JPH02115138A - Production of phenol and aniline - Google Patents

Production of phenol and aniline

Info

Publication number
JPH02115138A
JPH02115138A JP63268154A JP26815488A JPH02115138A JP H02115138 A JPH02115138 A JP H02115138A JP 63268154 A JP63268154 A JP 63268154A JP 26815488 A JP26815488 A JP 26815488A JP H02115138 A JPH02115138 A JP H02115138A
Authority
JP
Japan
Prior art keywords
catalyst
aniline
benzene
phenol
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63268154A
Other languages
Japanese (ja)
Inventor
Fujio Matsuda
松田 藤夫
Kozo Kato
加藤 高藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63268154A priority Critical patent/JPH02115138A/en
Publication of JPH02115138A publication Critical patent/JPH02115138A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To easily produce phenol and aniline from inexpensive general raw materials in one step by carrying out vapor-phase catalytic reaction of benzene, water and ammonia in the presence of a catalyst. CONSTITUTION:The objective compounds can be produced by using benzene as a raw material and reacting with water and ammonia in the presence of a catalyst in an inert gas atmosphere (e.g., nitrogen, helium, argon or carbon dioxide gas atmosphere) under normal or positive pressure at 200-600 deg.C, preferably 300-500 deg.C. The catalyst is those containing phosphoric acid or its salt and is produced e.g., by dissolving a metal salt such as a copper salt in water, adding phosphoric acid or a solution containing phosphoric acid to the salt solution, adjusting the pH of the mixture to 5-7 with ammonia, etc., stirring and filtering the mixture, calcining, crushing and granulating the precipitate, adding usually silicon oxide to the granule as a binder and granulating, drying and calcining the product. The amounts of water and ammonia are >=1mol per 1mol of benzene.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フェノールおよびアニリンの新規な製法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for producing phenol and aniline.

詳しくはベンゼンと水とアンモニアとを反応させて、1
工程でフェノールおよびアニリンを製造する方法に関す
るものである。
In detail, by reacting benzene, water, and ammonia, 1
The present invention relates to a method for producing phenol and aniline in a process.

〔従来の技術〕[Conventional technology]

従来、ベンゼンからフェノールを1工程で製造する方法
としては、触媒の存在下に、ベンゼンと酸素とを反応さ
せる直接酸化法が知られている。
Conventionally, as a method for producing phenol from benzene in one step, a direct oxidation method in which benzene and oxygen are reacted in the presence of a catalyst is known.

しかしながら、この場合、ベンゼンの完全酸化が起こり
フェノールの選択率が大変低い(特開昭56−8752
7号)。
However, in this case, complete oxidation of benzene occurs and the selectivity of phenol is very low (Japanese Patent Application Laid-Open No. 8752-1999)
No. 7).

また、ベンゼンと亜酸化窒素とを触媒の存在下に反応さ
せて、フェノールを製造する方法も知られている。しか
しながら、この場合、原料の亜酸化窒素は高価である上
に、フェノールの収率は低い(特開昭58−14652
2) 。
Furthermore, a method for producing phenol by reacting benzene and nitrous oxide in the presence of a catalyst is also known. However, in this case, the raw material nitrous oxide is expensive, and the yield of phenol is low (Japanese Patent Application Laid-Open No. 14652-1982).
2).

また、従来、ベンゼンとアンモニアとからアニリンが生
成する反応は知られている(DT−O52,460,2
12,2,460,233(1975) )が、発生し
た水素が触媒の一部NiOを還元するので、触媒の再生
が必要である。
Furthermore, the reaction of producing aniline from benzene and ammonia has been known (DT-O52,460,2
12, 2, 460, 233 (1975)), regeneration of the catalyst is necessary because the hydrogen generated reduces some of the NiO in the catalyst.

