JPH0474715B2 - - Google Patents

Info

Publication number
JPH0474715B2
JPH0474715B2 JP57097128A JP9712882A JPH0474715B2 JP H0474715 B2 JPH0474715 B2 JP H0474715B2 JP 57097128 A JP57097128 A JP 57097128A JP 9712882 A JP9712882 A JP 9712882A JP H0474715 B2 JPH0474715 B2 JP H0474715B2
Authority
JP
Japan
Prior art keywords
voltage
styryl
response
ecd
coloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57097128A
Other languages
Japanese (ja)
Other versions
JPS58214194A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9712882A priority Critical patent/JPS58214194A/en
Publication of JPS58214194A publication Critical patent/JPS58214194A/en
Publication of JPH0474715B2 publication Critical patent/JPH0474715B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【発明の詳細な説明】 本発明はエレクトロクロミツク表示装置(以下
ECDと記す)の駆動方法に関し、エレクトロク
ロミツク(以下ECと記す)材料としてスチリル
類似化合物を用いたECDの発色レスポンスを速
める事のできる駆動方法の提供を目的とするもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrochromic display device (hereinafter referred to as
The purpose of this invention is to provide a driving method that can speed up the color development response of an electrochromic (hereinafter referred to as EC) using a compound similar to styryl as an electrochromic (hereinafter referred to as EC) material.

本発明で用いるEC材料としてのスチリル類似
化合物は、従来の液晶とは異なり視角依存性がな
く、また表示以外の部分は白色であり、一方他の
EC材料を用いたECDに比べ有機材料を用いてい
る事から青以外の色も可能であり、かつカラー化
も容易であり、電流値も低い特徴を有するもので
ある。
The styryl-like compound used as the EC material used in the present invention has no viewing angle dependence, unlike conventional liquid crystals, and the area other than the display is white, while the other areas are white.
Compared to ECDs that use EC materials, since they use organic materials, colors other than blue are possible, they can be easily colored, and they have a low current value.

一方ECDの駆動方法に関しては、発色レスポ
ンスを上げる方法として種々の方法があるが、特
開昭52−67348号公報で示される様に初期の電圧
が高く、一定時間後低い状態に保持する方法があ
る。しかしながら、EC材料としてスチリル類似
化合物を用いた場合には、単にこの様な方法を用
いても最適な条件が得られない。この事はEC材
料がスチリル類似化合物かそれ以外のものかの本
質的特性の差によるものと思われる。従来の
WO3系ECDにおいては、発色層は表示極表面に
存在し固定されていると考えられ、またビオロゲ
ン系においても電極表面は析出状態となつてい
る。一方スチリル類似化合物を用いた場合には、
発色種は電極表面近傍に浮遊した状態で存在し、
上記2種のECDに比べ不安定な平衡状態である
といえる。この事が、従来のECDに比べメモリ
ー性が短い事にも起因し、さらに駆動方法に関し
ても上記公報に記載の発明を単に適用しただけで
は寿命、表示品位等で充分な結果が得られないこ
とになる。つまり従来のEC材料を用いたECDに
おける挙動とスチリル類似化合物を用いたECD
の挙動とは本質的に異なるものである。
On the other hand, regarding the driving method of ECD, there are various methods to increase the color development response, but as shown in Japanese Patent Laid-Open No. 52-67348, there is a method in which the initial voltage is high and the voltage is kept low after a certain period of time. be. However, when a styryl-like compound is used as the EC material, optimal conditions cannot be obtained simply by using such a method. This seems to be due to the difference in the essential properties of the EC material, whether it is a styryl-like compound or something else. Traditional
In the WO 3 -based ECD, the coloring layer is thought to exist and be fixed on the surface of the display electrode, and also in the viologen-based ECD, the electrode surface is in a precipitated state. On the other hand, when using styryl-like compounds,
Colored species exist in a suspended state near the electrode surface,
It can be said that this is an unstable equilibrium state compared to the above two types of ECD. This is due to the fact that the memory performance is shorter than that of conventional ECDs, and furthermore, with regard to the driving method, it is not possible to obtain sufficient results in terms of life span, display quality, etc. simply by applying the invention described in the above publication. become. In other words, the behavior in ECD using conventional EC materials and ECD using styryl-like compounds
The behavior is essentially different from that of .

