JPH0473880B2 - - Google Patents

Info

Publication number
JPH0473880B2
JPH0473880B2 JP59059759A JP5975984A JPH0473880B2 JP H0473880 B2 JPH0473880 B2 JP H0473880B2 JP 59059759 A JP59059759 A JP 59059759A JP 5975984 A JP5975984 A JP 5975984A JP H0473880 B2 JPH0473880 B2 JP H0473880B2
Authority
JP
Japan
Prior art keywords
pixel
layer
light
light emitting
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59059759A
Other languages
Japanese (ja)
Other versions
JPS60202471A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59059759A priority Critical patent/JPS60202471A/en
Publication of JPS60202471A publication Critical patent/JPS60202471A/en
Publication of JPH0473880B2 publication Critical patent/JPH0473880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 技術分野 この発明は薄膜EL素子に関し、より詳しくは
画素占有率を変化させて階調表示を行なうマトリ
ツクス型の薄膜ELデイスプレイパネルに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a thin film EL device, and more particularly to a matrix type thin film EL display panel that performs gradation display by changing pixel occupancy.

従来技術 従来、交流動作の薄膜EL素子に関して、発光
層に規則的に高い電界(106V/cm程度)を印加
し、絶縁耐圧、発光効率及び動作の安定性等を高
めるために、0.1〜1.0WT%のMn(あるいはCu、
Al、Br等)をドープしたZn S、Zn Se等の半導
体発光層をY2O3、Ta2O3等の誘電体薄膜でサン
ドイツチした三層構造Zn S:Mn(又はZn Se:
Mn)EL素子が開発され、発光諸特性の向上が確
かめられている。この薄膜EL素子は数KHzの交
流電界印加によつて高輝度発光し、しかも長寿命
であるという特徴を有している。
Conventional technology Conventionally, for AC-operated thin-film EL elements, a high electric field (about 10 6 V/cm) is regularly applied to the light emitting layer, and in order to improve dielectric strength, luminous efficiency, stability of operation, etc. 1.0WT% Mn (or Cu,
A three-layer structure ZnS : Mn (or ZnSe:
Mn) EL devices have been developed, and improvements in various light-emitting properties have been confirmed. This thin film EL element emits high-intensity light when an alternating current electric field of several KHz is applied, and has a long lifespan.

薄膜EL素子の1例としてZn S:Mn薄膜EL素
子の基本的構造を第1図に示す。
FIG. 1 shows the basic structure of a Zn S:Mn thin film EL device as an example of a thin film EL device.

第1図に基づいて薄膜EL素子の構造を具体的
に説明すると、ガラス基板1上にIn2O3、SnO2
の透明電極2、更にその上に積層してY2O3
Ta2O5、Al2O3、Si3N4、SiO2等からなる第1の
誘電体層3がスパツタあるいは電子ビーム蒸着法
等により重畳形成されている。第1の誘電体層3
上にはZn S:Mn焼結ペレツトを電子ビーム蒸
着することにより得られるZn S発光層4が形成
されている。この時蒸着用のZn S:Mn焼結ペ
レツトには活性物質となるMnが目的に応じた濃
度に設定されたペレツトが使用される。Zn S発
光層4上には第1の誘電体層3と同様の材質から
成る第2の誘電体層5が積層され、更にその上に
Al等から成る背面電極6が蒸着形成されている。
透明電極2と背面電極6は第2図に示すように帯
状に形成され、互いに直交する如く複数本配列さ
れたマトリツクス電極構造が採用されており、透
明電極2と背面電極6が平面図的に見て交叉した
位置(斜線部分)がパネルの1画素7に相当す
る。透明電極2と背面電極6はそれぞれスイツチ
8,9を介して交流電源10に接続されている。
The structure of the thin film EL element will be explained in detail based on FIG. 1. A transparent electrode 2 made of In 2 O 3 , SnO 2 , etc. is placed on a glass substrate 1, and Y 2 O 3 , etc.
A first dielectric layer 3 made of Ta 2 O 5 , Al 2 O 3 , Si 3 N 4 , SiO 2 or the like is formed in an overlapping manner by sputtering or electron beam evaporation. First dielectric layer 3
On top is formed a ZnS light emitting layer 4 obtained by electron beam evaporation of ZnS:Mn sintered pellets. At this time, the ZnS:Mn sintered pellets used for vapor deposition are pellets in which the concentration of Mn, which is an active substance, is set to suit the purpose. A second dielectric layer 5 made of the same material as the first dielectric layer 3 is laminated on the ZnS light-emitting layer 4, and further on top of this is a second dielectric layer 5 made of the same material as the first dielectric layer 3.
A back electrode 6 made of Al or the like is formed by vapor deposition.
The transparent electrode 2 and the back electrode 6 are formed into a band shape as shown in FIG. 2, and a matrix electrode structure is adopted in which a plurality of electrodes are arranged perpendicularly to each other. The intersecting position (hatched area) corresponds to one pixel 7 on the panel. The transparent electrode 2 and the back electrode 6 are connected to an AC power source 10 via switches 8 and 9, respectively.