そのため、ベンゼンから1工程でフェノールまたはアニ
リンを製造する方法が望まれていたが、いまだ工業化さ
れていない、また、ベンゼンから1工程でフェノールお
よびアニリンを製造する方法もいまだ工業化されていな
い。
Therefore, a method for producing phenol or aniline from benzene in one step has been desired, but it has not yet been industrialized, and a method for producing phenol and aniline from benzene in one step has not yet been industrialized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の’;MBは、高収率でベンゼンからフェノール
およびアニリンを1工程で製造する工業的方法を提供す
ることである。すなわち、従来、ベンゼンからフェノー
ルを、そして、フェノールとアンモニアとを反応させて
アニリンを製造していたが、本発明の課題は、ベンゼン
から1工程でフェノールおよびアニリンを製造する方法
を提供することである。
The MB of the present invention is to provide an industrial process for producing phenol and aniline from benzene in one step with high yield. That is, conventionally, aniline was produced by reacting phenol from benzene and then phenol and ammonia, but the object of the present invention is to provide a method for producing phenol and aniline from benzene in one step. be.

[課題を解決するための手段〕 本発明者らは、上記課題に関して種々検討した結果、触
媒の存在下に、ベンゼンと水とアンモニアとを気相接触
反応させることにより、l工程でベンゼンからフェノー
ルおよびアニリンが選択率よく得られることを見出し、
本発明の方法に至った。
[Means for Solving the Problems] As a result of various studies regarding the above-mentioned problems, the present inventors have determined that phenol can be converted from benzene in step 1 by carrying out a gas phase contact reaction between benzene, water, and ammonia in the presence of a catalyst. and aniline can be obtained with good selectivity,
The method of the present invention has been achieved.

すなわち、本発明は、 触媒の存在下に、ベンゼンと水とアンモニアとを気相接
触反応させることを特徴とするフェノールおよびアニリ
ンの製法である。
That is, the present invention is a method for producing phenol and aniline, which is characterized by subjecting benzene, water, and ammonia to a gas phase catalytic reaction in the presence of a catalyst.

その反応は、次式のように進行するものと考えられる。The reaction is thought to proceed as shown in the following equation.

ChHh   、+ HtO→ CaHsOH+ Hz
  (1)CaHsOfl  + NH3→ Cb H
s N Hz + Hz O(2)すなわち、触媒の存
在下に、ベンゼンと水とを反応させれば、(1)式のよ
うに、フェノールと水素が生成するのである。さらに(
1)式で生成したフェノールがアンモニアと反応すれば
、(2)式のように、アニリンと水が生成するのである
ChHh, + HtO→ CaHsOH+ Hz
(1) CaHsOfl + NH3→ Cb H
s N Hz + Hz O (2) That is, when benzene and water are reacted in the presence of a catalyst, phenol and hydrogen are produced as shown in equation (1). moreover(
When the phenol produced in equation 1) reacts with ammonia, aniline and water are produced as shown in equation (2).

すなわち、本発明による方法で、ベンゼンからフェノー
ルが住成し、そのフェノールからアニリンが生成すると
考えられる。それ故、本発明による方法でベンゼンから
フェノールおよびアニリンが1工程で製造できるのであ
る。また、本発明による反応では、水は強力な酸化剤で
はないので、ベンゼンが完全酸化してCO□になること
は極力制御できる。
That is, it is thought that in the method according to the present invention, phenol is formed from benzene, and aniline is formed from the phenol. Therefore, with the process according to the invention, phenol and aniline can be produced from benzene in one step. Furthermore, in the reaction according to the present invention, since water is not a strong oxidizing agent, complete oxidation of benzene to CO□ can be controlled as much as possible.

本発明に用いられる触媒は、リン酸またはリン酸塩であ
る。また、本発明に用いられる触媒は、リン酸またはリ
ン酸塩を含有する触媒である。更に、本発明に用いられ
る触媒は、中でも特にリン酸、リン酸銅、リン酸クロム
、リン酸鉄、リン酸カルシウム等の少なくとも1種以上
を含有する触媒である。これらは単独または組み合わせ
で使用され、かつ、シリカ、アルミナ、シリカ−アルミ
ナ、ゼオライト、ケイソウ土、活性白土、酸化チタン、
酸化マグネシウム、活性炭などの担体に担持して使用し
てもよい。
The catalyst used in the present invention is phosphoric acid or a phosphate salt. Further, the catalyst used in the present invention is a catalyst containing phosphoric acid or a phosphate salt. Further, the catalyst used in the present invention is a catalyst containing at least one of phosphoric acid, copper phosphate, chromium phosphate, iron phosphate, calcium phosphate, etc., among others. These are used alone or in combination, and include silica, alumina, silica-alumina, zeolite, diatomaceous earth, activated clay, titanium oxide,
It may be used by being supported on a carrier such as magnesium oxide or activated carbon.

