stages from below the Curie temperature. temperature in steps of
Heat treated to below 150℃. The 50kHz specific core gain Go of the magnetic core manufactured in this way was
Shown in the table. For comparison, a magnetic core using conventional materials was heat-treated in one step, and the conventional Go
showed that. Si in the Co-based amorphous alloy of the present invention is effective in reducing the core loss of the alloy, but if it is contained in an excessive amount, it will lower the Curie temperature (Tc) of the alloy.
Significantly reduces squareness ratio (Br/Bs). Based on the above, the Si content is preferably 13 to 16 atomic % in order to impart desirable properties to the alloy. Also B
If the content is less than 7.5 at%, it is difficult to make the alloy into an amorphous state;
If the content is more than 9.5 atomic %, the saturation magnetic flux density (Bs) decreases, so it is preferably 7.5 to 9.5 atomic %, and it is carried out within this range.

【表】【table】

【表】 実施例 2 本発明の材料を使用した5種類の磁心を、第1
実施例のようにステツプ状に熱処理し、さらに同
組成の磁心を従来のように1段階に熱処理して、
熱処理の影響を調べた。できあがつた磁心の50k
HzでのCoを測定し、第2表に示す。
[Table] Example 2 Five types of magnetic cores using the material of the present invention were
Heat-treated in steps as in the example, and then heat-treated a magnetic core of the same composition in one step as in the conventional method.
The effect of heat treatment was investigated. 50k of completed magnetic core
The Co in Hz was measured and is shown in Table 2.

【表】【table】

【表】 本発明の磁心の組成では、従来熱処理でもGo
が従来材より大きいが、本発明の熱処理を行なう
ことにより更にGoが改善されており、本発明で
行なつている熱処理が非常に有効であることがわ
かる。 実施例 3 Mn量bを変化させた(Co0.942-bFe0.025Mnb
Mo0.0376Si15B9アモルフアス磁心に対して本発明
に用いる磁場中の3段階の熱処理を行ない、さら
に従来の磁場中熱処理を行なつた。できた磁心の
50kHzのspecific core gain GoのMn量b依存性
を第5図に示す。図中、Aは本発明の熱処理によ
るものであり、Bは従来熱処理によるものであ
る。 第5図からわかるようにMn量bが0.03を越え
るとGoが急激に大きくなり、制御用磁心として
好ましくなる。時に本発明に用いる多段の熱処理
を行なつた方(A)が、Goが大きく優れている。た
だしbが0.08を越えるとリボンは、製造の際脆化
してしまい好ましくない。 実施例 4 Mo量cを変化させた(Co0.918-CFe0.005Mn0.077
MoC76Si15B9アモルフアス磁心に対して、本発
明に用いる磁場中の3段階の熱処理を行なつた。
できた磁心の50kHzのspecific core gain Goの
Mn量c依存性を第6図に示す。 第6図からわかるようにMo量cが0.01を越え
ると急激にGoが大きくなり、制御用磁心として
好ましい傾向になる。ただしcが0.04を越える
と、飽和磁束密度がフエライト並以下になり好ま
しくない。 上記でCo基アモルフアス合金中のMn量bと
Mo量cとの適正量について説明したが、Fe量a
については次のことがいえる。Co基アモルフア
ス合金においては、Coの一部をFeおよびMnで置
換することにより、磁束λsが小さい磁心材料と
することができ、Coの一部をFeで置換すること
により、飽和磁束密度Bsを増大させことができ
るが、Fe量aが0.05を越えると経時変化が大きく
なるためaは0.05以下が望ましい。 実施例 5 (Co0.93Fe0.03Mn0.0472Mo3Si15B9アモルフアス
を材料にし、多段熱処理回数を変えて6個の磁心
を製造した。できた磁心の50kHzにおけるspecifc
core gain Goを測定し、第3表に示す。
[Table] With the composition of the magnetic core of the present invention, even with conventional heat treatment, Go
is larger than that of the conventional material, but the heat treatment of the present invention further improved Go, indicating that the heat treatment of the present invention is very effective. Example 3 The Mn amount b was changed (Co 0.942-b Fe 0.025 Mn b
Mo 0.03 ) 76 Si 15 B 9 Amorphous magnetic cores were subjected to a three-step heat treatment in a magnetic field used in the present invention, and were further subjected to a conventional heat treatment in a magnetic field. The completed magnetic core
Figure 5 shows the dependence of the specific core gain Go at 50kHz on the Mn content b. In the figure, A shows the result of the heat treatment of the present invention, and B shows the result of the conventional heat treatment. As can be seen from FIG. 5, when the Mn amount b exceeds 0.03, Go increases rapidly, making it preferable as a control magnetic core. Go is significantly superior to the case (A) in which the multi-stage heat treatment used in the present invention is sometimes performed. However, if b exceeds 0.08, the ribbon becomes brittle during manufacture, which is not preferable. Example 4 Mo amount c was changed (Co 0.918-C Fe 0.005 Mn 0.077
Mo C ) 76 Si 15 B 9 Amorphous magnetic core was subjected to three steps of heat treatment in the magnetic field used in the present invention.
50kHz specific core gain Go of the resulting magnetic core
The dependence of Mn content on c is shown in FIG. As can be seen from FIG. 6, when the Mo amount c exceeds 0.01, Go increases rapidly, which tends to be preferable as a control magnetic core. However, if c exceeds 0.04, the saturation magnetic flux density will be lower than that of ferrite, which is not preferable. In the above, the amount of Mn b in the Co-based amorphous alloy is
Although we have explained the appropriate amount with Mo amount c, Fe amount a
The following can be said about In a Co-based amorphous alloy, by replacing a portion of Co with Fe and Mn, a magnetic core material with a small magnetic flux λs can be obtained, and by replacing a portion of Co with Fe, the saturation magnetic flux density Bs can be reduced. However, if the Fe amount a exceeds 0.05, the change over time becomes large, so it is desirable that a is 0.05 or less. Example 5 (Co 0.93 Fe 0.03 Mn 0.04 ) 72 Mo 3 Si 15 B 9 Using amorphous amorphous as a material, six magnetic cores were manufactured by changing the number of multi-stage heat treatments. specifc of the finished magnetic core at 50kHz
Core gain Go was measured and shown in Table 3.

