JPH0474942A - Three-dimensional input device of stress sensor - Google Patents

Three-dimensional input device of stress sensor

Info

Publication number
JPH0474942A
JPH0474942A JP2188469A JP18846990A JPH0474942A JP H0474942 A JPH0474942 A JP H0474942A JP 2188469 A JP2188469 A JP 2188469A JP 18846990 A JP18846990 A JP 18846990A JP H0474942 A JPH0474942 A JP H0474942A
Authority
JP
Japan
Prior art keywords
force sensor
stress sensor
elastic body
input device
gripper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2188469A
Other languages
Japanese (ja)
Inventor
Yasushi Kajiwara
靖 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2188469A priority Critical patent/JPH0474942A/en
Publication of JPH0474942A publication Critical patent/JPH0474942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To obtain a three-dimensional input device being simple and causing no breakdown of a stress sensor, by a construction wherein a measuring point of a gripper which is fixed to a substance to be measured, and displaced, is connected with the fore end of a detecting arm of the stress sensor by a thread-shaped elastic body and thereby input of a signal is executed. CONSTITUTION:A measuring point 1a in the fore end of a gripper 1 which is fixed to a substance to be measured, and displaced, is connected with the fore end of a detecting arm 13 of a stress sensor 10 by a thread-shaped elastic body 2 through a connecting member 3 the direction of which is variable. When the length of the thread-shaped elastic body 2 at the time point of its being stretched is denoted by R, the original length thereof by Ro, a spring constant by K and a length from a point A of connection of the connecting member 3 to the center P of a diaphragm 12 by L, a force F transmitted to the stress sensor 10 is reduced into Fx, Fy and Fz and the Fz can be taken out, as it is, as an output of the stress sensor 10. The coordinates of the measuring point 1a in the fore end of the gripper 1 are calculated onlyfrom outputs Mx, My and Fz of the stress sensor 10, the length L and the values K and Ro determined by the thread-shaped elastic body 2, and thus the position of the measuring point 1a is calculated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動化製造装置やロボットの物品把握部等で対
象物を把握する場合の把握力の自動設定等に使用する力
覚センサーの入力装置に関し、特に拡散歪ゲージを形成
したシリコン単結晶板を起歪体上に接合した拡散型力覚
センサーの入力装置に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention is an input device for a force sensor used for automatic setting of grasping force when grasping an object in an automated manufacturing device or an article grasping section of a robot, etc. In particular, the present invention relates to an input device for a diffusion type force sensor in which a silicon single crystal plate on which a diffusion strain gauge is formed is bonded onto a strain body.

(従来の技術とその課題) 先ず、本発明の対象となる拡散型力覚センサーについて
、その概要を説明する。従来より知られている力覚セン
サーは三次元構造に加工された起歪体にストレインゲー
ジを貼付したものであるが、大きさや感度、更に価格の
面で充分ではない。
(Prior art and its problems) First, an overview of the diffused force sensor to which the present invention is applied will be explained. Conventionally known force sensors have a strain gauge attached to a strain body processed into a three-dimensional structure, but they are not sufficient in terms of size, sensitivity, and cost.

これを改良したものとして、シリコン単結晶板に機械的
外力を加えると結晶格子に歪みを生じ、半導体中のキャ
リア数や移動度が変化して抵抗率が変わる現象、即ちピ
エゾ抵抗効果を利用して起歪体の歪みを抵抗の変化に変
換し、ブリフジ回路によって起歪体に加わる力を電気信
号に変換するものである。
An improved version of this method uses the piezoresistance effect, which is a phenomenon in which when an external mechanical force is applied to a silicon single crystal plate, the crystal lattice is distorted, the number and mobility of carriers in the semiconductor change, and the resistivity changes. The distortion of the flexure element is converted into a change in resistance, and the force applied to the flexure element is converted into an electrical signal by a bridge circuit.