また、触媒物質を造粒するために、バインダーとしてケ
イソウ土、コロイダルシリカ等の酸化珪素を触媒物質の
中に混合して使用してもよい本発明の方法において用い
られるリン酸触媒は、通常、金属、金属酸化物等にリン
酸を含浸させた後、電気炉で300〜500°Cで焼成
して触媒を鋼製する1本発明に用いられる金属は銅、ク
ロム、鉄、カルシウム等である。また本発明に用いられ
る金属酸化物は酸化銅、酸化クロム、酸化鉄、酸化カル
シウム等である。
In addition, in order to granulate the catalyst material, silicon oxide such as diatomaceous earth or colloidal silica may be mixed into the catalyst material as a binder and used in the method of the present invention. After impregnating metals, metal oxides, etc. with phosphoric acid, the catalyst is made of steel by firing at 300 to 500°C in an electric furnace.1 The metals used in the present invention are copper, chromium, iron, calcium, etc. . Further, metal oxides used in the present invention include copper oxide, chromium oxide, iron oxide, calcium oxide, and the like.

本発明において用いられるリン酸塩触媒は、沈澱法また
は浸漬法で調製することができる。
The phosphate catalyst used in the present invention can be prepared by a precipitation method or a dipping method.

沈澱法による場合はたとえば銅等の金属塩を水に熔解し
た後、リン酸またはリン酸含有溶液を添カロし、アンモ
ニア等を添加してpnを5〜7に調節し、数時間攪拌し
た後、沈澱を濾過し、沈澱を800°Cに満たない温度
で焼成した後、粉砕粒化し、通常、バインダーとして酸
化珪素を加えて造粒乾燥焼成して触媒を調製することが
できる。
When using the precipitation method, for example, after dissolving a metal salt such as copper in water, phosphoric acid or a phosphoric acid-containing solution is added, ammonia etc. are added to adjust the pn to 5 to 7, and the mixture is stirred for several hours. The catalyst can be prepared by filtering the precipitate, calcining the precipitate at a temperature below 800°C, pulverizing it into granules, adding silicon oxide as a binder, granulating, drying and calcining.

また、浸漬法による場合は、たとえば、担体として酸化
珪素を銅等の金属塩の水溶液に浸漬した後、リン酸を添
加し、アンモニア等を添加してpHを5〜7に調節した
後、リン酸塩を担持した酸化珪素を濾過し、乾燥した後
、800°C以下で数時間焼成して触媒を調製する。
In addition, when using the immersion method, for example, silicon oxide as a carrier is immersed in an aqueous solution of a metal salt such as copper, phosphoric acid is added, ammonia etc. are added to adjust the pH to 5 to 7, and then phosphoric acid is added. The silicon oxide supporting the acid salt is filtered, dried, and then calcined at 800° C. or lower for several hours to prepare a catalyst.

また、セルローズ、澱粉、その他の有機化合物や炭等の
粉末、粒、繊維等を触媒の中に混合し、触媒の前処理の
時に焼却し、空洞を残し、多孔貿の触媒を製造すれば、
触媒の性能、とくにフェノールおよびアニリンの収率向
上に良い効果がある。
In addition, if powders, grains, fibers, etc. of cellulose, starch, other organic compounds, charcoal, etc. are mixed into the catalyst and incinerated during the pretreatment of the catalyst, leaving cavities to produce a porous catalyst.
It has a positive effect on catalyst performance, especially improving the yield of phenol and aniline.

