JPS61261451A - Magnetic material and its production - Google Patents

Magnetic material and its production

Info

Publication number
JPS61261451A
JPS61261451A JP60102882A JP10288285A JPS61261451A JP S61261451 A JPS61261451 A JP S61261451A JP 60102882 A JP60102882 A JP 60102882A JP 10288285 A JP10288285 A JP 10288285A JP S61261451 A JPS61261451 A JP S61261451A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
magnetic material
iron loss
annealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60102882A
Other languages
Japanese (ja)
Inventor
Shoji Murakami
村上 省自
Hiroshi Okumura
奥村 博司
Hiroyasu Murase
村瀬 広恭
Makoto Utsunomiya
真 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60102882A priority Critical patent/JPS61261451A/en
Publication of JPS61261451A publication Critical patent/JPS61261451A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Abstract

PURPOSE:To provide a magnetic material of which the greater part consists of an amorphous material and which has an extremely low iron loss in a high frequency region by incorporating Co as an essential component into said material and incorporating prescribed ratio each of Fe, Si and B and >=1 kinds among Ni, Mn, Cr, etc., therein. CONSTITUTION:This magnetic material is expressed by the formula (Co1-xFex)100-a-b-cMaSibBc (M is >=1 kinds among Ni, Mn, Cr, Mo, W, V, Nb, Ta, Ru, Ti and Zr), has the relations 0<=x<=0.2, 0<=a<=20, 5<=b<=20, 5<=c<=20, 5<=b+c<=30 by atom and has the following properties: >=80% of said magnetic material is the amorphous material. Such magnetic material can be produced simply by annealing the material having the above-mentioned compsn. while applying the magnetic field thereto in the direction perpendicular to the excitation direction in the stage of use. The magnetic material having the constant magnetic permeability characteristic in a high frequency region even at DC is obtd. by selecting suitable the intensity of the magnetic field according to the sectional area in the excitation direction of the material to be heat-treated. There is the effect of obtaining the magnetic core having the extremely low iron loss in the high-frequency region if such material is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Cot主成分とする非晶質合金から戊る高
周波域における鉄損が極めて低い磁性材料及びその製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic material having extremely low iron loss in a high frequency range made of an amorphous alloy mainly composed of Cot, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

一般に非晶質合金は軟磁気特性にすぐれ、磁気損失が低
く、かつ、高い電気抵抗と薄い板厚を持つために渦電流
による損失が小さく鉄損が極めて小さい長所を持ってい
る。そしてかかる非晶質合金は製造のままでは急冷さ・
れたときに導入される歪によシ、磁壁固着化が生じ、軟
磁気特性が良くないため焼鈍を行い軟磁気特性を改善す
ることが通常行われる。しかしながら薄帯では長手方向
に一軸異方性が存在しているため、単なる焼鈍では長手
方向に1800磁壁がのびた1区構造となる。
In general, amorphous alloys have excellent soft magnetic properties and low magnetic loss, and because they have high electrical resistance and thin plate thickness, they have the advantage of low loss due to eddy current and extremely low iron loss. In addition, such amorphous alloys cannot be rapidly cooled or
The strain introduced when the material is heated causes domain wall fixation, resulting in poor soft magnetic properties, so annealing is usually performed to improve the soft magnetic properties. However, since the ribbon has uniaxial anisotropy in the longitudinal direction, mere annealing results in a 1-section structure with 1800 domain walls extending in the longitudinal direction.

これを長手方向に励磁した場合には直流では抗磁力が小
さく高透磁率のすぐれた磁気特性を示すが、高周波域で
励磁すると、渦電流損が増して必ずしも良好表性質を示
さない。
When it is excited in the longitudinal direction, it exhibits excellent magnetic properties with low coercive force and high magnetic permeability under direct current, but when it is excited in a high frequency range, eddy current loss increases and it does not necessarily exhibit good surface properties.

