JPH0475227B2 - - Google Patents

Info

Publication number
JPH0475227B2
JPH0475227B2 JP59096191A JP9619184A JPH0475227B2 JP H0475227 B2 JPH0475227 B2 JP H0475227B2 JP 59096191 A JP59096191 A JP 59096191A JP 9619184 A JP9619184 A JP 9619184A JP H0475227 B2 JPH0475227 B2 JP H0475227B2
Authority
JP
Japan
Prior art keywords
catalyst
iron
reaction
activated carbon
pcbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59096191A
Other languages
Japanese (ja)
Other versions
JPS60239452A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59096191A priority Critical patent/JPS60239452A/en
Publication of JPS60239452A publication Critical patent/JPS60239452A/en
Publication of JPH0475227B2 publication Critical patent/JPH0475227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、触媒として活性炭及び鉄化合物を使
用し、ベンゾニトリルと塩素とを気相で反応させ
て、各種農薬、医薬或いは染料などの中間原料と
して有用なペンタクロロベンゾニトリルを製造す
る方法に関する。 従来、ベンゾニトリル(以下BNと略す)を原
料とし、触媒の存在下、気相でペンタクロロベン
ゾニトリル(以下PCBNと略す)を製造する方法
としては、例えば特許第618767号に記載された方
法が知られている。 しかしながら、前記特許方法においては、ニト
リル基の塩素化分解反応によるヘキサクロロベン
ゼンや、その他の副生物が4〜7%も存在してい
る。この様な副生物が多量に存在することから、
工業的且つ、大量にPCBNを製造し、このものを
次の反応工程に供するに際しては、煩雑な分離、
精製手段等の後処理が必要である。また、前記特
許に記載の方法について実験を行なつたところ、
活性炭のみを触媒として使用した場合、反応開始
1〜2時間経過時点では、同明細書記載の通り、
純度96%前後のPCBNが得られることが確認され
た。しかしながら、更に実験を進めたところ、反
応開始5時間後では純度90%前後、10時間経過後
では70%前後にまでPCBNの純度が低下し、触媒
の賦活化或いは取替えが必要となり、反応を一時
中断せざるを得ない状況となつた。また、アルカ
リ金属及びアルカリ土類金属の塩化物、例えば塩
化カリウム及び塩化バリウムを活性炭に付着させ
た触媒を使用した場合、前述の活性炭のみを触媒
として使用した場合と同様に、触媒活性は認めら
れたものの、触媒寿命の改善は認められなかつ
た。この様な状況から、前記特許の方法では、純
度の高い、煩雑な後処理操作を必要としない
PCBNを、長期間連続的に大量生産することは困
難であると判断せざるを得なかつた。 本発明者達は、BNの気相塩素化による高純度
のPCBNを、長期間連続的に大量生産する方法を
見出すべく、種々検討を重ねた結果、触媒として
活性炭及び鉄化合物を使用すると、純度97%以上
のPCBNが得られること、更には触媒寿命が長く
なり、例えば反応開始80時間経過後においても、
純度99%のPCBNが得られることを見出し、本発
明を完成するに至つた。 すなわち本発明は、ベンゾニトリルと塩素とを
触媒の存在下に気相で反応させてペンタクロロベ
ンゾニトリルを製造する方法において、前記触媒
として活性炭及び鉄化合物を使用することを特徴
とするペンタクロロベンゾニトリルの製造方法で
ある。 本発明で用いる触媒成分の一つである鉄化合物
としては、例えば金属鉄、鉄の酸化物、水酸化
物、無機酸塩、有機酸塩或いはカルボニル化合物
などが挙げられるが、本発明の塩素化反応時に
は、これらの鉄化合物は鉄の塩化物として存在
し、触媒として作用しているものと思われる。 本発明方法の実施に当つては、反応器の反応部
に触媒を充填し、そこへ原料物質のBNと塩素と
を別々に或いは混合して供給することによつて行
なわれる。ここで用いられる触媒成分は、担体と
しても作用する活性炭に金属鉄、鉄の酸化物、水
酸化物、無機酸塩、有機酸塩或いはカルボニル化
合物の少なくとも一種を担持させて使用される。
担持方法は特に限定されないが、例えば鉄化合物
水溶液と活性炭とを混合する方法、活性炭の存在
下に塩素を導入し、そこへ鉄化合物を添加する方
法或いは、活性炭及び鉄化合物の存在下に塩素を
導入する方法などがある。 前記触媒は、本発明の塩素化反応に先立つて、
触媒層に充填し、次いでこの触媒層に塩素を例え
ば200〜500℃の温度で0.5〜2時間通じて触媒成
分を活性化して使用することもできる。もちろ
ん、触媒は固定床、流動床などの形式で反応器内
に充填されるべく、予め適当な大きさの粒状、ペ
レツト状に成型されていてもよい。工業的には活
性炭に金属鉄、鉄の酸化物、水酸化物、無機酸
塩、有機酸塩或いはカルボニル化合物の少なくと
も一種を担持させたもの、中でも塩化鉄、金属
鉄、水酸化鉄、硫酸鉄、硝酸鉄、炭酸鉄、鉄カル
ボニル、有機酸鉄などが好ましく、特に活性炭に
塩化鉄、金属鉄、酸化鉄或いは水酸化鉄を担持さ
せたものが好ましい。触媒の使用量は一概に規定
されないが、長時間連続的に大量生産するに有利
な流動床で反応させる場合、一般に原料BN1時
間当り100重量部投入する場合、触媒が1〜100重
量部、望ましくは5〜50重量部であり、鉄化合物
の担持割合は、一般に活性炭100重量部に対して
鉄として2〜20重量部、望ましくは5〜15重量
部、特に望ましくは7〜13重量部である。鉄化合
物の担持割合は特に重要であり、例えば、少なき
に過ぎると充分な触媒活性及び触媒寿命が得られ
ず、また、多きに過ぎると過塩素化状態になりや
すく、副生物が生成して目的物の純度が低下する
ので望ましくない。 尚、前記触媒に、更に他の金属化合物、例えば
ニツケル、クロムなどを担持させてもよく、その
場合鉄化合物の担持割合を低減させ得ることな
ど、より望ましい効果を示すこともある。 本発明方法の塩素化反応を行うに際し、窒素、
ヘリウム、アルゴンなどの不活性希釈剤を使用し
てもよく、この希釈剤は他の原料物質と一緒に或
いは別々に反応管に導入してもよい。不活性希釈
剤の使用量は一概に規定できないが、BN1モル
に対して普通0〜30モルであり、望ましくは3〜
10モルである。本発明の塩素化反応において、原
料物質は通常ガス状態で反応管に導入され、例え
ばBNを気化させてそのまま導入することができ
る。塩素の使用量は、BN1モルに対して普通5
〜10モル、望ましくは5〜6.5モルである。本発
明の塩素化反応の反応温度は、普通300〜600℃、
望ましくは400〜500℃である。 反応器から排出されるガス状物質には、PCBN
を主成分とする塩素化生成物、未反応原料、副生
塩酸ガス、場合によつては不活性希釈剤が含まれ
ているが、これらは適当な冷却、濾過、水洗など
の簡単な方法によつて、目的物であるPCBNを高
純度物として単離することができる。 本発明の方法では、前記触媒の条件、各反応条
件を適宜選択することによつて、10時間以上に亘
つて純度97%以上の目的物が、また更に各条件を
選択することによつて、純度99%以上の目的物を
長時間に亘つて得ることが出来る。 実施例 1 反応器として反応部が内径100mm、高さ1200mm
の触媒流動床を有するインコネル製竪型反応管で