本発明は以上の問題点に鑑み、EC材料として
スチリル類似化合物を用いたECDの繰り返し寿
命および表示品位を向上することのできるレスポ
ンスの速いECDの駆動方法を提供することを目
的とする。
In view of the above problems, it is an object of the present invention to provide a fast-response driving method for an ECD that can improve the cycle life and display quality of an ECD using a styryl-like compound as an EC material.

以下に本発明の一実施例を図面を用いて説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明が適用されるECDの構造図で
あり、1a,1b,1cは表示極であるセグメン
ト、2は対向電極、3,4はそれぞれ表示極1
a,1b,1cおよび対向電極2が形成されるガ
ラス基板、5はガラス基板3,4を封止する封着
部、6は内部に封入されたスチリル類似化合物で
ある。
FIG. 1 is a structural diagram of an ECD to which the present invention is applied, in which 1a, 1b, and 1c are segments that are display poles, 2 is a counter electrode, and 3 and 4 are display poles 1, respectively.
a, 1b, 1c and a glass substrate on which the counter electrode 2 is formed, 5 is a sealing part for sealing the glass substrates 3 and 4, and 6 is a styryl-like compound sealed inside.

第2図a,bは本発明の一実施例を示す印加電
圧波形図であつて、第2図aのセグメントデコー
ド電圧Sによつて発色させるセグメントが選択さ
れると、セグメント印加電圧波形は第2図bに示
す様にV1>V2の波形となつてセグメントに印加
される。すなわち、発色初期の電圧V1を規定発
色濃度に達した後の電圧V2よりも大きくしてセ
グメントに印加される。発色初期の電圧V1を高
くすることによつて、立ち上りレスポンスを速め
ることができ、規定発色濃度に達した後の電圧
V2を保持することによつて、一定濃度に保持す
ることができる。スチリル類似化合物を用いた
ECDにおけるV1のレスポンス依存状態は第3図
のようになる。第3図は吸収率として70%まで達
する時間とV1及びV2の電圧の差とを示したもの
である。吸収率が70%に達すると発色表示が明確
に行なえる。第3図からわかるように、V1−V2
が0.05VでV1=V2の時の2秒より30%速くなり、
さらに0.1Vで倍以上もレスポンスが速くなつて
おり、さらに電圧を加える事によりさらに速まつ
ている。この様に0.05Vと云う微少電位差でも30
%と云う改善が得られている。30%の改善によつ
てレスポンスの時間が1.5秒となるがこれ以上レ
スポンスが遅くなると表示品位が劣る。電位差を
増加させればさらにレスポンスを速める効果が上
つているが、0.4V以上の電位差の場合には別の
問題が生じる。すなわち、繰り返し寿命テストの
結果によると、電位差を0.4V以上とした場合、
急速に繰り返し寿命が短かくなる。つまり電位差
が0.4Vまでの場合250万回の繰り返し寿命であつ
たものが、0.5Vとした場合には180万回、0.6Vで
は90万回と急激に減少し、実用的には使用不可能
となる。この原因については明確ではないが、何
らかの形でスチリル類似化合物の発色種の劣化が
起つているものと思われる。以上の様にV1−V2
の差は単に大きくする事により発色レスポンスは
増加するが、寿命の点で問題となり、実用上の表
示品位を考慮して0.05V〜0.4Vの範囲内である必
要がある事がわかる。
FIGS. 2a and 2b are applied voltage waveform diagrams showing an embodiment of the present invention. When a segment to be colored is selected by the segment decode voltage S in FIG. 2a, the segment applied voltage waveform is As shown in FIG. 2b, a waveform of V 1 >V 2 is applied to the segment. That is, the voltage V 1 at the initial stage of color development is set higher than the voltage V 2 after reaching the specified color density and is applied to the segment. By increasing the voltage V 1 at the initial stage of color development, the rise response can be accelerated, and the voltage after reaching the specified color density can be increased.
By maintaining V 2 , the concentration can be maintained at a constant level. using styryl analogues
The response dependence state of V 1 in ECD is as shown in Figure 3. FIG. 3 shows the time required for the absorption rate to reach 70% and the difference between the voltages of V 1 and V 2 . When the absorption rate reaches 70%, clear color display can be performed. As can be seen from Figure 3, V 1 −V 2
is 0.05V, which is 30% faster than 2 seconds when V 1 = V 2 .
Furthermore, the response is more than twice as fast at 0.1V, and it becomes even faster by adding more voltage. In this way, even with a minute potential difference of 0.05V, 30
% improvement was obtained. A 30% improvement will reduce the response time to 1.5 seconds, but if the response is delayed any longer, the display quality will deteriorate. Increasing the potential difference has the effect of further speeding up the response, but another problem occurs when the potential difference is 0.4V or more. In other words, according to the results of repeated life tests, when the potential difference is set to 0.4V or more,
Rapidly repeating and shortening lifespan. In other words, when the potential difference was up to 0.4V, the cycle life was 2.5 million times, but when it was set to 0.5V, it was 1.8 million times, and when it was 0.6V, it rapidly decreased to 900,000 times, making it practically unusable. becomes. Although the cause of this is not clear, it is thought that the coloring species of the styryl-like compound deteriorates in some way. As above, V 1 −V 2
By simply increasing the difference, the coloring response increases, but it becomes a problem in terms of life, and it is understood that it needs to be within the range of 0.05V to 0.4V in consideration of practical display quality.