【表】 第3表からわかるように、多段熱処理の回数が
3回以上になると、Goが特に大きくなり制御用
磁心として好ましくなる。 実施例 6 本発明の4種類の組成の材料を使用し、3段熱
処理の角ステツプの保持時間を低い温度になるほ
ど長くなるようにして磁心を製造した。この場合
の保持時間は温度の高いほうから順次10分、60
分、240分とした。また比較のため同一組成の材
料を使用し、3段熱処理の各ステツプの時間を一
定(10分)にして磁心を製造した。このように製
造したアモルフアス磁心の120℃の経時変化率
ΔGoを測定し、第4表に示した。 ここでΔGoは(Go10000−Go0)/Go0×100と
表わす。Go0;初期値 Go10000;10000時間後の
[Table] As can be seen from Table 3, when the number of multi-stage heat treatments is 3 or more, Go becomes particularly large, making it preferable as a control magnetic core. Example 6 Magnetic cores were manufactured using materials of four different compositions according to the present invention, with the holding time of the corner step of the three-stage heat treatment increasing as the temperature decreases. In this case, the holding time is 10 minutes, 60 minutes, starting from the highest temperature.
minutes, 240 minutes. For comparison, magnetic cores were manufactured using materials with the same composition and with the time of each step of the three-stage heat treatment kept constant (10 minutes). The aging rate ΔGo of the amorphous magnetic core produced in this manner at 120°C was measured and shown in Table 4. Here, ΔGo is expressed as (Go 10000 − Go 0 )/Go 0 ×100. Go 0 ; Initial value Go 10000 ; Value after 10000 hours