あり、これに内径40mm、長さ550mmのインコネル
製予熱管を接続し、これらを温度制御できるよう
に電熱器及び断熱材で覆つたものを使用した。 窒素気流下、粒径32〜100メツシユに調整した
活性炭(ツルミコール製GL−60)2900gを反応管
の触媒充填部に入れ、350℃に昇温した後、塩素
ガス12.2/分、窒素ガス14.6/分の割合にな
るよう導入し、導入開始20分後に鉄粉320gを反
応器上部より投入して約1時間触媒を活性化し
た。 ベンゾニトリル10.6ml/分を気化器を通じて窒
素ガス12.3/分と共に予熱管を通じ、また塩素
ガス12.2/分を別の予熱管を通じてそれぞれ反
応管に導入し、430〜460℃の温度で約10時間に亘
つて反応させた。 反応器より排出するガスは、水スクラバーにて
吸収スラリー化させ、濾過機にて濾別、洗浄、乾
燥して純度99.1%の目的物(白色結晶)16.15Kg
(収率93.1%)を得た。 実施例 2〜13 前記実施例1と同様にして、触媒の活性化及び
下記第1表の条件に従つて反応させた結果を第1
表に示す。 なお、第1表中各反応時間におけるPCBN含有
率(%)は、反応器上部に設けたサンプリング口
よりサンプリングし、ガスクロマトグラフイーに
て分析した結果である。また、各実施例における
目的物の収率は、92〜96%であつた。 注 表中の略号は、次の通りである。 A.C. ;活性炭 Fe ;鉄粉を反応器上部より投入 FeC3
;塩化第二鉄を充填前に活性炭と混合、担持 NiC2・6H2O ;塩化ニツケルを 〃 CrC3・6H2O ;塩化クロミウムを 〃 α−FeOOH ;ゲーサイトを 〃 KC ;塩化カリウムを 〃 BaC2・2H2
;塩化バリウムを 〃
The present invention relates to a method for producing pentachlorobenzonitrile, which is useful as an intermediate raw material for various agricultural chemicals, medicines, dyes, etc., by reacting benzonitrile and chlorine in the gas phase using activated carbon and an iron compound as a catalyst. Conventionally, as a method for producing pentachlorobenzonitrile (hereinafter referred to as PCBN) using benzonitrile (hereinafter referred to as BN) as a raw material in the presence of a catalyst in a gas phase, for example, the method described in Patent No. 618767 is used. Are known. However, in the patented method, 4 to 7% of hexachlorobenzene and other by-products are present due to the chlorination decomposition reaction of nitrile groups. Due to the large amount of such by-products,
When producing PCBN industrially and in large quantities and subjecting it to the next reaction process, complicated separation,
Post-treatment such as purification means is required. Furthermore, when we conducted an experiment on the method described in the patent, we found that
When only activated carbon is used as a catalyst, 1 to 2 hours after the start of the reaction, as described in the specification,
It was confirmed that PCBN with a purity of around 96% could be obtained. However, as the experiment progressed further, the purity of PCBN decreased to around 90% 5 hours after the start of the reaction, and around 70% after 10 hours, making it necessary to activate or replace the catalyst, and the reaction was temporarily stopped. The situation has become such that it has no choice but to be suspended. In addition, when using a catalyst in which chlorides of alkali metals and alkaline earth metals, such as potassium chloride and barium chloride, are attached to activated carbon, no catalytic activity is observed, as in the case where activated carbon alone is used as the catalyst. However, no improvement in catalyst life was observed. Under these circumstances, the patented method achieves high purity and does not require complicated post-processing operations.
We had no choice but to conclude that it would be difficult to mass-produce PCBN continuously over a long period of time. The inventors of the present invention have conducted various studies in order to find a method to mass-produce high-purity PCBN continuously over a long period of time by vapor-phase chlorination of BN. As a result, they have found that using activated carbon and iron compounds as catalysts results in high purity PCBN. 97% or more of PCBN can be obtained, and the catalyst life is longer, for example, even after 80 hours have passed since the start of the reaction.