拡散型力覚センサー(以下単に力覚センサーという)1
0の起歪体11は第4図に示すように環状のダイアフラ
ム12が形成され、ダイアフラム12の工ッジ部12a
 、12bの上方にゲージ抵抗14−1〜14−4が形
成されている。このゲージ抵抗14−1〜14−4は第
4図に示すように、起歪体11の一つの直径上の一烏側
から他端側に14−1.14−2.14−3.14−4
の順に配置されており、この順序はX軸周、Y軸用、Z
軸周とも同じである。又、このダイアフラム12の中心
からダイアフラム面に垂直に検出アーム13が延伸して
いる。
Diffuse force sensor (hereinafter simply referred to as force sensor) 1
As shown in FIG.
, 12b are formed with gauge resistors 14-1 to 14-4. As shown in FIG. 4, the gauge resistances 14-1 to 14-4 are 14-1.14-2.14-3.14 from one end to the other end on one diameter of the strain-generating body 11. -4
They are arranged in the order of X-axis circumference, Y-axis circumference, and Z-axis circumference.
The same is true for the shaft circumference. Further, a detection arm 13 extends from the center of the diaphragm 12 perpendicularly to the diaphragm surface.

この起歪体11にX軸又はY軸方向のモーメントが働い
た時、又はZ軸方向の力(押力、又は張力)が働いた時
の変形シミュレーションを第5図、第6図に示す。
FIGS. 5 and 6 show deformation simulations when a moment in the X-axis or Y-axis direction or a force (pushing force or tension) in the Z-axis direction is applied to the strain body 11.

上述のブリフジ回路は第7.8.9図に示すもので、こ
の各ブリッジ回路を構成している各辺の抵抗Rxl〜R
x4、RY1〜RV+、Rz1〜Rz4が外力を受けた
時に第1表に示す変化を起こす。この変化により、X軸
モーメント(Mx)、Y軸モーメント(My)、Z軸押
張力(Fz)を検出することが出来る。
The above-mentioned bridge circuit is shown in Figure 7.8.9, and the resistors Rxl to R on each side forming each bridge circuit
When x4, RY1 to RV+, and Rz1 to Rz4 receive an external force, the changes shown in Table 1 occur. Through this change, the X-axis moment (Mx), Y-axis moment (My), and Z-axis pushing tension (Fz) can be detected.

第1表 以上のように構成された3軸以上の軸数を有する力覚セ
ンサー10を使用する場合の入力方法としては、測定す
べき変位部材の測定点と力覚センサー10の検出アーム
13を連結して測定するが、この連結が従来は金属棒等
の剛体を使用して行っていた。
When using the force sensor 10 having three or more axes configured as shown in Table 1, the input method is to input the measurement point of the displacement member to be measured and the detection arm 13 of the force sensor 10. Measurements are made by connecting the parts, but conventionally this connection has been done using a rigid body such as a metal rod.

このために、次のような問題がある。This causes the following problems.

l)直接18械的に連結しているため、変位部材の変位
量が大きく、力覚センサー10の検出アーム13の許容
変位置を超過すると、力覚センサー10を破壊してしま
うことになる。
l) Since they are directly 18 mechanically connected, the amount of displacement of the displacement member is large, and if the allowable displacement position of the detection arm 13 of the force sensor 10 is exceeded, the force sensor 10 will be destroyed.

2)X、Y方向と2方向の変位を同時に入力する三次元
入力のためには、入力側の接続機構が複雑になってしま
う。
2) For three-dimensional input in which displacements in two directions (X and Y directions) are input simultaneously, the connection mechanism on the input side becomes complicated.

本発明は上述の問題を解決して、簡単で、かつ力覚セン
サーを破壊することのない三次元入力装置を提供するこ
とを課題とする。
An object of the present invention is to solve the above-mentioned problems and provide a simple three-dimensional input device that does not destroy the force sensor.