次に、V1−V2の電位差を0.05Vとした時の、電
圧V1の印加時間(tr)とセグメントの濃度が規
定濃度の5%以内に達するまでの時間td、および
セグメントの濃度の吸収率の変化を測定すると第
4図a,bに示すような傾向が得られた。第4図
aはセグメント印加電圧波形図であり、第4図b
は吸収率の特性図である。第4図aに示す初期の
電圧V1として0.8V以上の電圧を印加時間trだけ
印加すると、第4図bに示すように濃度が急激に
上昇しtr時間続く。その後電圧がV2となると濃
度が減少し一定値に保持される。この例では、tr
を長くした場合を示したものである。実際には、
この濃度のオーバシユートの時間tdが重要であ
り、目視実験の結果1秒以内であれば実用上問題
とならないことがわかつた。又規定濃度に対し5
%以内であればセグメント間の色むらも問題とは
ならなかつた。実験によると、このオーバシユー
トはV1−V2の差が大きく、又時間trが長い場合
に生じやすくなる。
Next, when the potential difference of V 1 - V 2 is 0.05 V, the application time (tr) of voltage V 1 , the time td until the concentration of the segment reaches within 5% of the specified concentration, and the concentration of the segment When the change in absorption rate was measured, the trends shown in Figures 4a and 4b were obtained. Figure 4a is a segment applied voltage waveform diagram, Figure 4b
is a characteristic diagram of absorption rate. When a voltage of 0.8 V or more is applied for an application time tr as the initial voltage V 1 shown in FIG. 4a, the concentration rises rapidly and continues for a time tr as shown in FIG. 4b. After that, when the voltage reaches V2 , the concentration decreases and is kept at a constant value. In this example, tr
This figure shows the case where . in fact,
The time td of this concentration overshoot is important, and as a result of visual experiments, it was found that if it is within 1 second, there is no problem in practice. Also, 5 for the specified concentration
% or less, color unevenness between segments was not a problem. According to experiments, this overshoot tends to occur when the difference between V 1 -V 2 is large and the time tr is long.

