JPH0474421B2 - - Google Patents

Info

Publication number
JPH0474421B2
JPH0474421B2 JP58024159A JP2415983A JPH0474421B2 JP H0474421 B2 JPH0474421 B2 JP H0474421B2 JP 58024159 A JP58024159 A JP 58024159A JP 2415983 A JP2415983 A JP 2415983A JP H0474421 B2 JPH0474421 B2 JP H0474421B2
Authority
JP
Japan
Prior art keywords
rare earth
resin
distribution
powder
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58024159A
Other languages
Japanese (ja)
Other versions
JPS59150029A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58024159A priority Critical patent/JPS59150029A/en
Publication of JPS59150029A publication Critical patent/JPS59150029A/en
Publication of JPH0474421B2 publication Critical patent/JPH0474421B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は原料である希土類金属とCoを主体と
した遷移金属の金属間化合物の粉末の粒度を規定
した樹脂結合型希土類コバルト磁石の製造方法に
関するものである。 [従来の技術] セリウム(Ce)、イツトリウム(Y)、サマリ
ウム(Sm)あるいはミツシユメタル(MM)な
ど希土類金属(Rと総称)と遷移金属(TM)が
原子比で1:5の比率からなる金属間化合物
RTM5は結晶磁気異方性が非常に大きいことか
ら、これを微粒子にして用いると高い保磁力の永
久磁石が得られる。 一方、原子比2:17の金属間化合物R2TM17
RTM5と異なり、析出硬化型の保磁力機構である
ために、樹脂結合型磁石に使用できる粒子径の範
囲がRTM5よりも広く、粒度調整が可能である。 磁石を製造する場合、これらのRTM5又は
R2TM17(以下RTMと称す)の粉末を樹脂結合法
により固化させることにより、焼結型磁石で見ら
れるような研削、穴あけ等の加工工程が必要な
く、プレス成形した後、加熱固化させることによ
つて最終形状にすることができる。 さらに樹脂結合型磁石は、加工工程が不要なこ
とから原材料歩留まりもほぼ100%に近く、焼結
型磁石では得られないような複雑な形状の磁石も
得ることができる。 希土類金属、Co永久磁石は、RCoの大きい結
晶異方性を充分に発揮させるために、RCo金属間
化合物の塊を微粒子に粉砕して適当なバインダー
を加えた後、磁界中で磁区の方向を揃えて圧縮成
形して作られる。 [発明が解決しようとする課題] 前述の、圧縮成形の際の磁区の方向の揃い具合
と成形品の密度が大きく磁石の性能に影響する。 第3図は、従来の樹脂結合型希土類金属、Co
系磁石の製造に用いられていた粉末の粒度分布を
横軸に粒子径、縦軸に頻度で示したグラフであ
る。 第3図に示すように粒度分布は、ピーク値を中
心としたほぼ左右対称なブロードな分布となつて
いる。このような分布を持つた粉末から得られる
磁石の密度は、最高値で7.0〜7.05g/cm3であつ
た。 RCo合金の密度及びバインダーの密度と添加量
から計算される磁石の理論密度は約7.5g/cm2
あることから、かなりの空〓が磁石内に存在する
ことになる。これらの空〓が磁束密度の低下及び
粉末間の結合力を低下させることから磁石の強度
又は硬度を低下させる原因となつている。 本発明は、以上の従来技術の課題を解決するた
めに、小粒子の多い粒度分布を持つ合金粉末を用
い高密度、高性能磁石を提供することを目的とす
るものである。 [課題を解決するための手段] 本発明は、希土類金属の1種又は2種以上とコ
バルト(Co)を主体とした遷移金属との金属間
化合物からなる微粉末永久磁石の製造方法におい
て、 該製造過程で磁石原料粉末の粒度分布のピーク
値が8〜90μmの範囲にあり、該分布の形が自由
度16〜20のカイ2乗分布(χ2)においてその積分
値が1.2〜0.8の範囲内にある磁石粉末を用いるこ
とにより、有機物樹脂バインダーとの混練後の成
形において生ずる空〓を極めて少なくしたことを
特徴とする、樹脂結合型希土類コバルト磁石の製
造方法である。 また希土類金属としてサマリウム(Sm)、
R2TM17(R:希土類金属、TM:遷移金属)系
化合物、Sm2TM17(TM:遷移金属)系化合物を
用いることを特徴とする上記の樹脂結合型希土類
コバルト磁石の製造方法である。 [作用] 本発明者等は、樹脂結合型磁石の内部に発生す
る空〓の原因を、磁石粉末中の大きな粒子によつ
て作られる間〓を埋める小さな粒子が不足してい
るためと考え、磁石の製造工程の中の粉砕とバイ
ンダーと粉末の混練の過程の条件を変化させ小粒
子の多い粒度分布の粉末を得た。 即ち粉砕と混練の組み合わせから、磁石原料粉
末の粒度分布のピーク値が8〜90μmの範囲にあ
り、分布の形が自由度16〜20のカイ2乗分布
(χ2)によつて示される範囲内にある粉末を得た。 又、これらを磁場中でプレス成形したところ平
均密度7.20以上の磁石を得ることができた。 さらに、高密度化されたことにより残留磁束密
度が上がり、さらに磁石の機械的強度と硬度が向
上した。 粒度分布のピーク値の範囲及び自由度の範囲
は、各種の粒度分布を持つた粉末を用いて実験し
た結果効果が認められた範囲であり、ピークの上
限については、空〓を埋める小粒子自身が大きく
なるために効果が現出しなくなる最大値であり、
下限は全ての粒子が小さくなり過ぎることによる
密度の低下が現われない最低値である。 第2図は自由度8〜24のχ2分布の形の変化を示
したグラフで縦軸のf(x)は第(1)式によつて表
わされるものである。 ここでνは自由度である。 この第2図からわかるように値が大きくなるに
従つて小粒子が増加する。即ち小粒子の量を決め
るものである。 本発明で自由度の最低値を16としたのは16以下
では過剰な小粒子が存在するために密度が低下す
るためであり、最大値を20としたのは20以上では
空〓を埋めるために必要な小粒子が得られないか
らである。 又、x2分布の積分値を1.2〜0.8としたのは実際
の分布曲線がx2分布の曲線のようなきれいな曲線
となつていないためと、この範囲を越える分布で
は小粒子の量のバランスが崩れ密度の低下が起こ
るためである。 以下実施例について述べる。 [実施例] 実施例 1 組成が一般式でSm(Co0.67Cu0.075Fe0.22Zr0.0288.
なるR2TM17系合金を10Kg溶解、鋳造し合金イ
ンゴツト得た。 次に本合金に溶体化処理、等温時効処理を行な
い保磁力を持たせた。 この熱処理を終えた合金インゴツトをハンマー
クラツシヤーで粗粉砕した後、ボールミルで10時
間微粉砕した。得られた粉末にバインダーを加え
1時間混練した。 第1図は本発明により得られた粉末の代表的な
粒度分布を示すグラフであり、は積分値0.8の
x2分布曲線、は積分値1.2のx2分布曲線、は
粉末の分布曲線である。 上記の混練した時点において粉末の粒度分布は
第3図に示すように、ピーク値32μm自由度18の
x2分布の積分値1.2〜0.8の範囲内にその分布曲線
が入るものであつた。 この粉末を磁場中成形した結果得られた成形体
の性質を表1に示す。 ここで従来法は、第3図に示すような粒度分布
を持つ磁石粉末より得られた成形体の性質であ
る。
[Industrial Field of Application] The present invention relates to a method for manufacturing a resin-bonded rare earth cobalt magnet in which the particle size of the powder of a transition metal intermetallic compound mainly composed of a rare earth metal and Co as a raw material is defined. [Prior art] A metal consisting of a rare earth metal (generally referred to as R) and a transition metal (TM) in an atomic ratio of 1:5, such as cerium (Ce), yttrium (Y), samarium (Sm), or Mitsushi metal (MM). intermediate compound