They discovered that PCBN with a purity of 99% can be obtained and completed the present invention. That is, the present invention provides a method for producing pentachlorobenzonitrile by reacting benzonitrile and chlorine in the gas phase in the presence of a catalyst, characterized in that activated carbon and an iron compound are used as the catalyst. This is a method for producing nitrile. Examples of iron compounds that are one of the catalyst components used in the present invention include metallic iron, iron oxides, hydroxides, inorganic acid salts, organic acid salts, and carbonyl compounds. During the reaction, these iron compounds exist as iron chlorides and are thought to act as catalysts. The method of the present invention is carried out by filling the reaction section of the reactor with a catalyst and supplying the raw materials BN and chlorine therein either separately or in a mixture. The catalyst component used here is such that at least one of metallic iron, iron oxide, hydroxide, inorganic acid salt, organic acid salt, or carbonyl compound is supported on activated carbon that also acts as a carrier.
The supporting method is not particularly limited, but for example, a method of mixing an iron compound aqueous solution and activated carbon, a method of introducing chlorine in the presence of activated carbon and adding an iron compound thereto, or a method of introducing chlorine in the presence of activated carbon and an iron compound. There are ways to introduce it. The catalyst, prior to the chlorination reaction of the present invention,
It can also be used by filling a catalyst bed and then applying chlorine to the catalyst bed at a temperature of 200 to 500° C. for 0.5 to 2 hours to activate the catalyst component. Of course, the catalyst may be formed in advance into granules or pellets of an appropriate size so as to be packed into the reactor in a fixed bed, fluidized bed, or the like. Industrially, activated carbon supports at least one of metallic iron, iron oxides, hydroxides, inorganic acid salts, organic acid salts, or carbonyl compounds, especially iron chloride, metallic iron, iron hydroxide, and iron sulfate. , iron nitrate, iron carbonate, iron carbonyl, organic acid iron, etc. are preferred, and activated carbon supported with iron chloride, metallic iron, iron oxide, or iron hydroxide is particularly preferred. The amount of the catalyst to be used is not absolutely specified, but when the reaction is carried out in a fluidized bed, which is advantageous for continuous mass production over a long period of time, when 100 parts by weight of the raw material BN is added per hour, the catalyst is desirably 1 to 100 parts by weight. is 5 to 50 parts by weight, and the supporting ratio of the iron compound is generally 2 to 20 parts by weight, preferably 5 to 15 parts by weight, particularly preferably 7 to 13 parts by weight of iron per 100 parts by weight of activated carbon. . The supporting ratio of iron compounds is particularly important; for example, if it is too low, sufficient catalyst activity and catalyst life will not be obtained, and if it is too high, a state of overchlorination will easily occur and by-products will be generated. This is undesirable because it reduces the purity of the target product. It should be noted that the catalyst may further support other metal compounds such as nickel, chromium, etc. In this case, more desirable effects such as the ability to reduce the supported ratio of iron compounds may be obtained. When carrying out the chlorination reaction of the method of the present invention, nitrogen,