また、銅、クロム、鉄、カルシウム等の金属、酸化物、
金属塩とリン酸および/またはリン酸塩を組み合わせて
、触媒として使用することもできる。
In addition, metals such as copper, chromium, iron, calcium, oxides,
Combinations of metal salts and phosphoric acid and/or phosphates can also be used as catalysts.

また、リン酸を反応器または反応管の中へ原料と共にま
たは別々に添加することもできる。
It is also possible to add phosphoric acid into the reactor or reaction tube together with the raw materials or separately.

本発明に用いられるベンゼンおよび水の使用量は、特に
限定されるものではないが、すべてのベンゼンが対応す
るフェノールに変化するためには、(1)式に示すよう
に、ベンゼンに対して等モル以上の水が必要である。ま
た、本発明に用いられるアンモニアの使用量は特に限定
されるものではないが、使用するベンゼンに対して等モ
ル以上のアンモニアを添加すれば、生成したフェノール
がアニリンに変化し易いと考えられる。また、アンモニ
アの使用量が増加すれば、アニリンの生成量も増加する
。また、通常、アンモニア水としてアンモニアと水を同
時に供給すると便利である。
The amounts of benzene and water used in the present invention are not particularly limited, but in order to convert all benzene into the corresponding phenol, as shown in equation (1), it is necessary to More than mol of water is required. Further, although the amount of ammonia used in the present invention is not particularly limited, it is thought that if ammonia is added in an amount equal to or more than the same mole relative to the benzene used, the generated phenol is likely to be converted into aniline. Furthermore, as the amount of ammonia used increases, the amount of aniline produced also increases. Further, it is usually convenient to supply ammonia and water at the same time as aqueous ammonia.

本発明の方法においては、反応は、通常、不活性ガス雰
囲気中、常圧または加圧下において実施される。不活性
ガスとしては、窒素、ヘリウム、アルゴン、二酸化炭素
等があげられる。
In the method of the present invention, the reaction is usually carried out in an inert gas atmosphere under normal pressure or increased pressure. Examples of the inert gas include nitrogen, helium, argon, carbon dioxide, and the like.

本発明の方法において、反応温度は200〜600゛C
1好ましくは300〜550°Cの範囲である。200
°C未満では本発明による反応が起こらず、600°C
を越えると副生物が多く生成する。
In the method of the present invention, the reaction temperature is 200 to 600°C.
1 Preferably, the temperature is in the range of 300 to 550°C. 200
The reaction according to the present invention does not occur below 600°C.
Exceeding this will produce many by-products.

本発明の方法は気相で実施することができる。The method of the invention can be carried out in the gas phase.

すなわち、固定層、流動層または移動層反応器のいずれ
でも実施できる。また、反応器または反応管中で、前記
触媒の存在下に、ベンゼン、水およびアンモニアを加熱
することにより、本発明の方法は実施される。この際、
場合によっては原料莫気中に、本発明の触媒の一種であ
るリン酸を添加して本発明の方法は実施することができ
る。
That is, it can be carried out in a fixed bed, fluidized bed or moving bed reactor. The process of the invention is also carried out by heating benzene, water and ammonia in the presence of the catalyst in a reactor or reaction tube. On this occasion,
In some cases, the method of the present invention may be carried out by adding phosphoric acid, which is one of the catalysts of the present invention, to the raw material gas.

本発明の方法において、フェノールおよびアニリンは、
反応生成物から適当な方法、たとえば、蒸留のような常
法によって、容易に分離精製できる。
In the method of the invention, phenol and aniline are
It can be easily separated and purified from the reaction product by an appropriate method, for example, a conventional method such as distillation.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 試N Cu5(PO4)t −3H!033.Og、 
Ca3(POa’)t 22.6gおよび東洋濾紙■製
の濾紙粉末(セルローズB)6.0gを混合した後、水
25gを添加して泥状とした後、磁製器に入れ、電炉中
に入れ、空気雰囲気中で150”CX2時間、300°
CX5時間および400°CX2時間焼成して触媒を調
製した。
Example 1 Trial N Cu5(PO4)t -3H! 033. Og,
After mixing 22.6 g of Ca3(POa')t and 6.0 g of filter paper powder (cellulose B) manufactured by Toyo Roshi ■, 25 g of water was added to form a slurry, which was then placed in a porcelain vessel and placed in an electric furnace. 150"CX 2 hours, 300° in air atmosphere
A catalyst was prepared by calcining at CX for 5 hours and at 400°C for 2 hours.