スイツチ8,9を閉じて、電極2,6間にAC
電圧を印加すると、Zn S発光層4の両側を誘電
体層3,5間に上記AC電圧が誘起されることに
なり、従つてZn S発光層4内に発生した電界に
よつて伝導体に励起され、かつ加速されて充分な
エネルギーを得た電子が、直接Mn発光センター
を励起し、励起されたMn発光センターが基底状
態に戻る際に橙黄色の発光を行う。即ち高電界で
加速された電子がZn S発光層4中の発光センタ
ーであるZnサイトに入つたMn原子の電子を励起
し、基底状態に落ちる時、略々5850Åをピークに
幅広い波長領域で強い発光を呈する。
Close switches 8 and 9 and connect the AC between electrodes 2 and 6.
When a voltage is applied, the above AC voltage will be induced between the dielectric layers 3 and 5 on both sides of the ZnS light emitting layer 4, and therefore the electric field generated within the ZnS light emitting layer 4 will cause the conductor to The excited and accelerated electrons, which have obtained sufficient energy, directly excite the Mn luminescent center, and when the excited Mn luminescent center returns to its ground state, it emits orange-yellow light. In other words, the electrons accelerated by a high electric field excite the electrons of the Mn atoms that enter the Zn site, which is the luminescent center in the ZnS luminescent layer 4, and when they fall to the ground state, the electrons are strong in a wide wavelength range with a peak of approximately 5850 Å. Exhibits luminescence.

上記の如き構造を有する薄膜EL素子はスペー
スフアクタの利点を生かした平面薄型デイスプレ
イ・デバイスとして、文字及び図形を含むコンピ
ユーターの出力表示端末機器その他種々の表示装
置に文字、記号、静止画像、動画像等の表示手段
として利用することができ非常に有効なものであ
る。
The thin film EL element having the structure described above can be used as a flat thin display device that takes advantage of the space factor to display characters, symbols, still images, moving images, etc. It can be used as a means of displaying images, etc., and is very effective.

しかしながら、上記の薄膜EL素子は、各画素
7が発光又は非発光の2段階にしか変化せず、中
間階調の表示を行なうことはできない。これは薄
膜EL素子が、第3図に示すように急崚な印加電
圧−輝度特性を有するために、印加電圧を変化さ
せて中間諧調の表示を行なうことが困難なことに
よる。
However, in the thin film EL element described above, each pixel 7 changes only in two stages, emitting light or not emitting light, and cannot display intermediate gradations. This is because the thin film EL element has a sharp applied voltage-luminance characteristic as shown in FIG. 3, and therefore it is difficult to display halftones by changing the applied voltage.

そこで、階調表示が可能な薄膜EL素子として
いくつかの提案があり、主なものとして次のもの
がある。
Therefore, several proposals have been made for thin film EL elements capable of displaying gradations, and the following are the main ones.

