JPH0474530A - Exhaust gas denitrating catalyst and method - Google Patents

Exhaust gas denitrating catalyst and method

Info

Publication number
JPH0474530A
JPH0474530A JP2189197A JP18919790A JPH0474530A JP H0474530 A JPH0474530 A JP H0474530A JP 2189197 A JP2189197 A JP 2189197A JP 18919790 A JP18919790 A JP 18919790A JP H0474530 A JPH0474530 A JP H0474530A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
denitrification
flue gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2189197A
Other languages
Japanese (ja)
Inventor
Kazushige Kawamura
和茂 川村
Masayoshi Ioka
井岡 政禎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP2189197A priority Critical patent/JPH0474530A/en
Publication of JPH0474530A publication Critical patent/JPH0474530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain a denitration catalyst having a high denitration rate even at relatively low treatment temp. by supporting a catalytic component such as vanadium or tungsten on a carrier based on fibrous magnesium silicate. CONSTITUTION:A catalytic component such as vanadium, tungsten or molybdenum is supported on a carrier based on fibrous magnesium silicate such as sepiolite or blue asbestos and controlled in its pore volume and specific surface area as oxide. The denitration catalyst thus obtained shows a high denitration rate even at relatively low treatment temp. of about 120 - 450 deg.C in the presence of reduction gas. Further, this catalyst is excellent in clogging resistance due to dust and can be adapted to both of clean exhaust gas and dirty exhaust gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排煙脱硝用触媒及び排煙脱硝方法に関する。更
に詳しくは、特にボイラー等の含硫黄燃料の燃焼装置か
らの排ガスをはじめとする各種の燃焼排ガス中から、主
に含有される窒素酸化物(以下、N Oxとする。)を
接触還元処理するための排煙脱硝用触媒及びそれを用い
た排煙脱硝方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a catalyst for exhaust gas denitration and a method for exhaust gas denitration. More specifically, nitrogen oxides (hereinafter referred to as NOx) mainly contained in various combustion exhaust gases, including exhaust gas from sulfur-containing fuel combustion equipment such as boilers, are catalytically reduced. The present invention relates to a catalyst for exhaust gas denitrification and a flue gas denitrification method using the same.

〔従来の技術〕[Conventional technology]

排ガス中のNOXを選択的、且つ効率的に無害な窒素に
転化するための排煙脱硝処理は既に多くの提案がなされ
ている。
Many proposals have already been made for exhaust gas denitrification treatment for selectively and efficiently converting NOX in exhaust gas into harmless nitrogen.

前記排ガス中には、No、NOx等のNOXの他、炭酸
ガス、−酸化炭素、硫黄酸化物(以下、SOXとする。
In addition to NOx such as No and NOx, the exhaust gas includes carbon dioxide, carbon oxide, and sulfur oxide (hereinafter referred to as SOX).

)、水分が含有され、更に燃料中または燃焼装置から炭
化水素、ハロゲン化物やオイルミスト、重金属、ダスト
等の粉塵類が飛散同伴される。特にこれらのうち、SO
Xと砒素(As)及びダスト類は接触還元法の触媒の活
性を低下させ、排煙脱硝を連続して効率的に脱硝処理操
作する上で障害となっている。
), moisture is contained in the fuel, and dust such as hydrocarbons, halides, oil mist, heavy metals, and dust are also scattered and entrained in the fuel or from the combustion equipment. Especially among these, SO
X, arsenic (As), and dust reduce the activity of the catalyst in the catalytic reduction method, and are an obstacle to continuous and efficient exhaust gas denitrification.

そのため従来の排煙脱硝方法では、LNG−LPG等の
燃焼排ガスでSOXやダストを殆ど含まないいわゆるク
リーン排ガスと、重油や石炭燃料の燃焼排ガスのいわゆ
るダーティ排ガスとにを区別し、それぞれ触媒、操作条
件等を異にする方法が提案されている。
Therefore, in the conventional flue gas denitrification method, the so-called clean flue gas, which is the flue gas of combustion such as LNG-LPG, which contains almost no SOX or dust, and the so-called dirty flue gas, which is the flue gas of combustion of heavy oil or coal fuel, are distinguished, and the catalyst and the Methods using different conditions have been proposed.