そこでこのような性質を改善するため斜め磁場中での熱
処理、薄帯表面へスクラッチの導入、微細結晶粒の析出
などの手段によって磁区を細分化し低鉄損化することが
試みられている。たとえば特開昭57−202709で
はli’e系非晶質合金において、キュリ一点以下の温
度で励磁方向に直角の磁場中で焼鈍することにより、直
流で低角型比のB−H特性を持つ磁性材料を得ることが
提案されてお、6、J、 APPLN、 PHYC、V
OL 54 、 Nll 1 、1983P6554で
は遷移金属を添加して磁歪を低減させて磁区の細分化を
行い低鉄損金得ることが報告されている。低鉄損に対す
る工業的要求は高まる一方であり、たとえばスイッチン
グ電源においては、よシ一層の小型軽量化、高効率化、
高信頼性化。
Therefore, in order to improve these properties, attempts have been made to subdivide the magnetic domains and lower core loss by means such as heat treatment in an oblique magnetic field, introduction of scratches on the surface of the ribbon, and precipitation of fine crystal grains. For example, in JP-A-57-202709, an amorphous li'e alloy has B-H characteristics with a low squareness ratio in direct current by annealing in a magnetic field perpendicular to the excitation direction at a temperature below the Curie point. It has been proposed to obtain magnetic materials, 6, J, APPLN, PHYC, V
OL 54, Nll 1, 1983P6554 reports that transition metals are added to reduce magnetostriction and subdivide magnetic domains to obtain low iron loss. Industrial demands for low iron loss are increasing, and switching power supplies, for example, are becoming increasingly smaller and lighter, more efficient, and more efficient.
High reliability.

低コスト化を目指して開発がすすめられているが。Development is progressing with the aim of reducing costs.

有力な対処法のひとつとしてスイッチング周波数の一層
の高周波化が試みられておシ、電源の重要  ゛な部品
のひとつである磁性部品に高周波域での使用に耐える磁
性材料が要求されている。トランス。
One potential solution is to raise the switching frequency even higher, and magnetic components, which are one of the important parts of power supplies, are required to be made of magnetic materials that can withstand use in high frequency ranges. Trance.

コイルに使用される磁性材料は一般に飽和磁束密度が高
い程、作動磁束密度の振巾を大きくとることができるの
で有利であるが、その反面数十KHz以上の高周波域に
なると鉄損が増大して発熱によシ使用が制限されるよう
になる。したがって鉄損全低減することが最も重要なポ
イントとなる。一方直流を重畳して使用するタイプのト
ランスやコイルでは透磁率が一定であり、飽和磁束密度
が高くかつ残留磁化の低い磁性材料が有利となる。従来
は磁性材料に空気ギャップを設けて恒透磁率性を得てお
り、自身が恒透磁率性を持つ磁性材料の開発も待望され
ている。
In general, the higher the saturation magnetic flux density of the magnetic material used for the coil, the greater the amplitude of the operating magnetic flux density, which is advantageous, but on the other hand, in the high frequency range of several tens of KHz or more, iron loss increases. As a result, its use is restricted due to heat generation. Therefore, the most important point is to completely reduce iron loss. On the other hand, for transformers and coils of the type that are used with superimposed direct current, magnetic materials with constant magnetic permeability, high saturation magnetic flux density, and low residual magnetization are advantageous. Conventionally, constant magnetic permeability has been obtained by creating an air gap in magnetic materials, and the development of magnetic materials that themselves have constant magnetic permeability is also eagerly awaited.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如(Co系非晶質合金は磁歪が零の組成を選ぶこ
とができ、抗磁力が小さく、Fe系非晶質合金よシも磁
気損失が低く、理論的には高周波域における鉄損上よシ
小さくできる。しかしながら他面低鉄損化を目的とした
Co系非晶質合金の熱処理方法は十分に研究されていな
かった。これはコア材料には高飽和磁束密度が必要とさ
れるという常識によるためで、Fe系非晶質合金と比べ
飽和磁束密度が低いCo系非晶質合金は専ら高透磁率を
生かした用途にのみ限定されているのが実情である。
As mentioned above (Co-based amorphous alloys can be selected to have a composition with zero magnetostriction, have low coercive force, and have low magnetic loss compared to Fe-based amorphous alloys, and theoretically reduce iron loss in the high frequency range. However, heat treatment methods for Co-based amorphous alloys aimed at reducing core loss have not been sufficiently researched.This is because the core material requires a high saturation magnetic flux density. Because of this common sense, Co-based amorphous alloys, which have a lower saturation magnetic flux density than Fe-based amorphous alloys, are actually limited to applications that take advantage of their high magnetic permeability.