Since RTM 5 has extremely large magnetocrystalline anisotropy, if it is used in the form of fine particles, a permanent magnet with high coercive force can be obtained. On the other hand, the intermetallic compound R 2 TM 17 with an atomic ratio of 2:17 is
Unlike RTM 5 , it uses a precipitation hardening type coercive force mechanism, so the range of particle sizes that can be used in resin-bonded magnets is wider than RTM 5 , and particle size adjustment is possible. When manufacturing magnets, these RTM 5 or
By solidifying R 2 TM 17 (hereinafter referred to as RTM) powder using a resin bonding method, there is no need for processing steps such as grinding and drilling that are required with sintered magnets. The final shape can then be achieved. Furthermore, since resin-bonded magnets do not require any processing steps, the raw material yield is close to 100%, and magnets with complex shapes that cannot be obtained with sintered magnets can be obtained. In order to fully utilize the large crystal anisotropy of RCo, rare earth metal Co permanent magnets are manufactured by grinding a lump of RCo intermetallic compound into fine particles, adding an appropriate binder, and then changing the direction of the magnetic domain in a magnetic field. Made by aligning and compression molding. [Problems to be Solved by the Invention] As mentioned above, the alignment of the magnetic domain directions during compression molding and the density of the molded product greatly affect the performance of the magnet. Figure 3 shows a conventional resin-bonded rare earth metal, Co.
It is a graph showing the particle size distribution of the powder used in the production of the magnet system, with the particle size on the horizontal axis and the frequency on the vertical axis. As shown in FIG. 3, the particle size distribution is a broadly symmetrical distribution centered on the peak value. The maximum density of the magnet obtained from the powder having such a distribution was 7.0 to 7.05 g/cm 3 . Since the theoretical density of the magnet calculated from the density of the RCo alloy, the density of the binder, and the amount added is approximately 7.5 g/cm 2 , a considerable amount of air space exists within the magnet. These voids reduce the magnetic flux density and the bonding force between powders, which causes a decrease in the strength or hardness of the magnet. SUMMARY OF THE INVENTION In order to solve the above problems of the prior art, it is an object of the present invention to provide a high-density, high-performance magnet using an alloy powder having a particle size distribution with many small particles. [Means for Solving the Problems] The present invention provides a method for producing a fine powder permanent magnet comprising an intermetallic compound of one or more rare earth metals and a transition metal mainly composed of cobalt (Co). During the manufacturing process, the peak value of the particle size distribution of the magnet raw material powder is in the range of 8 to 90 μm, and the shape of the distribution is a chi-square distribution (χ 2 ) with 16 to 20 degrees of freedom, and its integral value is in the range of 1.2 to 0.8. This method of manufacturing a resin-bonded rare earth cobalt magnet is characterized in that by using magnet powder contained in the magnet powder, voids generated during molding after kneading with an organic resin binder are extremely reduced. In addition, samarium (Sm) is a rare earth metal.