クリーン排ガスは、例えば特公昭56−44778号公
報に記載されるようなT−A]203を主成分とする触
媒を用い、一方、ダーティ排ガスは、上記へ1゜03系
触媒ではSOXによる劣化が激しく、例えば特公昭63
−48584号公報に記載されるようにチタン(Ti)
を主成分とする触媒を使用し、いずれも約200〜40
0℃の温度範囲で処理するのが一般的となっている。
For clean exhaust gas, a catalyst containing T-A]203 as the main component, such as that described in Japanese Patent Publication No. 56-44778, is used, while for dirty exhaust gas, a catalyst based on 1゜03 is deteriorated by SOX. Violently, for example, the Tokuko Sho 63
-Titanium (Ti) as described in Publication No. 48584
using a catalyst whose main component is about 200 to 40
It is common practice to process at a temperature range of 0°C.

また、ダーティ排ガス処理方式は、主に除塵装置、脱硝
装置及び脱硫装置の組合わせとなるが、湿式排煙脱硫処
理すると排ガス温度が低下し、その後に脱硝処理を行う
場合には再加熱を要し、そのため、経済性の観点から現
在、脱硝−除塵一説硫方式が主流となっている。
In addition, the dirty exhaust gas treatment method is mainly a combination of dust removal equipment, denitrification equipment, and desulfurization equipment, but wet flue gas desulfurization treatment lowers the exhaust gas temperature and requires reheating when denitration treatment is performed afterwards. Therefore, from the viewpoint of economy, the denitrification-dust removal method is currently the mainstream.

〔発明が解決しようとする課題] しかしながら、接触還元処理による排煙脱硝処理は、上
記のように排ガス中のSOXや粉塵量により処理方法を
選択し、特にダーティ排ガスの処理においては触媒の活
性低下を防止するため、担体や触媒金属の選定が重要と
なり、被処理排ガスの性状に応じかなり厳密な予備試験
が必要となることもある。
[Problems to be Solved by the Invention] However, in exhaust gas denitrification treatment using catalytic reduction treatment, the treatment method is selected depending on the amount of SOX and dust in the exhaust gas as described above, and especially in the treatment of dirty exhaust gas, the activity of the catalyst may decrease. In order to prevent this, it is important to select the carrier and catalyst metal, and depending on the properties of the exhaust gas to be treated, very rigorous preliminary tests may be required.

本発明は、上記従来法に比し燃焼排ガスの種類及び排煙
処理方式によらず、自由に適用可能な排煙脱硝用触媒を
提供し、更にその触媒を用いた排煙脱硝方法を提供する
ことを目的とする。
The present invention provides a flue gas denitrification catalyst that can be freely applied regardless of the type of combustion exhaust gas and flue gas treatment method compared to the conventional method, and further provides a flue gas denitrification method using the catalyst. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、還元ガス存在下、約120〜450℃
の温度範囲で、窒素酸化物含有排ガスの脱硝処理に用い
られる繊維状マグネシウムシリケートを主成分とする担
体にバナジウム、タングステン、モリブデン及びクロム
の1種または2種以上の触媒成分を担持したことを特徴
とする排煙脱硝用触媒が提供される。
According to the present invention, in the presence of reducing gas, about 120 to 450 °C
It is characterized by supporting one or more catalyst components of vanadium, tungsten, molybdenum, and chromium on a carrier mainly composed of fibrous magnesium silicate, which is used for denitrification treatment of nitrogen oxide-containing exhaust gas in a temperature range of A catalyst for exhaust gas denitrification is provided.