Inert diluents such as helium, argon, etc. may also be used, and these diluents may be introduced into the reaction tube together with other feed materials or separately. The amount of inert diluent to be used cannot be absolutely specified, but it is usually 0 to 30 moles per mole of BN, preferably 3 to 30 moles.
It is 10 moles. In the chlorination reaction of the present invention, the raw material is usually introduced into the reaction tube in a gaseous state; for example, BN can be vaporized and introduced as it is. The amount of chlorine used is usually 5 to 1 mole of BN.
~10 moles, preferably 5 to 6.5 moles. The reaction temperature of the chlorination reaction of the present invention is usually 300 to 600°C,
The temperature is preferably 400 to 500°C. The gaseous material discharged from the reactor contains PCBN
It contains chlorinated products mainly composed of Therefore, the target product, PCBN, can be isolated as a highly purified product. In the method of the present invention, by appropriately selecting the catalyst conditions and each reaction condition, the target product with a purity of 97% or more can be produced for 10 hours or more, and by further selecting each condition, The target product with a purity of 99% or higher can be obtained over a long period of time. Example 1 The reaction part as a reactor has an inner diameter of 100 mm and a height of 1200 mm.
This is an Inconel vertical reaction tube with a catalyst fluidized bed, to which an Inconel preheating tube with an inner diameter of 40 mm and a length of 550 mm is connected, and these are covered with an electric heater and heat insulating material to control the temperature. did. Under a nitrogen stream, 2900 g of activated carbon (GL-60 manufactured by Tsurumicol) adjusted to a particle size of 32 to 100 mesh was placed in the catalyst-packed section of the reaction tube, heated to 350°C, and then chlorine gas was added at 12.2/min and nitrogen gas was added at 14.6/min. 20 minutes after the start of introduction, 320 g of iron powder was introduced from the top of the reactor to activate the catalyst for about 1 hour. Benzonitrile 10.6 ml/min was introduced into the reaction tube through a vaporizer together with nitrogen gas 12.3/min through a preheating tube, and chlorine gas 12.2/min was introduced into the reaction tube through another preheating tube, and the mixture was heated at a temperature of 430 to 460°C for about 10 hours. The reaction was carried out over a period of time. The gas discharged from the reactor is absorbed into a slurry by a water scrubber, separated by a filter, washed, and dried to produce 16.15 kg of the target product (white crystals) with a purity of 99.1%.
(yield 93.1%). Examples 2 to 13 In the same manner as in Example 1, the catalyst was activated and the results were reacted according to the conditions shown in Table 1 below.
Shown in the table. Note that the PCBN content (%) at each reaction time in Table 1 is the result of sampling from a sampling port provided at the top of the reactor and analyzing it by gas chromatography. Moreover, the yield of the target product in each Example was 92 to 96%. Note: The abbreviations in the table are as follows. AC: Activated carbon Fe: Iron powder is introduced from the top of the reactor FeC 3
Mix and support ferric chloride with activated carbon before filling NiC 2.6H 2 O; Nickel chloride CrC 3.6H 2 O; Chromium chloride α-FeOOH; Goethite KC; Potassium chloride BaC22H2O
;Barium chloride 〃