(課題を達成するための手段) 上述の課題を達成するために、拡散歪ゲージを形成した
シリコン単結晶板を起歪体上に接合してなる力覚センサ
ー10の入力装置において、被測定物に固定されて変位
するグリッパ−1,4の測定点1a、4aと前記力覚セ
ンサー10の検出アーム13の先端とを糸状弾性体2で
連結して信号の入力を行うものである。
(Means for Achieving the Object) In order to achieve the above-mentioned object, in the input device of the force sensor 10, which is formed by bonding a silicon single crystal plate on which a diffusion strain gauge is formed onto a strain-generating body, an object to be measured is used. The measuring points 1a and 4a of the grippers 1 and 4 which are fixed and displaced are connected to the tip of the detection arm 13 of the force sensor 10 by means of a filamentous elastic body 2 to input signals.

又、前記グリッパ−4には送信器6を設け、前記力覚セ
ンサーlOにはこれに接続される出力処理装置7と、前
記送信器6の送信々号により前記出力処理装置7を動作
させる受信器8を設けたものである。
Further, the gripper 4 is provided with a transmitter 6, and the force sensor IO has an output processing device 7 connected thereto, and a receiver that operates the output processing device 7 by the signals sent from the transmitter 6. It is equipped with a container 8.

(作用) 上述のように、糸状弾性体の弾性限界内ではX軸モーメ
ント及びY軸モーメントは糸状弾性体により引っ張られ
る方向で、Z軸張力は糸状弾性体の伸びに比例した張力
(弾性体の伸びに反抗する張力)により、検出される。
(Function) As mentioned above, within the elastic limit of the thread-like elastic body, the X-axis moment and the Y-axis moment are the directions in which the thread-like elastic body is pulled, and the Z-axis tension is the tension proportional to the elongation of the thread-like elastic body (the tension of the elastic body). (tension that opposes elongation).

(実施例) 第1図は本発明の入力装置の一例の説明図である。この
入力装置はZ軸方向の外力は張力の場合のみに利用でき
るものである。
(Embodiment) FIG. 1 is an explanatory diagram of an example of an input device of the present invention. This input device can be used only when the external force in the Z-axis direction is tension.

被測定物に固定されて変位するグリ・ツバ−Iの先端の
測定点1aと力覚センサー10の検出アーム13の先端
とは、この先端に取付けたユニバーサルジヨイント等の
方向可変の連結部材3を通して糸状弾性体2で連結する
The measurement point 1a at the tip of the Grid Tube I, which is fixed to the object to be measured and is displaced, and the tip of the detection arm 13 of the force sensor 10 are connected to a direction-variable connecting member 3 such as a universal joint attached to this tip. The thread-like elastic body 2 connects the fibers through the threads.

このような構成の入力装置の動作は、糸状弾性体2の伸
びに対する張力は、その弾性限界内において使用する限
り、次式■で表せる力Fが連結部材3に働くことになる
In the operation of the input device having such a configuration, as long as the tensile force against the elongation of the filamentous elastic body 2 is used within its elastic limit, a force F expressed by the following equation (2) acts on the connecting member 3.

力覚センサー10に伝わる力Fは、伸ばした時点での糸
状弾性体2の長さをR1元の長さをRo、kをハネ定数
とすれば、 F=(RRo)k・・・・■ ■を変換してRを求めると、 R=F/に+RO=  、/Fx +Fy +Fz  
/に+R。
The force F transmitted to the force sensor 10 is calculated as follows: If the length of the filamentous elastic body 2 at the time of stretching is R1, the original length is Ro, and k is the spring constant, then F=(RRo)k...■ Converting ■ to find R, R=F/ +RO= , /Fx +Fy +Fz
/ to +R.