更にまた、約120〜450℃の温度範囲で、還元ガス
及び繊維状マグネシウムシリケートを主成分とする担体
にバナジウム、タングステン、モリブデン及びクロムの
1種または2種以上の触媒成分を担持した触媒の存在下
で窒素酸化物含有排ガスを処理することを特徴とする排
煙脱硝方法が提供される。
Furthermore, the presence of a catalyst in which one or more catalyst components of vanadium, tungsten, molybdenum and chromium are supported on a carrier mainly composed of reducing gas and fibrous magnesium silicate at a temperature range of about 120 to 450°C. A flue gas denitrification method is provided, which comprises treating nitrogen oxide-containing flue gas under the following conditions.

以下に、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明の排煙脱硝用触媒の繊維状マグネシウムシリケー
トを主成分とする担体は、例えばセピオライト、アタパ
ルジャイト、パリゴスカイト等の含水マグネシウム珪酸
塩を主成分とする天然に産出する粘土鉱物やマグネシウ
ム塩と珪酸塩とから合成したもの、鉄含有の含水マグネ
シウム珪酸塩を主成分とする青石綿、緑閃石、直閃石、
角閃石、陽起石、鉄透閃石等の角閃石系アスベス+−i
鉱物を原料として、適量の水と混練することにより所望
の細孔容積及び比表面積に制御して用いることができる
。また、セピオライトを原料とした場合には、特公昭5
1−6697号公報の方法により骨格マグネシアを脱離
させた多孔性変性セピオライトを用いることができ、上
記各種担体原料は単一でも、また2以上を組み合わせた
混合物として用いてもよい。
The carrier containing fibrous magnesium silicate as a main component of the exhaust gas denitrification catalyst of the present invention is, for example, a naturally occurring clay mineral containing a hydrous magnesium silicate as a main component, such as sepiolite, attapulgite, or palygoskite, or a magnesium salt and silicate. Synthesized from and, blue asbestos whose main component is iron-containing hydrated magnesium silicate, epidote, anthophyllite,
Hornblende-based asbeths such as amphibole, aliostone, and tremolite +-i
By using a mineral as a raw material and kneading it with an appropriate amount of water, it can be used by controlling the pore volume and specific surface area to desired values. In addition, when sepiolite is used as a raw material,
Porous modified sepiolite from which skeletal magnesia has been removed by the method described in Japanese Patent Publication No. 1-6697 can be used, and the various carrier raw materials mentioned above may be used singly or as a mixture of two or more.

本発明における上記マグネシウムシリケートを主成分と
する担体は、従来の排煙脱硝処理の際に排煙中のSOX
と反応して触媒活性が低下するAl2O3が殆ど含有さ
れず、各種の燃焼排ガスの排煙脱硝処理に適用すること
ができる。また、ダーティ排ガス脱硝処理用のTi系担
体に比し安価に入手でき実用的である。
In the present invention, the carrier mainly composed of magnesium silicate removes SOX from flue gas during conventional flue gas denitrification treatment.
It contains almost no Al2O3, which reacts with other substances and reduces catalytic activity, and can be applied to flue gas denitrification treatments for various combustion exhaust gases. In addition, it is available at a lower price and is more practical than Ti-based carriers for dirty exhaust gas denitrification treatment.

本発明において、触媒成分はバナジウム(V)、タング
ステン(W)、モリブデン(Mo)及びクロム(Cr)
の1種または2種以上であり、各成分の酸化物として担
体に担持される。その担持量は各成分の酸化物として0
.01〜2.0重量%、好ましくは0.05〜0.5重
量%の範囲である。
In the present invention, the catalyst components are vanadium (V), tungsten (W), molybdenum (Mo) and chromium (Cr).
One or more of these components are supported on the carrier as oxides of each component. The supported amount is 0 as the oxide of each component.
.. It ranges from 0.01 to 2.0% by weight, preferably from 0.05 to 0.5% by weight.

本発明における上記マグネシウムシリケートを主成分と
する担体を用いた触媒は、従来、重質炭化水素類の水素
化処理、主に水素化脱メタルや水素化脱硫用として使用
されているが、排煙脱硝処理に使用されたことはなく、
発明者等が初めて適用を試みて、優れた効果を見出した
ものである。
The catalyst of the present invention using a carrier mainly composed of magnesium silicate has conventionally been used for hydrotreating heavy hydrocarbons, mainly for hydrodemetalization and hydrodesulfurization. It has never been used for denitrification treatment,
The inventors tried to apply it for the first time and found excellent effects.