【表】 第4表から明らかなように、低い温度になるほ
ど保持時間が長くなるように多段熱処理したほう
が、経時変化が改善されより好ましい。 実施例 7 本発明の磁心と、従来の磁心との制御磁化特性
(ΔB−Hr特性、ΔBd−Hm特性)を比較するた
め、次の磁心を製造してその制御磁化曲線を第7
図に示した。本発明の磁心Cは、(Co0.87Fe0.04
Mn0.05Mo0.0476Si15B9を材料とし、3段熱処理と
した。また従来の磁心D、Eは、それぞれ材料を
Co70.3Fe5.4Mb1.6Si8.0B14.7アモルフアス、Co69.5
Fe4.5Mo1Si15B10アモルフアスとし、1段階の熱
処理とした。 第7図からわかるように、本発明の磁心Cの
ΔB−Hr特性の曲線は磁心D、Eより右側によつ
ており、制御電流が小さく従来の磁心より優れて
いる。 一方、本発明の磁心CのΔBd−Hm特性の曲線
は、磁心D、Eより下側に位置しており、角形性
が従来のものに比べて同等以上となつており、制
御用磁心として優れている。 発明の効果 本発明によれば、従来不十分であつたCo基ア
モルフアス磁心の制御磁心特性が大幅に改善でき
るため、高周波駆動のスイツチング電源の可飽和
リアクトルに使用した場合に、制御電流を小さく
でき、磁心の温度上昇も低くできる。また角形性
も良いので制御性も良く経時変化も小さくでき
る。このため、磁気制御型スイツチング電源を高
周波化し、小型化することが可能となり、その効
果は著しいものである。
[Table] As is clear from Table 4, it is more preferable to carry out the multi-stage heat treatment so that the lower the temperature, the longer the holding time is, since the change over time is improved. Example 7 In order to compare the control magnetization characteristics (ΔB-Hr characteristics, ΔBd-Hm characteristics) of the magnetic core of the present invention and the conventional magnetic core, the following magnetic cores were manufactured and their control magnetization curves were
Shown in the figure. The magnetic core C of the present invention is (Co 0.87 Fe 0.04
Mn 0.05 Mo 0.04 ) 76 Si 15 B 9 was used as the material and subjected to three-stage heat treatment. In addition, conventional magnetic cores D and E are made of different materials.
Co 70.3 Fe 5.4 Mb 1.6 Si 8.0 B 14.7 Amorphous, Co 69.5
It was made into Fe 4.5 Mo 1 Si 15 B 10 amorphous and subjected to one-step heat treatment. As can be seen from FIG. 7, the curve of the ΔB-Hr characteristic of the magnetic core C of the present invention is on the right side of the magnetic cores D and E, and the control current is small and it is superior to the conventional magnetic core. On the other hand, the ΔBd-Hm characteristic curve of the magnetic core C of the present invention is located below the magnetic cores D and E, and the squareness is equal to or higher than that of the conventional magnetic core, making it excellent as a control magnetic core. ing. Effects of the Invention According to the present invention, the control magnetic core characteristics of the Co-based amorphous magnetic core, which were conventionally insufficient, can be significantly improved, so that the control current can be reduced when used in a saturable reactor of a high-frequency driven switching power supply. , the temperature rise of the magnetic core can also be lowered. In addition, since the squareness is good, controllability is also good and changes over time can be reduced. Therefore, it is possible to increase the frequency of the magnetically controlled switching power supply and to reduce the size thereof, and the effects thereof are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは本発明のアモルフアス磁心
の熱処理パターンと従来のアモルフアス磁心の熱
処理パターンの比較した図、第2図は制御磁化特
性測定回路を示した図、第3図は制御する際のB
−Hカーブを模式的に示した図、第4図は制御磁
化特性のカーブを模式的に示した図、第5図は
(Co0.942-bFe0.025MnbMo0.0376Si15B9アモルフア
ス磁心の50kHzにおけるspecific core gain Goの
Mn量b依存性を示した図、第6図は(Co0.918-C
Fe0.005Mn0.077MoC76Si15B9アモルフアス磁心の
50kHzのspecific core gain GoのMo量c依存性
を示した図、第7図は本発明による磁心(Co0.87
Fe0.04Mn0.05Mo0.0476Si15B9アモルフアス磁心の
制御磁化曲線を従来の熱処理を行なつたアモルフ
アス磁心の制御磁化曲線と比較した図である。
Figures 1 a, b, and c are diagrams comparing the heat treatment pattern of the amorphous magnetic core of the present invention and the conventional amorphous core. Figure 2 is a diagram showing a control magnetization characteristic measurement circuit. Figure 3 is a diagram showing a control magnetization characteristic measurement circuit. B at the end
-H curve is schematically shown, Figure 4 is a diagram schematically showing the curve of controlled magnetization characteristics, and Figure 5 is (Co 0.942-b Fe 0.025 Mn b Mo 0.03 ) 76 Si 15 B 9 amorphous Specific core gain Go of the magnetic core at 50kHz
Figure 6 shows the Mn content b dependence (Co 0.918-C
Fe 0.005 Mn 0.077 Mo C ) 76 Si 15 B 9 Amorphous magnetic core
Figure 7 shows the dependence of specific core gain Go at 50kHz on Mo amount c .
FIG . 3 is a diagram comparing the controlled magnetization curve of an amorphous magnetic core with the controlled magnetization curve of an amorphous magnetic core subjected to conventional heat treatment.