又前述したごとくスイッチング電源のスイッチング周波
数の高周波化に対応するには飽和磁束密度の大小よシも
鉄損全低減することが技術的によシ重要であり、Co系
非晶質合金の熱処理方法の改善による低鉄損の磁性材料
の開発が工業的に重要であり、又低鉄損かつ恒透磁率性
を持つ磁性材料の開発も期待されている。
In addition, as mentioned above, in order to cope with the increasing switching frequency of switching power supplies, it is technically important to completely reduce iron loss regardless of the size of the saturation magnetic flux density. It is industrially important to develop magnetic materials with low iron loss by improving the iron loss, and the development of magnetic materials with low iron loss and constant magnetic permeability is also expected.

本発明は高周波域において鉄損の極めて低い磁性材料と
その製造方法を提供することを目的とする。セして又多
数の試験研究の結果、恒速磁:4注の磁性材料は、ヒス
テリシス損が小さく、鉄損を低減できることが判明しt
友め、併せて恒透磁率性の磁性材料とその製造方法を提
供しようとするものである。
An object of the present invention is to provide a magnetic material with extremely low core loss in a high frequency range and a method for manufacturing the same. As a result of numerous tests and studies, it has been found that constant velocity magnetic material has low hysteresis loss and can reduce iron loss.
The present invention also aims to provide a magnetic material with constant magnetic permeability and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような問題を解決すべくなされたものでs
b、即ち組成式(Cot−X F’ex)100−a−
b−c Ma 5ib1342で表され、MはNi 、
 Mn 、 Cr 、 Mo 、 W 、 V 、 N
b 、 Ta 、 Ru 。
The present invention was made to solve such problems.
b, that is, compositional formula (Cot-X F'ex) 100-a-
b-c Ma 5ib1342, M is Ni,
Mn, Cr, Mo, W, V, N
b, Ta, Ru.

Ti 、 Zrのうち1種又は2種以上であり、原子比
でO≦X≦0.2 、0≦a≦20.5≦b≦20.5
≦c≦20゜5≦b+c≦30の関係を満しかつ80%
以上非晶質状態である材料であり、恒透磁率の磁気特性
を有することを特徴とする磁性材料である。そして更に
本発明は、上記Co系非晶質合金を焼鈍する際キュリ一
点以下の温度で使用時に励磁される方向と直角の方向に
磁場をかけ、恒透磁率の磁気特性を具備させ、高周波域
における鉄損を低減した磁性材料を製造しようとするも
のである。
One or more of Ti and Zr, and the atomic ratio is O≦X≦0.2, 0≦a≦20.5≦b≦20.5
≦c≦20゜5≦b+c≦30 and 80%
The above is a magnetic material characterized by being in an amorphous state and having magnetic properties of constant magnetic permeability. Furthermore, the present invention applies a magnetic field in a direction perpendicular to the direction in which it is excited during use at a temperature below one Curie point when annealing the Co-based amorphous alloy, thereby imparting magnetic properties of constant magnetic permeability to the high frequency range. The aim is to produce a magnetic material with reduced core loss.

本発明磁性材料において、その主底分はCoであり、又
Feは主に磁歪を零にするための添加元素であシ1Mは
副次成分で、磁歪を小さくする他、結晶化温度′fcあ
げる効果や磁区構造を変え高周波域における鉄損を下げ
るためのものである。そしてSi及びBは非晶質化のた
めに必須のメタロイド元素であp、b+cがSit%以
下あるいは5oats以上では、非晶質化が極めて困難
となる。Si及びBe共に含有すると、単独で用いた場
合よシ非晶質化が容易となシ、安定した製造が可能とな
るためす、cはそれぞれ5 atチ以上20atチ以下
に限足される。そしてFe¥i−多く含有すると飽和磁
束密度は増大するが、磁歪が大きくなシ、鉄損低減に不
利となるためxt−0.2以下に限足する必要がある。
In the magnetic material of the present invention, the main base is Co, and Fe is an additive element mainly for reducing magnetostriction to zero. This is to reduce iron loss in the high frequency range by changing the magnetic domain structure and increasing effect. Si and B are metalloid elements essential for making the material amorphous, and if p, b+c is less than Si% or more than 5 oats, it becomes extremely difficult to make the material amorphous. When both Si and Be are contained, it is easier to make the material amorphous than when used alone, and stable production is possible. Therefore, c is limited to 5 atm or more and 20 atm or less, respectively. Although the saturation magnetic flux density increases when a large amount of Fe\i is contained, it is necessary to limit the content to xt-0.2 or less because the magnetostriction is large and this is disadvantageous to reducing iron loss.