本発明の触媒は、その担体の性質に由来し、般の排煙脱
硝に用いられる平均細孔径100Å以下の触媒に比し、
平均細孔径が例えば200〜600人と大きいため、反
応物の拡散が律速である排煙脱硝において還元ガス及び
除去するNoXの触媒細孔への拡散が容易に行われ効果
的である。
The catalyst of the present invention derives from the properties of its carrier, and has a lower average pore diameter of 100 Å or less compared to catalysts used in general flue gas denitrification.
Since the average pore diameter is large, for example, 200 to 600, the reducing gas and the NoX to be removed can easily diffuse into the catalyst pores in exhaust gas denitrification in which the rate of reaction is diffusion.

また、特に粉塵等が含有されるダーティ排ガスを処理す
る場合、本発明の触媒は大きな平均細孔径を有するため
粉塵或いは残存SOXとアンモニア等の還元ガスとの反
応によって生成する微量の硫酸アンモニウム等、及びS
 Oxと触媒との反応で生じる硫酸アルミニウム、硫酸
マグネシウム等の硫酸塩による触媒細孔の閉塞が起こり
にくいという利点がある。
In addition, especially when treating dirty exhaust gas containing dust, etc., the catalyst of the present invention has a large average pore diameter, so it can eliminate trace amounts of ammonium sulfate, etc. produced by the reaction of dust or residual SOX with reducing gas such as ammonia, etc. S
This has the advantage that catalyst pores are less likely to be clogged by sulfates such as aluminum sulfate and magnesium sulfate produced by the reaction between Ox and the catalyst.

更にまた、本発明の触媒は、その主成分から明らかなよ
うに酸性担体からクリ、脱硝反応における還元ガスの吸
着が容易であり、且つマグネシウムシリケート類は一般
に繊維状であって耐摩耗性が大きく触媒粉化が少なく、
排煙脱硝処理を安定して連続させることができ、上記し
た利点に加えて更に効率的な排煙脱硝処理を促進するこ
とができる。
Furthermore, as is clear from its main components, the catalyst of the present invention can easily adsorb reducing gas in the denitrification reaction from an acidic carrier, and magnesium silicates are generally fibrous and have high wear resistance. Less catalyst powdering,
The flue gas denitrification process can be stably and continuously carried out, and in addition to the above advantages, more efficient flue gas denitrification process can be promoted.

本発明の触媒の調製は、先ず触媒担体を調製する。触媒
担体は、例えば、特公昭55−31085号、同57−
16859号公報、同59−6696号公報に記載され
るように担体原料の粘土鉱物セピオライト等を所望の粒
度に粉砕した後、適量の、通常約10〜300重量%の
水やアルコール、エーテル、ケトン等の水溶性含酸素有
機化合物と共に充分に混練し、その繊維束をばらばらに
解離させ、細孔容積、細孔表面積を大きくすると共に、
細孔分布を大細孔径側に且つシャープに調節する。また
、混練と同時、または混練の前或いは後に適当な試薬に
て骨格マグネシウムを脱離させる処理を°してもよい。
To prepare the catalyst of the present invention, first, a catalyst carrier is prepared. The catalyst carrier is, for example, disclosed in Japanese Patent Publication No. 55-31085 and Japanese Patent Publication No. 57-31085.
As described in Publication No. 16859 and Publication No. 59-6696, after crushing clay mineral sepiolite, etc. as a carrier material to a desired particle size, an appropriate amount, usually about 10 to 300% by weight of water, alcohol, ether, or ketone is added. etc., to dissociate the fiber bundles and increase the pore volume and pore surface area,
Pore distribution is sharply adjusted to the large pore diameter side. Furthermore, a treatment to remove the skeleton magnesium using an appropriate reagent may be performed simultaneously with the kneading, or before or after the kneading.