=  J Mx L)  + My/L)  +Fz 
 /に+Ro−−・■ここで、Lは連結部材3の接続点
Aからダイアフラム12の中心Pまでの長さを示す。(
第3図参照) この糸状弾性体2の伸び(R−Ro)は、その弾性限界
内では伸びの長さと糸状弾性体2の張力(弾性体の伸び
に抗する張力)とは比例することから、この力Fは、上
式のようにFx、 Fy、 Fzに分解して考えること
が出来、Fzはそのまま力覚センサー10の出力として
取出すことが出来るが、Fx、 Fyはそれぞれ次式■
、■゛で表すような力のモーメントMx、 Myとして
力覚センサー10から出力される。
= J Mx L) + My/L) +Fz
/to+Ro--*■Here, L indicates the length from the connection point A of the connecting member 3 to the center P of the diaphragm 12. (
(See Figure 3) The elongation (R-Ro) of the elastic filament 2 is because within its elastic limit, the length of elongation and the tension of the elastic filament 2 (tension that resists the elongation of the elastic body) are proportional. , this force F can be considered by decomposing it into Fx, Fy, and Fz as shown in the above equation, and Fz can be taken as is as the output of the force sensor 10, but Fx and Fy are each expressed by the following equation
, ■゛ are output from the force sensor 10 as moments of force Mx and My.

Fx=Mx/L・・・・■  Fy−My/L・・・・
■これらのMx、 My、 Mzと11、k、  RO
を用いれば計算式■〜■により、グリッパ−1の先端の
測定点1aの座標(x、y、z)が求められることにな
る。
Fx=Mx/L・・・・■ Fy−My/L・・・・
■These Mx, My, Mz and 11, k, RO
By using calculation formulas (1) to (2), the coordinates (x, y, z) of the measurement point 1a at the tip of the gripper 1 can be determined.

θ1=jan−1(Fy/Fx) −tan−’(My
/Mx) HHHH■θ2=jan−1(JFx +F
y  /Pz)=tan−’(、/Mx +My1ルF
z)・ ・ ・ ・■ 以上、■、■、■より測定点1aの座標はx−(7(f
ix L  +(My L  + Fz L   /に
+Ro)X  sinθ2cosθl °■ y −(/(Mx/L)  + (My/L)  + 
(Fz/L)  /に+Ro)X  sinθ2Sin
θl’■ となり、力覚センサー10の出力門x、 My、 Fz
とし、糸状弾性体2によって決まるkとR8のみで座標
が計算され、グリッパ−1の先端の測定点1aの位置を
算出することが出来る。
θ1=jan-1(Fy/Fx)-tan-'(My
/Mx) HHHH■θ2=jan-1(JFx +F
y /Pz)=tan-'(, /Mx +My1F
z)・・・・・■ From the above, from ■, ■, and ■, the coordinates of measurement point 1a are x-(7(f
ix L + (My L + Fz L / + Ro)
(Fz/L) /ni+Ro)X sinθ2Sin
θl'■, and the output gates of the force sensor 10 are x, My, Fz
Then, the coordinates are calculated only using k and R8 determined by the filamentous elastic body 2, and the position of the measurement point 1a at the tip of the gripper 1 can be calculated.

第2図は同じく他の例の説明図である。この例ではグリ
ッパ−4の先端の測定点4aと力覚センサー10の検出
アーム13との連結は上述の例と同しであるが、グリッ
パ一部分及び力覚センサ一部分が相違しているものであ
る。
FIG. 2 is an explanatory diagram of another example. In this example, the connection between the measurement point 4a at the tip of the gripper 4 and the detection arm 13 of the force sensor 10 is the same as in the above example, but a portion of the gripper and a portion of the force sensor are different. .

グリッパ−4には内部に送信器6が設けてあり、スイッ
チ5で操作するように構成されている。この送信器6は
送信々号としては電波、音波、光、赤外線の何れかが使
用されている。
The gripper 4 is provided with a transmitter 6 inside, and is configured to be operated by a switch 5. This transmitter 6 uses any one of radio waves, sound waves, light, and infrared rays as transmission signals.

力覚センサ一部分は力覚センサー10そのものは上記実
施例のものと同しであるが、この検出信号を処理する出
力処理装置7と上記送信器6の送信々号を受けて出力処
理装置7を動作させる受信器8及びこれらの電源9を設
けたものである。
A part of the force sensor 10 itself is the same as that of the above embodiment, but includes an output processing device 7 that processes this detection signal and an output processing device 7 that receives the transmission signal from the transmitter 6. A receiver 8 to be operated and a power source 9 for these are provided.