副次成分の添加量が過剰になると磁歪零の組成からのず
れが大きくなシ、飽和磁束密度が低下し過ぎるなど磁気
特性が劣化するので、aは20atチ以下に限定される
If the amount of the secondary component added is excessive, the magnetic properties will deteriorate, such as a large deviation from the zero magnetostriction composition and an excessive drop in the saturation magnetic flux density, so a is limited to 20 at or less.

本発明の上述OCO系非系非晶質合金金工キュリ一点以
下度で使用時の励磁方向と直角の方向に磁場をかけなが
ら焼鈍すると抗磁率が小さく、残留磁化が実質的にほぼ
零である材料が得られる。又焼鈍される材料の励磁方向
の断面積に応じて焼鈍時に印加する磁場の強さを変化さ
せ、その値が適当であると、恒透磁率の直流磁気特性を
持った磁性材料が得られる。該材料は数十KH1以上の
高周波域においても恒透磁率特性を保持し、鉄損も従来
材料と比べ著しく小さいという特徴を有する。
The above-mentioned OCO-based non-crystalline alloy of the present invention is a material that has a low coercivity and substantially zero residual magnetization when annealed with a magnetic field applied in a direction perpendicular to the excitation direction during use at a degree of less than one point Curie. is obtained. Furthermore, if the strength of the magnetic field applied during annealing is varied according to the cross-sectional area of the material to be annealed in the excitation direction, and the value is appropriate, a magnetic material having DC magnetic properties with constant magnetic permeability can be obtained. This material maintains a constant magnetic permeability characteristic even in a high frequency range of several tens of KH1 or more, and has a characteristic that the iron loss is significantly smaller than that of conventional materials.

Co系非晶質合金は一般に溶湯急冷法で製造され、細長
い薄帯として提供されるので励磁方向は薄帯の長手方向
、焼鈍時の磁場の方向は薄帯の巾方向であることが実用
的である。
Co-based amorphous alloys are generally manufactured by a molten metal quenching method and provided as long thin ribbons, so it is practical to set the excitation direction in the longitudinal direction of the ribbon and the direction of the magnetic field during annealing to be in the width direction of the ribbon. It is.

〔作 用〕[For production]

本発明においては、材料組成が上記式による組成全満足
していることによシ、上記の各種の要望に応じ得る適切
な材料を提供し得るのである。
In the present invention, since the material composition fully satisfies the composition according to the above formula, it is possible to provide an appropriate material that can meet the various demands mentioned above.

〔発明の実施例〕[Embodiments of the invention]

実施例1 (C096Fe+ )75 Mus Sit B1. 
O組Et−有L、単ロール法で製造した非晶質合金薄帯
を、薄帯の巾方向に磁場をかけながら焼鈍した磁性材料
の直流磁気特性全第1図に示す。上記薄帯全トロイダル
状に巻回し、励磁方向の断面積が0.16cIlの巻鉄
心とし。
Example 1 (C096Fe+)75 Mus Sit B1.
FIG. 1 shows the direct current magnetic properties of a magnetic material obtained by annealing an amorphous alloy ribbon produced by a single-roll method with a magnetic field applied in the width direction of the ribbon. The above-mentioned thin strip is entirely wound in a toroidal shape, and a wound core having a cross-sectional area in the excitation direction of 0.16 cIl is used.

2.5 koeの磁場をかけ、キュリ一点以下の温度3
20℃で10分間焼鈍した。焼鈍された巻鉄心へ直接励
磁コイルと検出コイルを巻線して直流磁気特性を測定し
た。励磁方向は巻鉄心円周方向で、薄帯の長手方向にあ
たシ巾方向と直角である。直流磁気特性は恒透磁率を示
し、抗磁力が小さく、残留磁化が実質的に零である。
A magnetic field of 2.5 koe is applied, and the temperature is below the curri point 3.
Annealing was performed at 20°C for 10 minutes. The DC magnetic characteristics were measured by directly winding an excitation coil and a detection coil around an annealed wound core. The excitation direction is the circumferential direction of the wound core, which is perpendicular to the longitudinal direction of the ribbon and the width direction. The DC magnetic properties exhibit constant magnetic permeability, low coercive force, and essentially zero residual magnetization.