混練後、必要に応じ調湿して成形する。成形方法は任意
でよく、また各種成形助剤等の添加剤を添加してもよい
。成形体の形状は、特に限定されるものでなく、球状、
円柱状、角柱状、ハニカム状、円筒状、また星状、角筒
状、T字状等の異形状のもののいずれでもよい。成形後
、乾燥、焼成して焼成体を得る。
After kneading, adjust the humidity as necessary and mold. Any molding method may be used, and additives such as various molding aids may be added. The shape of the molded object is not particularly limited, and may be spherical,
It may be cylindrical, prismatic, honeycomb, cylindrical, or have an irregular shape such as a star, a prismatic tube, or a T-shape. After shaping, it is dried and fired to obtain a fired body.

触媒成分の担持方法は、従来公知の含浸法、散布法、イ
オン交換法、混練法等いずれの担持方法でもよく、上記
のようにして得た焼成体に担持してもよいし、上記の担
体調製工程の任意の段階、例えば混練時や成形時に、上
記触媒成分の適当な化合物、例えば、硝酸塩、硫酸塩等
の無機酸塩、有機酸塩、塩化物、成分金属酸塩等を添加
して担持してもよい。
The catalyst component may be supported by any conventionally known impregnation method, spraying method, ion exchange method, kneading method, etc. It may be supported on the calcined body obtained as described above, or it may be supported on the above-mentioned carrier. At any stage of the preparation process, for example during kneading or molding, suitable compounds of the above catalyst components, such as inorganic acid salts such as nitrates and sulfates, organic acid salts, chlorides, component metal salts, etc., are added. It may be supported.

本発明の排煙脱硝処理方法は、上記触媒を用いて燃焼排
ガスとアンモニア等の還元ガスと接触させ、排ガス中の
NOXを窒素に還元する選択的還元接触法である。反応
温度120〜450℃の範囲で、公知の排煙脱硝用装置
のいずれにも適用することができる。
The flue gas denitrification treatment method of the present invention is a selective reduction contact method in which the flue gas is brought into contact with a reducing gas such as ammonia using the above catalyst to reduce NOX in the flue gas to nitrogen. It can be applied to any known flue gas denitrification device within the reaction temperature range of 120 to 450°C.

本発明においては、排ガスの脱硫と組み合わせて燃焼排
ガスの総合的排煙処理をするのが好ましい。この場合、
本発明の脱硝処理は、脱硫の前後のいずれでも行うこと
ができる。好ましくは、出願人の開発したジェットバブ
リングリアクター(JBR)を用いた排煙脱硫処理(特
許第1282007)を行った後に、本発明の排煙脱硝
処理を行うのがよい。
In the present invention, it is preferable to carry out comprehensive flue gas treatment of combustion flue gas in combination with flue gas desulfurization. in this case,
The denitrification treatment of the present invention can be performed either before or after desulfurization. Preferably, the flue gas denitrification treatment of the present invention is performed after the flue gas desulfurization treatment (Japanese Patent No. 1282007) using the jet bubbling reactor (JBR) developed by the applicant.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

但し、本発明は下記実施例により制限されるものでない
However, the present invention is not limited to the following examples.