この触媒5dを内径15mmのパイレックスガラス製流
通型反応管に充填した。その反応管を窒素中400°C
で1時間焼成した。
This catalyst 5d was packed into a Pyrex glass flow-through reaction tube having an inner diameter of 15 mm. The reaction tube was heated to 400°C in nitrogen.
Baked for 1 hour.

この反応管の前部は、原料挿入管およびガス導入管に連
結され、原料気化部を構成し、後部は空冷部を経て受器
と連結されていた。この反応管の内温を450°Cに保
ち、液空間速度1.5mQ/hrでベンゼン、2 、0
 ml / h rで28%アンモニア水を別々に原料
挿入管より反応部に供給し、これと同時に窒素30g+
1/蒙inを常圧下で通じた。
The front part of this reaction tube was connected to a raw material insertion pipe and a gas introduction pipe to constitute a raw material vaporization part, and the rear part was connected to a receiver via an air cooling part. The internal temperature of this reaction tube was maintained at 450°C, and benzene, 2,0
28% ammonia water was separately supplied to the reaction section from the raw material insertion tube at a rate of ml/hr, and at the same time 30 g of nitrogen +
1/meng was passed under normal pressure.

反応管を出て凝縮した反応生成物をガスクロマトグラフ
にて分析すると、ベンゼン転化率6.2%、フェノール
選択率66.4%、アニリン選択率31.0%、フェノ
ール収率4.1%、アニリン収率1.9%でフェノール
およびアニリンが得られた。副生物はほとんど得られな
かった。また、ガス分析の結果、二酸化炭素の生成はほ
とんど観察されなかった。
When the reaction product condensed after exiting the reaction tube was analyzed using a gas chromatograph, the benzene conversion rate was 6.2%, the phenol selectivity was 66.4%, the aniline selectivity was 31.0%, and the phenol yield was 4.1%. Phenol and aniline were obtained with an aniline yield of 1.9%. Almost no by-products were obtained. Furthermore, as a result of gas analysis, almost no carbon dioxide production was observed.

実施例2 実施例1の触媒の代わりに粒状の銅クロム触媒(日揮化
学N−201、Cu037%、CrzOi 46%、M
n0z  4%)20gに、85%リン酸水溶液!(s
P044gを含浸させ、400°Cで5時間焼成して触
媒を調製した。
Example 2 A granular copper chromium catalyst (JGC N-201, Cu0 37%, CrzOi 46%, M
n0z 4%) 20g, 85% phosphoric acid aqueous solution! (s
A catalyst was prepared by impregnating 44 g of P0 and calcining at 400°C for 5 hours.

以下、実施例1と同様に実施した結果、ベンゼン転化率
5.3%、フェノール選択率63.2%、アニリン選択
率25.1%、フェノール収率3,3%、アニリン収率
1.3%でフェノールおよびアニリンを得た。他に不明
の副生物が少量生成した。また、少量の二酸化炭素の生
成も観察された。
The following results were carried out in the same manner as in Example 1. The benzene conversion rate was 5.3%, the phenol selectivity was 63.2%, the aniline selectivity was 25.1%, the phenol yield was 3.3%, and the aniline yield was 1.3. % of phenol and aniline were obtained. Small amounts of other unknown by-products were also produced. Also, a small amount of carbon dioxide production was observed.

比較例1 実施例2の方法において、リン酸を使用せず、触媒とし
て粒状の銅クロム触媒(8揮化学NN−201)Loを
使用して、以下実施例2と同様に実施した結果、フェノ
ールおよびアニリンの生成は全く観察されず、二酸化炭
素は多量に生成した。
Comparative Example 1 The method of Example 2 was carried out in the same manner as in Example 2 except that phosphoric acid was not used and a granular copper chromium catalyst (8volatile chemical NN-201) Lo was used as the catalyst. No production of aniline was observed, and a large amount of carbon dioxide was produced.