次に第2図は同実施例材料の50KHzにおけ;赦流B
−H曲線図であるが高周波域における磁気特性も恒速磁
−を示している。ここで第6図及び第7図は従来のもの
の磁気特性を示す比較図であり、回転磁場中で実施例1
と同一組成の材料全同一温度で熱処理したものの磁気特
性金示す。第6図の直流B−H曲線図は高透磁率、低抗
磁力を示し高角型比であるが、高周波域においては第7
図に示すごとく抗磁力が大きくなり、ヒステリシス損が
上記実施例の磁性材料と比べ大きい。第3図には実施例
磁性材料と従来材料との高周波域における鉄損の比較を
示す。実線が本発明の磁性材料であL一点鎖線のスーパ
ーマロイ、破線のフェライト、点線の従来の熱処理を行
った非晶質合金(アライド社2605−83 )  な
ど従来材料と比べ著しく鉄損が低減されている。
Next, Figure 2 shows the same example material at 50KHz;
Although it is a -H curve diagram, the magnetic properties in the high frequency range also show constant velocity magnetism. Here, FIG. 6 and FIG. 7 are comparative diagrams showing the magnetic characteristics of the conventional one, and the example 1 in a rotating magnetic field.
The magnetic properties of materials of the same composition as gold, all heat treated at the same temperature, are shown. The DC B-H curve diagram in Figure 6 shows high magnetic permeability and low coercive force, and has a high squareness ratio, but in the high frequency range, the
As shown in the figure, the coercive force is large and the hysteresis loss is large compared to the magnetic material of the above embodiment. FIG. 3 shows a comparison of iron loss in the high frequency range between the example magnetic material and the conventional material. The solid line indicates the magnetic material of the present invention, which has significantly reduced core loss compared to conventional materials such as supermalloy (dotted chain line), ferrite (dashed line), and amorphous alloy (Allied Co., Ltd. 2605-83) that has been subjected to conventional heat treatment (dotted line). ing.

実施例2 (C0g4 Fea ) 75Mn1,6 WLIs 
5i7Busの組成を有する非晶質合金の薄帯を磁場中
で焼鈍した場合の鉄損及び直流磁気特性の焼鈍時の印加
磁場の強さ依存性金第4図に示す。測定に供し抜書の励
磁方向の断面積は0.06calであった。第4図x印
で示したものは断面積に比し印加磁場が弱すぎる場合で
あシ第4図(ωに示したB、H曲線図のごとく低角型比
と々つても恒透磁率とならず、鉄損の低減も少々い。第
4図Δ印で示した印加磁場が強すぎる場合には第4図(
C)に示したB−H曲線図のごとく恒透磁率となるが鉄
損は第4図○印で示した最適な磁場の強さの場合よシ少
し大きくなる。かつ第4図(c)のB−H曲線図に示し
たごと<B10が減少し。
Example 2 (C0g4 Fea) 75Mn1,6 WLIs
Figure 4 shows the dependence of the iron loss and DC magnetic properties on the strength of the magnetic field applied during annealing when a ribbon of an amorphous alloy having the composition of 5i7Bus is annealed in a magnetic field. The cross-sectional area of the excerpt in the excitation direction used for measurement was 0.06 cal. The case indicated by the x mark in Figure 4 occurs when the applied magnetic field is too weak compared to the cross-sectional area. , and the reduction in iron loss is also a little difficult.If the applied magnetic field indicated by the Δ mark in Figure 4 is too strong,
As shown in the B-H curve diagram shown in C), the magnetic permeability is constant, but the iron loss is slightly larger than in the case of the optimal magnetic field strength shown by the circle in FIG. 4. And as shown in the B-H curve diagram of FIG. 4(c), <B10 decreases.

コア、の動作磁束密度金高くする用途に関しては、実用
上不利な性質が生じてくる。
For applications where the operating magnetic flux density of the core is high, disadvantageous properties arise in practice.