以上の事から、オーバシユートから規定濃度の
5%以内に入る時間tdと、V1の印加時間trとの関
係を示したものが第5図である。本実施例では
V2=1.0V、V1−V2=0.05Vの場合を示したもの
であるが、この値が大きくなると傾斜が大きくな
る。この図からもわかる様に、trの時間が長くな
ると指数関数的にtdの増加が見られる。つまりtr
を4秒とした場合、規定濃度の5%以内に入るま
での時間は数十秒となる。したがつて、tdが実用
上問題とならない1秒以内に入るためにはtrは2
秒以下である必要がある。この傾向はV1−V2
差が大きい程顕著である。以上の結果からV1
V2の差が、0.05〜0.4Vの範囲で使用する場合、
電圧V1の印加時間trは2秒以下にする事により
電圧印加時の最適な濃度を得る事ができる。
From the above, FIG. 5 shows the relationship between the time td from overshoot to within 5% of the specified concentration and the V1 application time tr. In this example
This shows the case where V 2 = 1.0V and V 1 −V 2 = 0.05V, and as this value increases, the slope increases. As can be seen from this figure, as tr time increases, td increases exponentially. In other words, tr
If 4 seconds, it will take several tens of seconds for the concentration to fall within 5% of the specified concentration. Therefore, in order for td to be within 1 second, which is not a problem in practice, tr must be 2.
Must be less than seconds. This tendency becomes more pronounced as the difference between V 1 −V 2 becomes larger. From the above results, V 1
When used with a difference in V 2 in the range of 0.05 to 0.4V,
By setting the application time tr of the voltage V 1 to 2 seconds or less, the optimum concentration can be obtained when applying the voltage.

以上説明したように、本発明においては、EC
材料としてスチリル類似化合物を用いたECDを
駆動するに際して、発色初期の電圧V1を、規定
濃度到達後の電圧V2よりも、0.05〜0.4Vの範囲
内で高くする事により、発色濃度及び繰り返し寿
命を実用上の範囲の保持したまま発色レスポンス
を速めることができる。
As explained above, in the present invention, EC
When driving an ECD using a styryl-like compound as a material, the color development density and repetition rate can be improved by increasing the voltage V 1 at the initial stage of color development within the range of 0.05 to 0.4 V higher than the voltage V 2 after reaching the specified density. It is possible to speed up the coloring response while keeping the lifespan within a practical range.

なお、本発明は、上記の実施例に限らず、発色
初期の電圧V1あるいは規定濃度到達後の電圧V2
をパルス状に印加することによつても、また印加
電圧波形が短形波でなく立ち上り、立ち下りに傾
斜を有する台形波であつても、上記実施例と同様
にレスポンスの高速化が図れる。
Note that the present invention is not limited to the above-mentioned embodiments, and the voltage V 1 at the initial stage of color development or the voltage V 2 after reaching the specified density
Even if the waveform of the applied voltage is not a rectangular wave but a trapezoidal wave having slopes at the rising and falling edges, the response speed can be increased as in the above embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用されるECDの構造を示
す断面図、第2図a,bは本発明の一実施例を示
す駆動電圧波形図、第3図は同実施例における発
色レスポンスの特性を示す図、第4図a,bは同
実施例における駆動電圧波形と吸収率の関係を示
す図、第5図は電圧印加時間とオーバシユートと
の関係を示す図である。 1a,1b,1c……表示セグメント、2……
対向電極、3,4……ガラス基板、5……封止
部、6……スチリル類似化合物。
Fig. 1 is a cross-sectional view showing the structure of an ECD to which the present invention is applied, Fig. 2 a and b are drive voltage waveform diagrams showing an embodiment of the present invention, and Fig. 3 is the characteristic of color response in the same embodiment. FIGS. 4a and 4b are diagrams showing the relationship between the drive voltage waveform and absorption rate in the same example, and FIG. 5 is a diagram showing the relationship between voltage application time and overshoot. 1a, 1b, 1c...display segment, 2...
Counter electrode, 3, 4... Glass substrate, 5... Sealing part, 6... Styryl-like compound.