実施例1 乾燥基準でMg027.2重量%、SiO□62.8重
量%、Δ12031.4重量%、FezO,、0,4重
量%及び結晶水その他8.2重量%の組成を有するセピ
オライト鉱石を200℃で3時間乾燥した後、100メ
ツシユ以下の微粉末が約70%になるまでボールミルで
乾式粉砕し、50メツシュ以上の粗粒を篩分けた。篩分
けられた微粉末セピオライトに約2倍の水を添加して、
エクストルーダーで十分混練後、直径0.8 mm、長
さ5〜7mmの柱状の成形体に成形した。成形体をv2
05として1.0重量%の修酸バナジル液に浸漬した後
、室温にて乾燥して500℃で3時間焼成して、v20
5が1.0重量%の触媒Aを得た。
Example 1 Sepiolite ore having a dry basis composition of 27.2% by weight of Mg, 62.8% by weight of SiO, 1.4% by weight of Δ1203, 0.4% by weight of FezO, and 8.2% by weight of crystal water and others. After drying at 200° C. for 3 hours, it was dry-pulverized in a ball mill until about 70% of the particles were fine particles with a mesh size of 100 or less, and coarse particles with a mesh size of 50 mesh or more were sieved. Approximately twice as much water is added to the sieved fine powder sepiolite,
After thorough kneading with an extruder, the mixture was molded into a columnar molded product with a diameter of 0.8 mm and a length of 5 to 7 mm. molded body v2
V20 was immersed in a 1.0% by weight vanadyl oxalate solution as V20, dried at room temperature, and baked at 500°C for 3 hours.
A catalyst A containing 1.0% by weight of 5 was obtained.

実施例2 実施例1と同一のセピオライト鉱石を10〜8メツシユ
に粉砕して120℃で2時間乾燥し、室温で40倍重量
の3規定塩酸に100時間浸漬し、骨格マグネシウムが
脱離した変性セピオライトを生成した。
Example 2 The same sepiolite ore as in Example 1 was crushed into 10 to 8 meshes, dried at 120°C for 2 hours, and immersed in 40 times the weight of 3N hydrochloric acid at room temperature for 100 hours to produce a modified product in which the skeletal magnesium was eliminated. produced sepiolite.

得られた変性セピオライl−を実施例1と同様に微粉砕
し、次いでパラモリブデン酸アンモンをモリブデン金属
が乾燥変性セピオライトに対し約150重量%となるよ
うに加えて混練し、直径1.6mm、長さ8〜11mm
の成形体に成形した。
The obtained modified sepiolite was finely ground in the same manner as in Example 1, and then ammonium paramolybdate was added and kneaded so that molybdenum metal was about 150% by weight based on the dry modified sepiolite. Length 8-11mm
It was molded into a molded body.

成形体を室温にて乾燥して500℃で3時間焼成して、
MoO3が0.3重量%の触媒Bを得た。
The molded body was dried at room temperature and fired at 500°C for 3 hours,
Catalyst B containing 0.3% by weight of MoO3 was obtained.

実施例3 実施例1と同一のセピオライト鉱石と直閃石とをl:1
で共に実施例1と同様に微粉砕し、混練して、直径3胴
の円柱状の成形体を得た。
Example 3 The same sepiolite ore and anthophyllite as in Example 1 were mixed in l:1
Both were finely pulverized and kneaded in the same manner as in Example 1 to obtain a cylindrical molded body with a diameter of 3 cylinders.

成形体を実施例1と同様に乾燥、焼成して焼成体を得た
。この焼成体に、通常の浸漬法にて同。
The molded body was dried and fired in the same manner as in Example 1 to obtain a fired body. This fired body was then soaked in the same way as usual.

0.1重量%、Cr2O,、o、 1重量%、MOO3
0,1重量%となるように担持させた触媒Cを得た。
0.1% by weight, Cr2O,, o, 1% by weight, MOO3
A catalyst C supported at 0.1% by weight was obtained.

実施例4 上記で得られた触媒A、B及びCをそれぞれ用いて脱硝
テストを行った。脱硝テスト条件及びテスト結果は、下
記の通りであった。
Example 4 A denitrification test was conducted using each of the catalysts A, B, and C obtained above. The denitrification test conditions and test results were as follows.