実施例3 上記実施例の組成金有し、焼鈍される材料の励磁方向の
断面積と焼鈍時の印加磁場の強さを変化させて該組成O
CO系非晶質合金薄帯を巻き回した鉄心について薄帯の
巾方向に磁場全印加しながら熱処理した場合の磁気特性
との相関関係を第5図に示す。同図において、 は恒透
磁率に近いが完全にはならなかったもの、Oは恒透磁率
となったもの、Δは恒透磁率となったがB10が低下し
たもの、×は恒透磁率とならなかったものを夫々示す。
Example 3 The composition O was obtained by changing the cross-sectional area in the excitation direction of the material to be annealed and the strength of the applied magnetic field during annealing, which had the composition of the above-mentioned example.
FIG. 5 shows the correlation with magnetic properties when an iron core wound with a CO-based amorphous alloy ribbon is heat-treated while a full magnetic field is applied in the width direction of the ribbon. In the same figure, is close to constant permeability but not perfect, O is constant permeability, Δ is constant permeability but B10 has decreased, and × is constant permeability. Show what didn't happen.

第5図よシ最適磁場の強さは被処理材料の励磁方向の断
面積に比例することが明らかであり、その′最適範囲は
10A−0.4≦H≦1OA+2.7にある。但しHは
焼鈍時の印加磁場の強さくkOe )で、必ず零よυ大
であり、Aは焼鈍される材料の励磁方向の断面積(cr
l)である。
It is clear from FIG. 5 that the optimum magnetic field strength is proportional to the cross-sectional area of the material to be treated in the excitation direction, and its optimum range is 10A-0.4≦H≦1OA+2.7. However, H is the strength of the magnetic field applied during annealing (kOe), which is always υ greater than zero, and A is the cross-sectional area in the excitation direction of the material to be annealed (cr
l).

この発明は上記のように高周波域における鉄損の低減お
よび恒透磁率性を持つ磁性材料を提供することを目的と
して成されたものであるが、高周波域における使用、あ
るいはスイッチング電源への使用などに用途は限定され
ない。
As mentioned above, this invention was made for the purpose of reducing iron loss in a high frequency range and providing a magnetic material with constant magnetic permeability. The use is not limited to.

又実施例は主に巻鉄心について説明したが、この発明は
巻鉄心に限定されるものではまく、磁性材料の形状は薄
帯のままであっても、薄帯全積層した磁心であっても、
他の形状であってもよい。
In addition, although the embodiments have mainly been described with respect to wound cores, the present invention is not limited to wound cores, and may be applied even if the shape of the magnetic material remains as a thin ribbon or in a core in which thin ribbons are fully laminated. ,
Other shapes are also possible.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、Co系非晶質合金を励
磁方向と直角の方向に磁場をかけながら焼鈍し、かつ磁
場の強さを熱処理される材料の励磁方向の断面積に応じ
て適当に選ぶことによシ、直流においても高周波域にお
いても恒透磁率特性を持つ磁性材料が得られ、又該材料
の使用により高周波域における鉄損が極めて低い磁心を
得る効果がある。
As described above, according to the present invention, a Co-based amorphous alloy is annealed while applying a magnetic field in a direction perpendicular to the excitation direction, and the strength of the magnetic field is adjusted according to the cross-sectional area of the material to be heat treated in the excitation direction. By appropriately selecting a magnetic material, a magnetic material having constant magnetic permeability characteristics both in direct current and in a high frequency range can be obtained, and by using this material, it is possible to obtain a magnetic core with extremely low iron loss in a high frequency range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の磁気特性を示す直流B−
H曲線図、第2図は同実施例の交流B −■曲線図、第
3図はこの発明の一実施例と従来の磁性材料との鉄損の
比較を示す鉄損−磁束密度図、第4図はこの発明の他の
実施例の鉄損及び直流磁気特性の焼鈍時の印加磁場依存
性上水す図、第5図は、焼鈍される材料の断面積と焼鈍
時の印加磁場が磁気特性に与える影vを示す図、第6図
は従来の熱処理によるCo系非晶質合金の磁気特性を示
す直流B−H曲線図、第7図は第6図と同一材料の交流
B−H曲線図である。
FIG. 1 shows the magnetic characteristics of an embodiment of the present invention.
FIG. 2 is an AC B-■ curve diagram of the same example. FIG. 3 is an iron loss-magnetic flux density diagram showing a comparison of iron loss between an example of the present invention and a conventional magnetic material. Figure 4 shows the dependence of the iron loss and DC magnetic properties on the magnetic field applied during annealing in another embodiment of the present invention, and Figure 5 shows the cross-sectional area of the material to be annealed and the dependence of the applied magnetic field during annealing on the magnetic field. Figure 6 is a DC B-H curve diagram showing the magnetic properties of a Co-based amorphous alloy subjected to conventional heat treatment, and Figure 7 is an AC B-H curve diagram of the same material as in Figure 6. It is a curve diagram.