Claims (1)

【特許請求の範囲】 1 組成式(Co1-a-b-cFeaMnbMoc100-X-YSiXBY
で表わされ、 0≦a≦0.05、0.03≦b≦0.08、 0.01≦c≦0.04、0.04≦b+c≦0.10、13≦x
≦16、 7.5≦Y≦9.5(at.%) の関係を有する組成のアモルフアス合金からなる
磁心素材に、キユリー温度以上で保持後、磁路方
向に0.10e以上の交流あるいは直流の磁界を印加
しながら冷却し、キユリー温度以下から、ステツ
プ状に温度を150℃以下まで下げる多段熱処理を
施すことを特徴とするCo基アモルフアス磁心の
製造方法。 2 多段熱処理を少なくとも3段以上行なうこと
を特徴とする特許請求の範囲第1項記載のCo基
アモルフアス磁心の製造方法。 3 多段熱処理の各ステツプの保持時間を低い温
度になるほど長くしたことを特徴とする特許請求
の範囲第1項又は2項記載のCo基アモルフアス
磁心の製造方法。
[Claims] 1 Composition formula (Co 1-abc Fe a Mn b Mo c ) 100-XY Si X B Y
It is expressed as 0≦a≦0.05, 0.03≦b≦0.08, 0.01≦c≦0.04, 0.04≦b+c≦0.10, 13≦x
≦16, 7.5≦Y≦9.5 (at.%) A magnetic core material made of an amorphous alloy with a composition having the following relationships is held at a temperature higher than the Curie temperature, and then an AC or DC magnetic field of 0.10e or higher is applied in the direction of the magnetic path. A method for producing a Co-based amorphous magnetic core, characterized by performing a multi-stage heat treatment in which the temperature is lowered in steps from below the Curie temperature to 150°C or less. 2. The method for producing a Co-based amorphous magnetic core according to claim 1, characterized in that multistage heat treatment is performed in at least three stages. 3. The method for producing a Co-based amorphous magnetic core according to claim 1 or 2, characterized in that the holding time of each step of the multi-stage heat treatment is made longer as the temperature decreases.
JP60208328A 1985-08-20 1985-09-20 Co radical amorphous magnetic core Granted JPS6267802A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60208328A JPS6267802A (en) 1985-09-20 1985-09-20 Co radical amorphous magnetic core
US07/085,405 US4769091A (en) 1985-08-20 1987-08-10 Magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208328A JPS6267802A (en) 1985-09-20 1985-09-20 Co radical amorphous magnetic core

Publications (2)

Publication Number Publication Date
JPS6267802A JPS6267802A (en) 1987-03-27
JPH0476483B2 true JPH0476483B2 (en) 1992-12-03

Family

ID=16554445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208328A Granted JPS6267802A (en) 1985-08-20 1985-09-20 Co radical amorphous magnetic core

Country Status (1)

Country Link
JP (1) JPS6267802A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736646B1 (en) 2006-02-02 2007-07-09 한양대학교 산학협력단 Magnetic sensor device using cobalt based amorphous alloy and method of making the cobalt based amorphous alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165395A (en) * 1974-10-21 1976-06-05 Western Electric Co
JPS5173923A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS59147415A (en) * 1983-02-09 1984-08-23 Hitachi Metals Ltd Wound core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165395A (en) * 1974-10-21 1976-06-05 Western Electric Co
JPS5173923A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS59147415A (en) * 1983-02-09 1984-08-23 Hitachi Metals Ltd Wound core

Also Published As

Publication number Publication date
JPS6267802A (en) 1987-03-27

Similar Documents

Publication Publication Date Title
KR910002375B1 (en) Magnetic core component and manufacture thereof
US20050034787A1 (en) Method for making nano-scale grain metal powders having excellent high-frequency characteristic and method for making high-frequency soft magnetic core using the same
US5032947A (en) Method of improving magnetic devices by applying AC or pulsed current
JPH0680611B2 (en) Magnetic core
US5138393A (en) Magnetic core
US5091253A (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
US4769091A (en) Magnetic core
US4558297A (en) Saturable core consisting of a thin strip of amorphous magnetic alloy and a method for manufacturing the same
US5494534A (en) Method of heat treating an amorphous soft magnetic article
US6621399B2 (en) Powder core and high-frequency reactor using the same
JPH01294847A (en) Soft-magnetic alloy
JP2000503169A (en) Distributed gap electric choke
JPH0476483B2 (en)
JPS62179704A (en) Fe-based amorphous core excellent in controlling magnetization characteristics
JPS61261451A (en) Magnetic material and its production
US6788185B2 (en) Powder core and high-frequency reactor using the same
JPS62112310A (en) Manufacture of amorphous magnetic core
JPS6070157A (en) Amorphous alloy and its manufacture
Kunz et al. Amorphous alloys for switched-mode power supplies
JP2835127B2 (en) Magnetic core and manufacturing method thereof
JP2637184B2 (en) Core for oscillation transformer
JPS6329909A (en) Fe group amorphous magnetic core for saturable reactor and manufacture thereof
JPH0257683B2 (en)
JP2859286B2 (en) Manufacturing method of ultra-microcrystalline magnetic alloy
JP2000252111A (en) High-frequency saturable magnetic core and device using the same