基板上に複数のEL素子を積層形成し、発光
させるEL素子の層数を変化させる方法(実開
昭56−139126号公報、実開昭58−113078号公報
等)。
A method in which a plurality of EL elements are layered on a substrate and the number of layers of the EL elements that emit light is varied (JP-A-56-139126, JP-A-58-113078, etc.).

1画素の中で誘電体層の層厚を部分的に異な
らしめて、その層厚に対応した発光しきい電圧
の複数領域を形成し、印加電圧に応じて1画素
中の発光面積を段階的に変化させる方法(特開
昭57−100468号公報等)。
The thickness of the dielectric layer is partially varied within one pixel to form multiple regions with light emission threshold voltages corresponding to the layer thickness, and the light emitting area within one pixel is gradually increased depending on the applied voltage. Method of changing (Japanese Unexamined Patent Publication No. 57-100468, etc.).

しかしながら、の方法は、各画素を小さくで
きるので、高解像度化には有利であるが、電極数
が多く、駆動回路も複雑になるし、EL素子の層
数が多くなると、下方のEL素子の発光が上方の
EL素子で吸収される。の方法は、電極数が少
なく、駆動回路が簡単になるが、各画素の耐電圧
が最も層厚の小さい誘電体層によつて決まるの
で、印加電圧の変化範囲を大きくとることができ
ず、階調の変化範囲に限度があるという問題点が
あつた。
However, in method 2, each pixel can be made smaller, so it is advantageous for increasing resolution, but it requires a large number of electrodes and the drive circuit becomes complicated. light emission is upward
Absorbed by the EL element. In the method (2), the number of electrodes is small and the drive circuit is simple, but since the withstand voltage of each pixel is determined by the dielectric layer with the smallest thickness, it is not possible to have a large variation range of the applied voltage. There was a problem that there was a limit to the range of gradation changes.

発明の目的 そこで、この発明は、電極数が少なく、駆動回
路が容易で、しかも耐電圧が高く、階調の変化範
囲の大きい薄膜EL素子を提供することを目的と
する。
OBJECTS OF THE INVENTION Accordingly, it is an object of the present invention to provide a thin film EL element with a small number of electrodes, a simple drive circuit, a high withstand voltage, and a wide range of gradation changes.

発明の構成 この発明は、1画素中の発光層の層厚を部分的
に異ならせると共に、誘電体層の層厚を同一にし
たことを特徴とするものである。
Structure of the Invention The present invention is characterized in that the thickness of the light emitting layer in one pixel is made partially different, and the thickness of the dielectric layer is made the same.

すなわち、上記の構成によれば、発光層の層厚
の小さい部分ほど発光しきい電圧が小さいので、
印加電圧を段階的に増大していくと、層厚の小さ
い部分から段階的に発光して、発光面積が順次増
大して中間階調が得られる。又、誘電体層を同一
の層厚にできるので、最も発光しきい電圧の小さ
い部分の耐電圧を最も高い発光しきい電圧の大き
い部分の耐電圧と同程度に設定することが容易で
あり、かつ、発光層の層厚を変化させているので
各部分の飽和輝度が異なるため、階調の変化範囲
を大きくできる。
In other words, according to the above configuration, the thinner the layer thickness of the light emitting layer, the smaller the light emission threshold voltage.
When the applied voltage is increased stepwise, light is emitted stepwise from a portion where the layer thickness is small, and the light emitting area increases sequentially, resulting in an intermediate gradation. In addition, since the dielectric layers can be made to have the same layer thickness, it is easy to set the withstand voltage of the part with the lowest light emission threshold voltage to the same level as the withstand voltage of the part with the highest light emission threshold voltage, Furthermore, since the thickness of the light-emitting layer is changed, the saturation luminance of each part is different, so the range of gradation change can be widened.