(1)テスト模擬排ガス H20濃度    10 (χ) 02  濃度     8 (χ) NOx濃度   500  (ppm)SOX濃度  
 500  (ppm)(2)添加還元ガス:NH3濃
度 500 (ppm)(3)S、V、(ガス量NI/
時間÷触媒容量l)1000Hr” (4)反応温度 360℃ (5)処理ガス(3時間経過後) (2)添加還元ガス:NH3濃度: 490 (ppm
)(3)S、V、(ガス量Nl/時間÷触媒容量り20
0011r−’ (4)反応温度:300〜320℃ (5)処理ガス(3時間経過後) 実施例5 実施例4で用いたテスト模擬排ガスに粉塵を加えて粉塵
濃度500mg/Nnイとしたものを前記のJBRを用
い脱硫率97%で脱硫処理した後、上記触媒A、B及び
Cをそれぞれ用いて、脱硝テストを行った。脱硫処理ガ
ス及びテスト条件は下記の通りであった。
(1) Test simulated exhaust gas H20 concentration 10 (χ) 02 concentration 8 (χ) NOx concentration 500 (ppm) SOX concentration
500 (ppm) (2) Added reducing gas: NH3 concentration 500 (ppm) (3) S, V, (gas amount NI/
Time ÷ catalyst capacity l) 1000 Hr” (4) Reaction temperature 360°C (5) Processing gas (after 3 hours) (2) Added reducing gas: NH3 concentration: 490 (ppm
) (3) S, V, (gas amount Nl/hour ÷ catalyst capacity 20
0011r-' (4) Reaction temperature: 300 to 320°C (5) Processing gas (after 3 hours) Example 5 Dust was added to the test simulated exhaust gas used in Example 4 to give a dust concentration of 500 mg/Nn. was desulfurized using the above-mentioned JBR at a desulfurization rate of 97%, and then a denitrification test was conducted using the above-mentioned catalysts A, B, and C, respectively. The desulfurization treatment gas and test conditions were as follows.

(1)脱硫処理ガス 1120濃度 02  濃度 NOx濃度 SOX濃度 粉塵 (χ) (χ) (ppm) (ppm) (mg/Nm’) 脱硝テストは連続して48時間実施したが、触媒の閉塞
も生じることなく、円滑に安定して運転できた。
(1) Desulfurization treatment gas 1120 concentration 02 concentration NOx concentration SOX concentration Dust (χ) (χ) (ppm) (ppm) (mg/Nm') The denitrification test was conducted continuously for 48 hours, but catalyst blockage also occurred. I was able to drive smoothly and stably without any problems.

以上の結果から、本発明の触媒は燃焼排ガスの脱硝用触
媒として優れていることが明らかである。
From the above results, it is clear that the catalyst of the present invention is excellent as a catalyst for denitration of combustion exhaust gas.

また、特に粉塵、SOXを含む燃焼排ガスの脱硝処理に
おいても活性低下が少なく好適に使用可能であることが
分かる。
Furthermore, it can be seen that it can be suitably used, especially in the denitrification treatment of combustion exhaust gas containing dust and SOX, with little decrease in activity.

〔発明の効果〕〔Effect of the invention〕

本発明は燃焼排ガスの脱硝触媒であって、比較的低い処
理温度でも、高脱硝、率を1等ること力4できる。また
、粉塵による耐閉塞性に優れりIJ−ンIトガスからダ
ーティ排ガスまで、あらゆるυトカ゛スにも適用でき工
業的に有用である。
The present invention is a denitrification catalyst for combustion exhaust gas, which can achieve high denitrification and a rate of 1 even at a relatively low treatment temperature. In addition, it has excellent resistance to clogging due to dust, and is industrially useful as it can be applied to all kinds of gases, from IJ-type gas to dirty exhaust gas.

Claims (2)