実施例3 実施例1の触媒の代わりに、試薬 Cu5CPOa)z ’ 3HzO20,Og、ケイソ
ウ土10.0gを混合した後、水25gを添加して泥状
とした後、磁製皿に入れ、電炉中に入れ、空気雰囲気中
で150°CX2時間、400°CX2時間焼成して触
媒を調製した。
Example 3 Instead of the catalyst in Example 1, the reagent Cu5CPOa)z'3HzO20,0g and 10.0 g of diatomaceous earth were mixed, and then 25 g of water was added to make a slurry, which was then placed in a porcelain dish and heated in an electric furnace. The catalyst was then calcined at 150° C. for 2 hours and at 400° C. for 2 hours in an air atmosphere to prepare a catalyst.

以下、実施例1と同様に実施した結果、ベンゼン転化率
6.0%、フェノール選択率65.2%、アニリン選択
率28.3%、フェノール収率3.9%、アニリン収率
1.7%でフェノールおよびアニリンを得た。他に不明
の副生物が少量生成した。また、少量の二酸化炭素の生
成も観察された。
The following results were carried out in the same manner as in Example 1. The benzene conversion rate was 6.0%, the phenol selectivity was 65.2%, the aniline selectivity was 28.3%, the phenol yield was 3.9%, and the aniline yield was 1.7. % of phenol and aniline were obtained. Small amounts of other unknown by-products were also produced. Also, a small amount of carbon dioxide production was observed.

実施例4 実施例1の触媒の代わりに、沈澱法で調製し粒状に成形
したCuz(POa)z H3LOの5dを反応管に充
填し、以下実施例1と同様に実施した結果、ベンゼン転
化率6.1%、フェノール選択率63.6%、アニリン
選択率27.5%、フェノール収率3.9%、アニリン
収率1,7%でフェノールおよびアニリンを得た。他に
不明の副生物が少量生成した。また、少量の二酸化炭素
の生成も観察された。
Example 4 In place of the catalyst in Example 1, 5d of Cuz(POa)zH3LO prepared by the precipitation method and formed into granules was filled into the reaction tube, and the same procedure as in Example 1 was carried out. As a result, the benzene conversion rate was Phenol and aniline were obtained with a phenol selectivity of 63.6%, an aniline selectivity of 27.5%, a phenol yield of 3.9%, and an aniline yield of 1.7%. Small amounts of other unknown by-products were also produced. Also, a small amount of carbon dioxide production was observed.

実施例5 実施例】の触媒の代わりに、沈澱法で調製し粒状に成形
したCrPOa・6H20の5−を反応管に充填し、以
下実施例1と同様に実施した結果、ベンゼン転化率3.
3%、フェノール選択率61.5%、アニリン選択率2
1.7%、フェノール収率2.0%、アニリン収率0.
7%でフェノールおよびアニリンを得た。他に不明の副
生物が少量生成した。
Example 5 The reaction tube was filled with CrPOa.6H20 5- prepared by the precipitation method and formed into granules instead of the catalyst in Example 1, and the same procedure as in Example 1 was carried out. As a result, the benzene conversion rate was 3.
3%, phenol selectivity 61.5%, aniline selectivity 2
1.7%, phenol yield 2.0%, aniline yield 0.
Phenol and aniline were obtained at 7%. Small amounts of other unknown by-products were also produced.

実施例6 実施例1の触媒の代わりに、沈澱法で調製し粒状に成形
したFePO4・4H1Oの5dを反応管に充填し、以
下実施例1と同様に実施した結果、ベンゼン転化率2.
1%、フェノール選択率40.6%、アニリン選択率1
3.1%、フェノール収率0.9%、アニリン収率0.
3%でフェノールおよびアニリンを得た。他に不明の副
生物と二酸化炭素が少量生成した。
Example 6 Instead of the catalyst of Example 1, the reaction tube was filled with 5d of FePO4.4H1O prepared by the precipitation method and formed into granules, and the same procedure as in Example 1 was carried out. As a result, the benzene conversion rate was 2.
1%, phenol selectivity 40.6%, aniline selectivity 1
3.1%, phenol yield 0.9%, aniline yield 0.
Phenol and aniline were obtained at 3%. Other unknown by-products and small amounts of carbon dioxide were also produced.