A method for manufacturing the above-mentioned resin-bonded rare earth cobalt magnet characterized by using an R 2 TM 17 (R: rare earth metal, TM: transition metal) based compound and a Sm 2 TM 17 (TM: transition metal) based compound. . [Function] The present inventors believe that the cause of the voids that occur inside the resin bonded magnet is due to the lack of small particles that fill the voids created by the large particles in the magnet powder. By changing the conditions of the crushing and kneading of binder and powder in the magnet manufacturing process, a powder with a particle size distribution containing many small particles was obtained. That is, due to the combination of crushing and kneading, the peak value of the particle size distribution of the magnet raw material powder is in the range of 8 to 90 μm, and the shape of the distribution is a range represented by a chi-square distribution (χ 2 ) with 16 to 20 degrees of freedom. Got the powder inside. Furthermore, when these were press-molded in a magnetic field, a magnet with an average density of 7.20 or more could be obtained. Furthermore, the increased density increased the residual magnetic flux density and further improved the mechanical strength and hardness of the magnet. The range of the peak value of the particle size distribution and the range of degrees of freedom are the ranges that were found to be effective as a result of experiments using powders with various particle size distributions, and the upper limit of the peak is the range of the small particles themselves that fill the void. is the maximum value at which the effect no longer appears due to the increase in
The lower limit is the lowest value at which no decrease in density occurs due to all particles becoming too small. FIG. 2 is a graph showing changes in the shape of the χ 2 distribution with 8 to 24 degrees of freedom, and f(x) on the vertical axis is expressed by equation (1). Here ν is the degree of freedom. As can be seen from FIG. 2, as the value increases, the number of small particles increases. That is, it determines the amount of small particles. In the present invention, the minimum value of degrees of freedom is set to 16 because if it is less than 16, the density decreases due to the presence of excess small particles, and the reason why the maximum value is set to 20 is to fill the void if it is more than 20. This is because the necessary small particles cannot be obtained. Also, the reason why the integral value of the x 2 distribution is set to 1.2 to 0.8 is because the actual distribution curve is not as clean as the curve of the x 2 distribution, and because the distribution exceeds this range, the balance of the amount of small particles This is because the structure collapses and the density decreases. Examples will be described below. [Example] Example 1 The composition is the general formula Sm (Co 0.67 Cu 0.075 Fe 0.22 Zr 0.028 ) 8.
An alloy ingot was obtained by melting and casting 10 kg of R 2 TM 17 series alloy. Next, this alloy was subjected to solution treatment and isothermal aging treatment to impart coercive force. The heat-treated alloy ingot was coarsely crushed using a hammer crusher, and then finely crushed using a ball mill for 10 hours. A binder was added to the obtained powder and kneaded for 1 hour. Figure 1 is a graph showing the typical particle size distribution of the powder obtained by the present invention, where is an integral value of 0.8.
The x 2 distribution curve, is the x 2 distribution curve with an integral value of 1.2, is the distribution curve of the powder. At the time of kneading, the particle size distribution of the powder is as shown in Figure 3, with a peak value of 32 μm and 18 degrees of freedom.
The distribution curve fell within the range of the integral value of x 2 distribution from 1.2 to 0.8. Table 1 shows the properties of the compact obtained by compacting this powder in a magnetic field. Here, the conventional method has the properties of a compact obtained from magnet powder having a particle size distribution as shown in FIG.