【特許請求の範囲】[Claims] (1)還元ガス存在下、約120〜450℃の温度範囲
で、窒素酸化物含有排ガスの脱硝処理に用いられる繊維
状マグネシウムシリケートを主成分とする担体にバナジ
ウム、タングステン、モリブデン及びクロムの1種また
は2種以上の触媒成分を担持したことを特徴とする排煙
脱硝用触媒。
(1) One type of vanadium, tungsten, molybdenum, and chromium on a carrier mainly composed of fibrous magnesium silicate used for denitration treatment of nitrogen oxide-containing exhaust gas in the presence of reducing gas at a temperature range of about 120 to 450°C. Or a catalyst for exhaust gas denitrification characterized by supporting two or more types of catalyst components.
(2)約120〜450℃の温度範囲で、還元ガス及び
繊維状マグネシウムシリケートを主成分とする担体にバ
ナジウム、タングステン、モリブデン及びクロムの1種
または2種以上の触媒成分を担持した触媒の存在下で窒
素酸化物含有排ガスを処理することを特徴とする排煙脱
硝方法。
(2) Presence of a catalyst in which one or more catalyst components of vanadium, tungsten, molybdenum, and chromium are supported on a carrier mainly composed of reducing gas and fibrous magnesium silicate at a temperature range of about 120 to 450°C. A flue gas denitrification method characterized by treating nitrogen oxide-containing flue gas under.
JP2189197A 1990-07-17 1990-07-17 Exhaust gas denitrating catalyst and method Pending JPH0474530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189197A JPH0474530A (en) 1990-07-17 1990-07-17 Exhaust gas denitrating catalyst and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189197A JPH0474530A (en) 1990-07-17 1990-07-17 Exhaust gas denitrating catalyst and method

Publications (1)

Publication Number Publication Date
JPH0474530A true JPH0474530A (en) 1992-03-09

Family

ID=16237148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189197A Pending JPH0474530A (en) 1990-07-17 1990-07-17 Exhaust gas denitrating catalyst and method

Country Status (1)

Country Link
JP (1) JPH0474530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037749A1 (en) * 1996-04-09 1997-10-16 Metallgesellschaft Aktiengesellschaft Catalyst for removing the nitrogen from gases
JP2013180286A (en) * 2012-03-05 2013-09-12 Mitsubishi Heavy Ind Ltd Denitration catalyst for treating exhaust gas and method for treating exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037749A1 (en) * 1996-04-09 1997-10-16 Metallgesellschaft Aktiengesellschaft Catalyst for removing the nitrogen from gases
JP2013180286A (en) * 2012-03-05 2013-09-12 Mitsubishi Heavy Ind Ltd Denitration catalyst for treating exhaust gas and method for treating exhaust gas

Similar Documents

Publication Publication Date Title
EP0268265B1 (en) Denitration catalyst for reducing nitrogen oxides in exhaust gas
JP3480596B2 (en) Dry desulfurization denitrification process
JPH02194819A (en) Reducing method of nitrogen oxide present in waste gas containing oxygen
EP0226983B1 (en) Iron containing catalyst for reducing the amount of nitrogen oxides in combustion gases
JPS63194732A (en) Hydrogenation catalyst for heavy oil
EP0643991B1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
DE3031286C2 (en) Process for treating flue gas containing dust and sulfur oxide
GB2079172A (en) Catalyst for removing nitrogen oxides
DE2748471A1 (en) Supported catalyst for redn. of nitrogen oxide with ammonia - contg. base transition metal cpd. on titanium oxide and clay mineral
JPH0474530A (en) Exhaust gas denitrating catalyst and method
JPH06154611A (en) Catalyst for decomposition of nitrous oxide
JPH0474531A (en) Exhaust gas denitrating catalyst and method
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH08196871A (en) Decomposition of ammonia
JP2008168257A (en) Hydrogenation catalyst, its manufacturing method, and hydrogenation treatment catalyst, its production method and hydrogenation treatment method of heavy oil
JPH0477310A (en) Modified matter of sepiolite, using the same catalyst and method for denitrification of flue gas
KR100403436B1 (en) Catalysts and Methods for Treating Emissions
KR20200076152A (en) Method of Preparing Catalyst for Removing Nitrogen Oxides Using Waste FCC Catalysts
JPH0420663B2 (en)
JP2825343B2 (en) Method for producing catalyst for removing nitrogen oxides
JPS63182035A (en) Catalyst for removing nitrogen oxide
US3591487A (en) Hydrocracking process improvement by high temperature sulfiding and dry gas processing
JPH04166233A (en) Production of catalyst for hydrogenation treatment
JPH0474533A (en) Exhaust gas denitrating catalyst and method
JPH07121361B2 (en) Catalyst for catalytic reduction of nitrogen oxides