実施例7 実施例1の触媒の代わりに、沈澱法で調製し粒。Example 7 In place of the catalyst in Example 1, particles were prepared by a precipitation method.

状に成形したCaz(POa)zの51dを反応管に充
填し、以下実施例1と同様に実施した結果、ベンゼン転
化率1,2%、フェノール選択率38.7%、アニリン
選択率13,0%、フェノール収率0.5%、アニリン
収率0.2%でフェノールおよびアニリンを得た。
A reaction tube was filled with 51d of Caz(POa)z molded into a shape, and the following procedure was carried out in the same manner as in Example 1. As a result, the benzene conversion rate was 1.2%, the phenol selectivity was 38.7%, the aniline selectivity was 13, Phenol and aniline were obtained with a phenol yield of 0.5% and an aniline yield of 0.2%.

他に不明の副生物と二酸化炭素が少量生成した。Other unknown by-products and small amounts of carbon dioxide were also produced.

〔発明の効果〕〔Effect of the invention〕

本発明の方法では、触媒の存在下に、ベンゼンと水とア
ンモニアとを気相接触反応させて、1工程でフェノール
とアニリンを製造することができる。
In the method of the present invention, phenol and aniline can be produced in one step by subjecting benzene, water, and ammonia to a gas phase contact reaction in the presence of a catalyst.

本発明の方法によれば、次のような利点がある。According to the method of the present invention, there are the following advantages.

(1)原料がベンゼンと水とアンモニアのような安価な
ものである。
(1) The raw materials are inexpensive such as benzene, water, and ammonia.

(2)1工程でベンゼンからフェノールおよびアニリン
が製造される。
(2) Phenol and aniline are produced from benzene in one step.

(3)フェノールおよびアニリンの収率が良い。(3) Good yields of phenol and aniline.

(4)副生物が少なく、選択率が良く、したがって高純
度のフェノールおよびアニリンを得ることができる。
(4) There are few by-products, the selectivity is good, and therefore highly pure phenol and aniline can be obtained.

(5)二酸化炭素の生成が少なく、完全酸化を抑制する
ことができる。
(5) Less carbon dioxide is produced, and complete oxidation can be suppressed.

(6)副生ずる水素は他に利用することができる。(6) Hydrogen produced by-product can be used for other purposes.

(7)原料がベンゼンと水とアンモニアであるので反応
装置の腐食は少ない。
(7) Since the raw materials are benzene, water and ammonia, there is little corrosion of the reactor.

特許出願人 三井東圧化学株式会社Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)触媒の存在下に、ベンゼンと水とアンモニアとを気
相接触反応させることを特徴とするフェノールおよびア
ニリンの製法。 2)触媒がリン酸および/またはリン酸塩、またはリン
酸および/またはリン酸塩を含有する触媒である請求項
1に記載の製法。 3)リン酸塩がリン酸銅、リン酸クロム、リン酸鉄また
はリン酸カルシウムである請求項2に記載の製法。 4)触媒が多孔質の触媒である請求項2または3に記載
の製法。
[Claims] 1) A method for producing phenol and aniline, which comprises carrying out a gas phase contact reaction of benzene, water and ammonia in the presence of a catalyst. 2) The method according to claim 1, wherein the catalyst is phosphoric acid and/or a phosphate, or a catalyst containing phosphoric acid and/or a phosphate. 3) The method according to claim 2, wherein the phosphate is copper phosphate, chromium phosphate, iron phosphate or calcium phosphate. 4) The method according to claim 2 or 3, wherein the catalyst is a porous catalyst.
JP63268154A 1988-10-26 1988-10-26 Production of phenol and aniline Pending JPH02115138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63268154A JPH02115138A (en) 1988-10-26 1988-10-26 Production of phenol and aniline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268154A JPH02115138A (en) 1988-10-26 1988-10-26 Production of phenol and aniline