【表】 表1からわかるように本発明法により磁気的性
能の改善と機械的性質の改善の両方が実現でき
た。 実施例 2 組成が、一般式でSm(Co0.63Cu0.06Fe0.3Zr0.0167
.5なるR2Co17系合金を10Kg溶解、鋳造し合金イン
ゴツト得た。 次に本合金に溶体処理及び等温時効処理を行な
い250℃迄炉冷した。 こうして得られた合金インゴツトをハンマーク
ラツシヤーで粗粉砕した後、ボールミルで5時間
微粉砕し、バインダーを加えて30分間混練した。 この結果粉末はピーク値70μm、自由度18〜19
のx2分布の積分値1.2〜0.8の範囲にその形が含ま
れるような粒度分布を持つものとなつた。 この粉末を磁場中成形し、得られた成形体の性
質は、密度7.25g/cm3、(BH)max17.6MGOe、
磁束密度9200G、衝撃強度7.3Kg/cm、ビツカー
ス硬度130であつた。 表1に示した従来法の値との比較からわかるよ
うに磁気性能、機械的性質、共に改善された。 実施例 3 実施例2と同様の合金インゴツトを粗粉砕した
後、ボールミルで30時間微粉砕し、バインダーを
加えて2時間混練した。こうして得られた粉末の
粒度分布は、ピーク値10μmで自由度16のχ2分布
の積分値1.2〜0.8の範囲にその形が含まれるよう
なものであつた。 この粉末を磁場中成形した結果、得られた成形
体の密度は7.27g/cm3、(BH)max17.9MGOe、
磁束密度9200G、衝撃強度7.4Kg/cm、ビツカー
ス硬度130といずれも従来法よりも改善されてい
る。 [発明の効果] 以上の如く、本発明の樹脂結合型希土類コバル
ト磁石の製造方法によれば、得られる磁石は高密
度化され、より高い残留磁束密度及び(BH)
max等の磁気性能が改善され、さらに、強度が
増すことにより従来より薄肉タイプのリング状磁
石も成形可能となる等の効果を奏するものであ
る。
[Table] As can be seen from Table 1, the method of the present invention was able to achieve both improvements in magnetic performance and mechanical properties. Example 2 The composition is Sm (Co 0.63 Cu 0.06 Fe 0.3 Zr 0.016 ) 7
.. An alloy ingot was obtained by melting and casting 10 kg of R 2 Co 17 -based alloy No. 5 . Next, this alloy was subjected to solution treatment and isothermal aging treatment, and then furnace cooled to 250℃. The alloy ingot thus obtained was coarsely pulverized with a hammer crusher, then finely pulverized with a ball mill for 5 hours, a binder was added, and the mixture was kneaded for 30 minutes. As a result, the powder has a peak value of 70 μm and a degree of freedom of 18 to 19.
The particle size distribution was such that the shape was within the range of the integral value of the x 2 distribution of 1.2 to 0.8. This powder was compacted in a magnetic field, and the properties of the obtained compact were: density 7.25g/cm 3 , (BH)max17.6MGOe,
The magnetic flux density was 9200G, the impact strength was 7.3Kg/cm, and the Vickers hardness was 130. As can be seen from the comparison with the values of the conventional method shown in Table 1, both magnetic performance and mechanical properties were improved. Example 3 The same alloy ingot as in Example 2 was coarsely ground, then finely ground in a ball mill for 30 hours, and a binder was added and kneaded for 2 hours. The particle size distribution of the powder thus obtained was such that the shape was included in the integral value range of 1.2 to 0.8 of a χ 2 distribution with a peak value of 10 μm and 16 degrees of freedom. As a result of compacting this powder in a magnetic field, the density of the obtained compact was 7.27 g/cm 3 , (BH)max17.9 MGOe,
The magnetic flux density is 9200G, the impact strength is 7.4Kg/cm, and the Vickers hardness is 130, all of which are improved over the conventional method. [Effects of the Invention] As described above, according to the method for manufacturing a resin-bonded rare earth cobalt magnet of the present invention, the resulting magnet has a high density, a higher residual magnetic flux density and (BH)
Magnetic performance such as max is improved, and furthermore, due to increased strength, it is possible to form ring-shaped magnets with thinner walls than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得られた粉末の代表的な
粒度分布曲線グラフ、第2図は、自由度8〜24の
χ2分布の形の変化を示したグラフ、第3図は、従
来の樹脂結合型希土類金属、Co系磁石の製造に
用いられていた粉末の粒度分布図である。
Fig. 1 is a typical particle size distribution curve graph of the powder obtained by the present invention, Fig. 2 is a graph showing changes in the shape of the χ 2 distribution with 8 to 24 degrees of freedom, and Fig. 3 is a graph of the conventional particle size distribution curve. FIG. 2 is a particle size distribution diagram of powder used in the production of resin-bonded rare earth metal, Co-based magnets.