Claims (1)

【特許請求の範囲】 1 スチリル類似化合物を発色層とするエレクト
ロクロミツク表示装置を駆動するに際して、発色
初期の電圧をV1とし、規定発色濃度に達した後
の電圧をV2とした時、V1は0.8V以上1.4V以下で
あつてV1>V2であり、かつV1はV2に対して
0.05V〜0.4Vの範囲で高くなる発色電圧を表示電
極に印可することを特徴とするエレクトロクロミ
ツク表示装置の駆動方法。 2 発色初期の電圧V1の印加時間が、2秒以下
であることを特徴とする特許請求の範囲第1項記
載のエレクトロクロミツク表示装置の駆動方法。
[Claims] 1. When driving an electrochromic display device having a styryl-like compound as a coloring layer, when the voltage at the initial stage of coloring is V1 , and the voltage after reaching a specified coloring density is V2 , V 1 is 0.8V or more and 1.4V or less, V 1 > V 2 , and V 1 is relative to V 2 .
1. A method for driving an electrochromic display device, characterized in that a coloring voltage increasing in the range of 0.05V to 0.4V is applied to display electrodes. 2. The method for driving an electrochromic display device according to claim 1, wherein the application time of the voltage V1 at the initial stage of color development is 2 seconds or less.
JP9712882A 1982-06-07 1982-06-07 Driving of electrochromic display Granted JPS58214194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9712882A JPS58214194A (en) 1982-06-07 1982-06-07 Driving of electrochromic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9712882A JPS58214194A (en) 1982-06-07 1982-06-07 Driving of electrochromic display

Publications (2)

Publication Number Publication Date
JPS58214194A JPS58214194A (en) 1983-12-13
JPH0474715B2 true JPH0474715B2 (en) 1992-11-26

Family

ID=14183921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9712882A Granted JPS58214194A (en) 1982-06-07 1982-06-07 Driving of electrochromic display

Country Status (1)

Country Link
JP (1) JPS58214194A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868850B1 (en) * 2004-04-09 2006-08-25 Saint Gobain METHOD FOR SUPPLYING AN ELECTROCOMMANDABLE DEVICE HAVING VARIABLE OPTICAL AND / OR ENERGY PROPERTIES

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257796A (en) * 1975-11-06 1977-05-12 Sharp Corp Method of driving display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257796A (en) * 1975-11-06 1977-05-12 Sharp Corp Method of driving display device

Also Published As

Publication number Publication date
JPS58214194A (en) 1983-12-13

Similar Documents

Publication Publication Date Title
US4728947A (en) Addressing liquid crystal cells using bipolar data strobe pulses
US7605797B2 (en) Particle movement-type display apparatus and driving method thereof
EP0036678B1 (en) Liquid crystal display device
US4205903A (en) Writing/erasing technique for an electrochromic display cell
US4322133A (en) Method of driving electrochromic display device and electrochromic display device therefor
JPS5616149A (en) Picture forming method
EP0007110B1 (en) Electrooptical display
SU803873A3 (en) Device for optical recording of image
JPH0474715B2 (en)
US4048628A (en) Method and apparatus for erasing scattering in storage-type liquid crystals by frequency sweeping
KR910009777B1 (en) Driving method of liquid crystal display
US4166676A (en) Method of turning off the display in electrochromic display devices
JPS592907B2 (en) Hiyojisouchinokudouhouhou
KR100324439B1 (en) Reduction of ionic memory effect in ferroelectric liquid crystal material
JPS5941563B2 (en) Driving method of electrochromic display
JPH0523409B2 (en)
JPH0216894B2 (en)
JPH0216896B2 (en)
JPH0216895B2 (en)
JP2537635B2 (en) Recording method of optical writing type liquid crystal light valve
JP2650286B2 (en) Driving method of liquid crystal element
JP2022553872A (en) How to drive an electro-optic display
JPS63124036A (en) Driving method of ferroelectric liquid crystal cell
JPS63278033A (en) Driving method for liquid crystal display device
JPS5945996B2 (en) Electrochemical color display device