Claims (6)

【特許請求の範囲】[Claims] (1)組成式(Co_1_−_xFe_X)_1_0_
0_−_a_−_b_−_cMaSi_bB_cで表さ
れ、MはNi、Mn、Cr、Mo、W、V、Nb、Ta
、Ru、Ti、Zrのうち1種又は2種以上であり、原
子比で0≦x≦0.2、0≦a≦20、5≦b≦20、
5≦c≦20、5≦b+c≦30の関係を満しかつ80
%以上非晶質状態である材料であり、恒透磁率の磁気特
性を有することを特徴とする磁性材料。
(1) Composition formula (Co_1_-_xFe_X)_1_0_
0_-_a_-_b_-_cMaSi_bB_c, M is Ni, Mn, Cr, Mo, W, V, Nb, Ta
, Ru, Ti, and Zr, and the atomic ratio is 0≦x≦0.2, 0≦a≦20, 5≦b≦20,
5≦c≦20, 5≦b+c≦30 and 80
% or more of the material is in an amorphous state, and is characterized by having magnetic properties of constant magnetic permeability.
(2)組成式(Co_1_−_xFe_X)_1_0_
0_−_a_−_b−_cM_aSi_bB_cで表さ
れ、MはNi、Mn、Cr、Mo、W、V、Nb、Ta
、Ru、Ti、Zrのうち1種又は2種以上であり、0
≦x≦0.2、0≦a≦20、5≦b≦20、5≦c≦
20、5≦b+c≦30の関係を満し、かつ80%以上
非晶質状態である材料を使用時の励磁方向と直角の方向
に磁場をかけながら焼鈍し、恒透磁率の磁気特性を具備
させたことを特徴とする磁性材料の製造方法。
(2) Composition formula (Co_1_-_xFe_X)_1_0_
0_-_a_-_b-_cM_aSi_bB_c, M is Ni, Mn, Cr, Mo, W, V, Nb, Ta
, Ru, Ti, and Zr, and 0
≦x≦0.2, 0≦a≦20, 5≦b≦20, 5≦c≦
A material that satisfies the relationship 20, 5≦b+c≦30 and is 80% or more amorphous is annealed while applying a magnetic field in a direction perpendicular to the excitation direction during use, and has magnetic properties with constant magnetic permeability. A method for manufacturing a magnetic material, characterized in that:
(3)励磁方向が薄帯の長手方向であり、焼鈍時の印加
磁場の方向が薄帯の巾方向であることを特徴とする特許
請求の範囲第2項記載の磁性材料の製造方法。
(3) The method for manufacturing a magnetic material according to claim 2, wherein the excitation direction is the longitudinal direction of the ribbon, and the direction of the applied magnetic field during annealing is the width direction of the ribbon.
(4)焼鈍時の印加磁場の強さを焼鈍される材料の励磁
方向の断面積に比例して大きくすることを特徴とする特
許請求の範囲第2項又は第3項記載の磁性材料の製造方
法。
(4) Manufacturing a magnetic material according to claim 2 or 3, characterized in that the strength of the applied magnetic field during annealing is increased in proportion to the cross-sectional area of the material to be annealed in the excitation direction. Method.
(5)焼鈍時の磁場の強さが、10A−0.4≦H≦1
0A+2.7(但し式中Hは磁場の強さ(kOe)、A
は焼鈍される材料の励磁方向の断面積、H>0である)
関係を満すことを特徴とする特許請求の範囲第4項記載
の磁性材料の製造方法。
(5) The strength of the magnetic field during annealing is 10A-0.4≦H≦1
0A+2.7 (where H is the strength of the magnetic field (kOe), A
is the cross-sectional area of the material to be annealed in the excitation direction, H>0)
The method for manufacturing a magnetic material according to claim 4, characterized in that the following relationship is satisfied.
(6)焼鈍される材料が薄帯を巻き回した巻鉄心である
ことを特徴とする特許請求の範囲第2項から第5項記載
の磁性材料の製造方法。
(6) The method for manufacturing a magnetic material according to any one of claims 2 to 5, wherein the material to be annealed is a wound core made of a thin ribbon wound.
JP60102882A 1985-05-15 1985-05-15 Magnetic material and its production Pending JPS61261451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60102882A JPS61261451A (en) 1985-05-15 1985-05-15 Magnetic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60102882A JPS61261451A (en) 1985-05-15 1985-05-15 Magnetic material and its production