Claims (1)

【特許請求の範囲】 1 希土類金属の1種又は2種以上とコバルト
(Co)を主体とした遷移金属との金属間化合物か
らなる微粉末永久磁石の製造方法において、 該製造過程で磁石原料粉末の粒度分布のピーク
値が8〜90μmの範囲にあり、該分布の形が自由
度16〜20のカイ2乗分布(χ2)においてその積分
値が1.2〜0.8の範囲内にある磁石粉末を用いるこ
とにより、有機物樹脂バインダーとの混練後の成
形において生ずる空〓を極めて少なくしたことを
特徴とする、樹脂結合型希土類コバルト磁石の製
造方法。 2 希土類金属としてサマリウム(Sm)を用い
ることを特徴とする、特許請求の範囲第1項記載
の樹脂結合型希土類コバルト磁石の製造方法。 3 R2TM17(R:希土類金属、TM:遷移金属)
系化合物を用いることを特徴とする、特許請求の
範囲第1項記載の樹脂結合型希土類コバルト磁石
の製造方法。 4 Sm2TM17(TM:遷移金属)系化合物を用い
ることを特徴とする、特許請求の範囲第1項記載
の樹脂結合型希土類コバルト磁石の製造方法。
[Scope of Claims] 1. A method for manufacturing a fine powder permanent magnet comprising an intermetallic compound of one or more rare earth metals and a transition metal mainly composed of cobalt (Co), which comprises: The peak value of the particle size distribution is in the range of 8 to 90 μm, and the shape of the distribution is in the chi-square distribution (χ 2 ) with 16 to 20 degrees of freedom, and the integral value is in the range of 1.2 to 0.8. 1. A method for producing a resin-bonded rare earth cobalt magnet, which is characterized in that voids generated during molding after kneading with an organic resin binder are extremely reduced. 2. A method for manufacturing a resin-bonded rare earth cobalt magnet according to claim 1, characterized in that samarium (Sm) is used as the rare earth metal. 3 R 2 TM 17 (R: rare earth metal, TM: transition metal)
2. A method for producing a resin-bonded rare earth cobalt magnet according to claim 1, characterized in that a resin-bonded rare earth cobalt magnet is used. 4. A method for producing a resin-bonded rare earth cobalt magnet according to claim 1, characterized in that a Sm 2 TM 17 (TM: transition metal) based compound is used.
JP58024159A 1983-02-16 1983-02-16 Production of resin bond type magnet consisting of rare earth and cobalt Granted JPS59150029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024159A JPS59150029A (en) 1983-02-16 1983-02-16 Production of resin bond type magnet consisting of rare earth and cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024159A JPS59150029A (en) 1983-02-16 1983-02-16 Production of resin bond type magnet consisting of rare earth and cobalt