Publications (1)

Publication Number Publication Date
JPH02115138A true JPH02115138A (en) 1990-04-27

Family

ID=17454648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268154A Pending JPH02115138A (en) 1988-10-26 1988-10-26 Production of phenol and aniline

Country Status (1)

Country Link
JP (1) JPH02115138A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861536A (en) * 1997-07-31 1999-01-19 Sun Company, Inc. (R&M) Oxidative ammination of benzene to aniline using molecular oxygen as the terminal oxidant
US5952532A (en) * 1997-07-31 1999-09-14 Sunoco, Inc. Hydroxylation of aromatics using molecular oxygen as the terminal oxidant without coreductant
US5962752A (en) * 1997-07-31 1999-10-05 Sun Company, Inc. Leached alumina vanadyl catalysts for hydroxylation of aromatics using molecular oxygen as the terminal oxidant without coreductant
US5981424A (en) * 1997-07-31 1999-11-09 Sunoco, Inc. (R&M) Catalysts for hydroxylation and ammination of aromatics using molecular oxygen as the terminal oxidant without coreductant
JP2009249332A (en) * 2008-04-04 2009-10-29 Univ Of Tokyo Method for producing phenol by direct oxidation of benzene
JP2018515430A (en) * 2015-04-02 2018-06-14 ハンツマン・インターナショナル・エルエルシー Direct amination of hydrocarbons

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861536A (en) * 1997-07-31 1999-01-19 Sun Company, Inc. (R&M) Oxidative ammination of benzene to aniline using molecular oxygen as the terminal oxidant
US5952532A (en) * 1997-07-31 1999-09-14 Sunoco, Inc. Hydroxylation of aromatics using molecular oxygen as the terminal oxidant without coreductant
US5962752A (en) * 1997-07-31 1999-10-05 Sun Company, Inc. Leached alumina vanadyl catalysts for hydroxylation of aromatics using molecular oxygen as the terminal oxidant without coreductant
US5981424A (en) * 1997-07-31 1999-11-09 Sunoco, Inc. (R&M) Catalysts for hydroxylation and ammination of aromatics using molecular oxygen as the terminal oxidant without coreductant
JP2009249332A (en) * 2008-04-04 2009-10-29 Univ Of Tokyo Method for producing phenol by direct oxidation of benzene
JP2018515430A (en) * 2015-04-02 2018-06-14 ハンツマン・インターナショナル・エルエルシー Direct amination of hydrocarbons

Similar Documents

Publication Publication Date Title
US4668652A (en) Catalyst for oxidation reactions and process for its production
AU4899899A (en) Process for the preparation of improved vanadium-phosphorus catalysts and use thereof for the production of maleic anhydride
US5959124A (en) Method of preparing maleic anhydride by vapor phase oxidation of hydrocarbon
JPS62102832A (en) Maleic anhydride producing catalyst
JPS63434B2 (en)
US4171316A (en) Preparation of maleic anhydride using a crystalline vanadium(IV)bis(metaphosphate) catalyst
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
TWI281418B (en) Method for reactivating catalyst for production of methacrylic acid
JPH02115138A (en) Production of phenol and aniline
JPH0596B2 (en)
JP2001233608A (en) Method for synthesizing vpo catalyst
US4247419A (en) Single phase vanadium(IV)bis(metaphosphate) oxidation catalyst with improved intrinsic surface area
JPH0272132A (en) Production of phenol
US4122096A (en) Maleic anhydride production
JPH1121114A (en) Production of new iron phosphate
JPH02101034A (en) Production of phenol
JP2001009285A (en) Production of triethylenediamine with phosphate catalyst
US4014952A (en) Process for the preparation of isoprene
JPH0763625B2 (en) Method for producing iron molybdate catalyst for oxidation
US2450675A (en) Production of nitriles
JPH031059B2 (en)
JPH026414A (en) Preparation of isobutylene
US4055511A (en) Catalyst for preparation of 4-cyanothiazole
US4341659A (en) Catalytic composition
CA3152991C (en) New catalyst system for producing maleic anhydride by means of the catalytic oxidation of n-butane