Publications (1)

Publication Number Publication Date
JPS61261451A true JPS61261451A (en) 1986-11-19

Family

ID=14339237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60102882A Pending JPS61261451A (en) 1985-05-15 1985-05-15 Magnetic material and its production

Country Status (1)

Country Link
JP (1) JPS61261451A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693392A (en) * 1986-11-03 1994-04-05 Allied Signal Inc Vitreous alloy having magneto-striction of almost zero for use in high frequency
JPH08229642A (en) * 1996-03-11 1996-09-10 Toshiba Corp Extra thin amorphous alloy of high permeability, low iron loss
WO2000061830A3 (en) * 1999-04-12 2001-02-08 Allied Signal Inc Magnetic glassy alloys for high frequency applications
WO2002013210A3 (en) * 2000-08-08 2002-07-18 Honeywell Int Inc Magnetic glassy alloys for electronic article surveillance
WO2003067615A1 (en) 2002-02-08 2003-08-14 Honeywell International Inc. Current transformer having an amorphous fe-based core
CN110983112A (en) * 2019-12-30 2020-04-10 华南理工大学 Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693392A (en) * 1986-11-03 1994-04-05 Allied Signal Inc Vitreous alloy having magneto-striction of almost zero for use in high frequency
JPH08229642A (en) * 1996-03-11 1996-09-10 Toshiba Corp Extra thin amorphous alloy of high permeability, low iron loss
WO2000061830A3 (en) * 1999-04-12 2001-02-08 Allied Signal Inc Magnetic glassy alloys for high frequency applications
US6432226B2 (en) 1999-04-12 2002-08-13 Alliedsignal Inc. Magnetic glassy alloys for high frequency applications
US6475303B1 (en) 1999-04-12 2002-11-05 Honeywell International Inc. Magnetic glassy alloys for electronic article surveillance
JP2002541331A (en) * 1999-04-12 2002-12-03 アライドシグナル インコーポレイテッド Magnetic glassy alloys for high frequency applications
WO2002013210A3 (en) * 2000-08-08 2002-07-18 Honeywell Int Inc Magnetic glassy alloys for electronic article surveillance
WO2003067615A1 (en) 2002-02-08 2003-08-14 Honeywell International Inc. Current transformer having an amorphous fe-based core
US6930581B2 (en) 2002-02-08 2005-08-16 Metglas, Inc. Current transformer having an amorphous fe-based core
CN110983112A (en) * 2019-12-30 2020-04-10 华南理工大学 Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof
CN110983112B (en) * 2019-12-30 2021-11-02 华南理工大学 Cobalt-based amorphous soft magnetic alloy for precise current detection and preparation method thereof

Similar Documents

Publication Publication Date Title
CA1182308A (en) Amorphous magnetic alloy
CN107210108B (en) Magnetic core based on nanocrystalline magnetic alloy
JP2007299838A (en) Magnetic core for current transformer, current transformer using same, and electric power meter
JP2011102438A (en) Iron-based amorphous alloy having linear bh loop
EP0086485B1 (en) Wound iron core
JPH01294847A (en) Soft-magnetic alloy
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
US4834816A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JPS61261451A (en) Magnetic material and its production
JPS6332244B2 (en)
JP2000277357A (en) Saturatable magnetic core and power supply apparatus using the same
US4769091A (en) Magnetic core
US5110378A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JPH01290744A (en) Fe-base soft-magnetic alloy
JPH0277555A (en) Fe-base soft-magnetic alloy
JPH0123926B2 (en)
JPS62167840A (en) Magnetic material and its manufacture
JP2698769B2 (en) Manufacturing method of high permeability core
JPH02183508A (en) Low-loss core
JPH0811818B2 (en) Heat treatment method for toroidal amorphous magnetic core
JPH01290746A (en) Soft-magnetic alloy
JP2835127B2 (en) Magnetic core and manufacturing method thereof
JPS59172215A (en) Toroidal core having superior frequency characteristic
KR870000040B1 (en) Low-loss amorphus alloy
JPH01180944A (en) Amorphous magnetic alloy for choking coil and its production