この例では、力覚センサー10そのものの動作は上述の
例と同じであるが、グリッパ−4でスイッチ5を操作す
ることによって送信される送信々号を受信器8が受信し
、この受信々号により出力処理装置は力覚センサー10
の検出アーム13の受けている外力を座標計算し、グリ
ッパ−4の先端の測定点4aの座標を算出する。
In this example, the operation of the force sensor 10 itself is the same as in the above example, but the receiver 8 receives the transmission signal transmitted by operating the switch 5 with the gripper 4, and the reception signal The output processing device is a force sensor 10.
The coordinates of the external force being received by the detection arm 13 are calculated, and the coordinates of the measurement point 4a at the tip of the gripper 4 are calculated.

(発明の効果) 上述のような三次元入力装置を用いれば、簡易型三次元
測定器や図形入力及びボクシングゲーム等のコンピュー
ター入力装置、更には図面や地図等から実測距離及び面
積を測定することが出来る。
(Effect of the invention) By using the above three-dimensional input device, actual distances and areas can be measured from simple three-dimensional measuring instruments, computer input devices such as graphic input and boxing games, and even drawings, maps, etc. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の入力装置の一例の説明図、第2図は同
じく他の例の説明図、第3図は力Fをベクトル成分に分
解した説明図、第4図は起歪体断面図、第5図はX (
Y)軸方向の変形シミュレーション図、第6図はZ軸方
向の押力(張力)の変形シミュレーション図、第7図は
X軸周ブリ、7ジ回路図、第8図はY軸周ブリフジ回路
図、第9図はZ軸周ブリッジ回路図である。 1ニゲリソパー、 2:糸状弾性体、 4ニゲリソパー
、 6:送信器、 7:出力処理装置、8:受信器、 
10:力覚センサー  13:検出アーム。 箋3目 手 続 補 正 書 (自発) 1゜ 事件の表示 平成2年 特 許 願 第188469号 2゜ 発明の名称 力覚センサーの三次元入力装置 3゜ 補正をする者 事件との関係  特許出願人 住 所  埼玉県用口市並木2丁目30番1号名 称 
 株式会社 エンプラス 4゜
Fig. 1 is an explanatory diagram of an example of the input device of the present invention, Fig. 2 is an explanatory diagram of another example, Fig. 3 is an explanatory diagram of the force F decomposed into vector components, and Fig. 4 is a cross section of the strain body. Figure 5 is X (
Fig. 6 is a deformation simulation diagram of pushing force (tension) in the Z-axis direction, Fig. 7 is an X-axis circumference circuit diagram, and Fig. 8 is a Y-axis circumference circumference circuit diagram. 9 are Z-axis peripheral bridge circuit diagrams. 1 Nigelisopar, 2: Thread-like elastic body, 4 Nigelisopar, 6: Transmitter, 7: Output processing device, 8: Receiver,
10: Force sensor 13: Detection arm. 3rd Procedural Amendment (Spontaneous) 1゜Indication of the Case 1990 Patent Application No. 188469 2゜Name of the Invention Three-Dimensional Input Device for Force Sensor 3゜Relationship with the Case Patent Applicant Address 2-30-1 Namiki, Yoguchi City, Saitama Prefecture Name
Enplus 4゜ Co., Ltd.

Claims (1)