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28501789A Division JPH02161707A (en) 1989-11-02 1989-11-02 Manufacture of resin bonding type rare earth magnet

Publications (2)

Publication Number Publication Date
JPS59150029A JPS59150029A (en) 1984-08-28
JPH0474421B2 true JPH0474421B2 (en) 1992-11-26

Family

ID=12130552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024159A Granted JPS59150029A (en) 1983-02-16 1983-02-16 Production of resin bond type magnet consisting of rare earth and cobalt

Country Status (1)

Country Link
JP (1) JPS59150029A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161707A (en) * 1989-11-02 1990-06-21 Seiko Epson Corp Manufacture of resin bonding type rare earth magnet

Also Published As

Publication number Publication date
JPS59150029A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
US4284440A (en) Rare earth metal-cobalt permanent magnet alloy
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JPS6181606A (en) Preparation of rare earth magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH0551656B2 (en)
JPH0352529B2 (en)
JPH0680608B2 (en) Rare earth magnet manufacturing method
JPS6181607A (en) Preparation of rare earth magnet
JPH0345884B2 (en)
JPH0474421B2 (en)
JPS61207545A (en) Manufacture of permanent magnet material
JPH02161707A (en) Manufacture of resin bonding type rare earth magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JPH0418441B2 (en)
JPH066727B2 (en) Method for producing raw material powder for permanent magnet material
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPS6111442B2 (en)
JPH0472903B2 (en)
JPH06224018A (en) Manufacture of r-fe-b-based sintered magnet
JPH024942A (en) Permanent magnetic alloy
JPS63213323A (en) Rare earth iron permanent magnet
JPH01162747A (en) Rare-earth alloy for bond magnet and bond magnet
JPS6142771B2 (en)