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ベンゾニトリルと塩素とを触媒の存在下に気
相で反応させてペンタクロロベンゾニトリルを製
造する方法において、前記触媒として活性炭及び
鉄化合物を使用することを特徴とするペンタクロ
ロベンゾニトリルの製造方法。
1. A method for producing pentachlorobenzonitrile by reacting benzonitrile and chlorine in the gas phase in the presence of a catalyst, the method comprising using activated carbon and an iron compound as the catalyst. .
JP59096191A 1984-05-14 1984-05-14 Preparation of pentachlorobenzonitrile Granted JPS60239452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59096191A JPS60239452A (en) 1984-05-14 1984-05-14 Preparation of pentachlorobenzonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59096191A JPS60239452A (en) 1984-05-14 1984-05-14 Preparation of pentachlorobenzonitrile

Publications (2)

Publication Number Publication Date
JPS60239452A JPS60239452A (en) 1985-11-28
JPH0475227B2 true JPH0475227B2 (en) 1992-11-30

Family

ID=14158409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59096191A Granted JPS60239452A (en) 1984-05-14 1984-05-14 Preparation of pentachlorobenzonitrile

Country Status (1)

Country Link
JP (1) JPS60239452A (en)

Also Published As

Publication number Publication date
JPS60239452A (en) 1985-11-28

Similar Documents

Publication Publication Date Title
JP3191489B2 (en) Method for producing halogenated phthalic anhydride
JPS6346748B2 (en)
AU784208B2 (en) Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane
JPH0596B2 (en)
US3959297A (en) Process for the preparation of 3-cyanopyridine
US4179462A (en) Process for preparing acetonitrile
JPH0475227B2 (en)
US3031265A (en) Method for making cyanogen
US3449324A (en) Process for the production of 5h-dibenz(b,f)azepines
JP2769739B2 (en) Formaldehyde production
JPH0219108B2 (en)
JPS5811408B2 (en) Production method of trichlorethylene
JPH02115138A (en) Production of phenol and aniline
JPH04297445A (en) Production of carbonic acid diester
WO2009080240A2 (en) Process for the preparation of melamine
JPS6049168B2 (en) Process for producing orthomethylated phenols
JPH0489458A (en) Production of carbonic acid diester
JPS62185082A (en) Production of tetrachlorophthalic anhydride
JPH0825961B2 (en) Method for producing carbonic acid diester
JPH08183774A (en) Production of monochloro-3-cyanopyridines
SU243513A1 (en) METHOD OF OBTAINING LOWER UNSATURATED ALIPHATIC NITRILES
JPH04297443A (en) Production of carbonic acid diester
JPH08217752A (en) Production of monochloro-3-cyanopyridine compound
JPS586693B2 (en) Production method of iron pentacarbonyl
JPH0957106A (en) Production of catalyst for synthesizing methacrolein and methacrylic acid