【特許請求の範囲】 1)拡散歪ゲージを形成したシリコン単結晶板を起歪体
上に接合してなる拡散型力覚センサーの入力装置におい
て、被測定物に固定されて変位するグリッパーの測定点
と前記力覚センサーの検出アームの先端とを糸状弾性体
で連結して信号の入力を行うことを特徴とした力覚セン
サーの三次元入力装置。 2)前記グリッパーには送信器を設け、前記力覚センサ
ーにはこれに接続される出力処理装置と、前記送信器の
送信々号により前記出力処理装置を動作させる受信器を
設けたことを特徴とする第1項記載の力覚センサーの三
次元入力装置。
[Claims] 1) Measurement of a gripper that is fixed to an object to be measured and displaces in an input device for a diffusion type force sensor in which a silicon single crystal plate on which a diffusion strain gauge is formed is bonded onto a strain body. A three-dimensional input device for a force sensor, characterized in that a point and the tip of a detection arm of the force sensor are connected by a thread-like elastic body to input a signal. 2) The gripper is provided with a transmitter, and the force sensor is provided with an output processing device connected thereto, and a receiver that operates the output processing device based on the signals transmitted from the transmitter. A three-dimensional input device for a force sensor according to item 1.
JP2188469A 1990-07-16 1990-07-16 Three-dimensional input device of stress sensor Pending JPH0474942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2188469A JPH0474942A (en) 1990-07-16 1990-07-16 Three-dimensional input device of stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2188469A JPH0474942A (en) 1990-07-16 1990-07-16 Three-dimensional input device of stress sensor

Publications (1)

Publication Number Publication Date
JPH0474942A true JPH0474942A (en) 1992-03-10

Family

ID=16224271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2188469A Pending JPH0474942A (en) 1990-07-16 1990-07-16 Three-dimensional input device of stress sensor

Country Status (1)

Country Link
JP (1) JPH0474942A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137421A (en) * 2010-12-27 2012-07-19 Fanuc Ltd Control device of robot performing force control using triaxial sensor
US8897919B2 (en) 2012-06-13 2014-11-25 Fanuc Corporation Robot controller which conducts a force control by using a three-axial force sensor
CN107044898A (en) * 2017-03-28 2017-08-15 东南大学 A kind of six-dimension force sensor of flexible body structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137421A (en) * 2010-12-27 2012-07-19 Fanuc Ltd Control device of robot performing force control using triaxial sensor
US8897919B2 (en) 2012-06-13 2014-11-25 Fanuc Corporation Robot controller which conducts a force control by using a three-axial force sensor
CN107044898A (en) * 2017-03-28 2017-08-15 东南大学 A kind of six-dimension force sensor of flexible body structure

Similar Documents

Publication Publication Date Title
US7441470B2 (en) Strain gauge type sensor and strain gauge type sensor unit using the same
US7360456B2 (en) Six-axis sensor
Mei et al. An integrated MEMS three-dimensional tactile sensor with large force range
US7500406B2 (en) Multiaxial sensor
EP1464939A1 (en) Simple force and moment detection with several transmitting members and several sensors
JP2008281403A (en) Shear force detector and object-holding system
EP0176173A2 (en) Sensor for sensing three orthogonal forces and three orthogonal moments
CN100478662C (en) Three-dimensional finger force sensor and information acquisition method thereof
KR102183179B1 (en) Multi-axis force-torque sensor using straingauges
EP1782076A1 (en) Method and apparatus for calibrating the rotational relationship between two motion sensors of a sensor system
JPH0474942A (en) Three-dimensional input device of stress sensor
Amarasinghe et al. Simulation, fabrication and characterization of a three-axis piezoresistive accelerometer
JPS6095331A (en) Force and moment sensor
JP2008107257A (en) Acceleration sensor
JP2008096230A (en) Strain gauge type sensor
Park et al. MagTac: Magnetic Six-Axis Force/Torque Fingertip Tactile Sensor for Robotic Hand Applications
Liang et al. Miniature robust five-dimensional fingertip force/torque sensor with high performance
JPS59204732A (en) Load cell unit
JP3932270B2 (en) Bending angle and azimuth angle detecting device and bending angle and azimuth angle detecting method of shaft-like object
JPH04279867A (en) Three-dimensional acceleration sensor
JP2005300465A (en) Multiaxial sensor
JPH01156632A (en) Multi component force sensor
Liang et al. A novel thin six-dimensional wrist force/torque sensor with isotropy
JPH0599764A (en) Structure of crystal piezoelectric sensor simultaneously detectable of three directional forces
KR100597558B1 (en) ZMP sensing apparatus using strain gauge and method thereof