実施例 以下、この発明の一実施例を図面を参照して説
明する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第4図は薄膜EL素子の部分平面図、第5図は
第4図の1画素分を拡大した要部拡大平面図、第
6図は第5図の−線に沿う断面図、第7図は
第5図の−線に沿う断面図である。図におい
て、次の点を除いては第1図および第2図と同様
であるので、同一参照符号を付してその説明を省
略する。この実施例では、1画素7中の発光層4
の層厚がa〜bの4段階に異ならしめてあり、そ
れによつて発光層が4a〜4bに4分割されてい
る。第1の誘電体層3と第2の誘電体層5とは同
一の層厚である。
Fig. 4 is a partial plan view of the thin film EL element, Fig. 5 is an enlarged plan view of the main part of Fig. 4 by one pixel, Fig. 6 is a sectional view taken along the - line in Fig. 5, Fig. 7 5 is a sectional view taken along the - line in FIG. 5. FIG. The figure is the same as FIGS. 1 and 2 except for the following points, so the same reference numerals are given and the explanation thereof will be omitted. In this embodiment, the light emitting layer 4 in one pixel 7 is
The layer thicknesses of the light-emitting layers are varied in four stages from a to b, thereby dividing the light-emitting layer into four parts 4a to 4b. The first dielectric layer 3 and the second dielectric layer 5 have the same layer thickness.

上記の構成によれば、各画素7中の発光層4が
層厚a〜bの発光層4a〜4dによつて形成され
ているので、各発光層4a〜4dに対応する画素
領域7a〜7bは、発光層4a〜4dの層厚に応
じて発光しきい電圧及び輝度レベルが異なる。す
なわち、最も薄い層厚aの発光層4aを含む画素
領域7aは、第8図のVaの発光しきい電圧を有
し、Baの輝度を有する。2番目に薄い層厚bの
発光層4bを含む画素領域7bは、前記Vaの電
圧の印加によつては発光せず、第8図のVbの発
光しきい電圧を有し、Bbの輝度を有する。3番
目に薄い層厚cの発光層4cを含む画素領域7c
は、前記Vbの電圧印加によつては発光せず、第
8図のVcの発光しきい電圧を有し、Bcの輝度を
有する。最も厚い層厚dの発光層4dを含む画素
領域7dは、前記Vcの電圧印加によつては発光
せず、第8図のVdの発光しきい電圧を有し、輝
度Bdを有する。
According to the above configuration, since the light emitting layer 4 in each pixel 7 is formed by the light emitting layers 4a to 4d having the layer thicknesses a to b, the pixel regions 7a to 7b corresponding to each of the light emitting layers 4a to 4d The light emission threshold voltage and brightness level differ depending on the layer thickness of the light emitting layers 4a to 4d. That is, the pixel region 7a including the light emitting layer 4a with the thinnest layer thickness a has a light emission threshold voltage of Va as shown in FIG. 8 and a luminance of Ba. The pixel region 7b including the light emitting layer 4b having the second thinnest layer thickness b does not emit light when the voltage V a is applied, and has a light emission threshold voltage V b shown in FIG . It has a brightness of Pixel region 7c including the light emitting layer 4c with the third thinnest layer thickness c
does not emit light when a voltage of V b is applied, has a light emission threshold voltage of V c in FIG. 8, and has a luminance of B c . The pixel region 7d including the light emitting layer 4d with the thickest layer thickness d does not emit light when the voltage of V c is applied, has a light emission threshold voltage of V d in FIG. 8, and has a luminance B d . .

このように各画素7中の発光層4の層厚を部分
的に異ならしめることにより、画素領域7a〜7
dの発光しきい電圧をVa〜Vdに変えることがで
きる。したがつて、透明電極2と背面電極6との
間に電圧Vaを印加すると、画素領域7aのみが
輝度Baで発光する。次に印加電圧をVbにすると、
画素領域7a及び7bが輝度Ba+Bbで発光する。
又、印加電圧をVcに増大すると、画素領域7a
〜7cが、輝度Ba+Bb+Bcで発光する。更に、
印加電圧をVdにすると、画素領域7a〜7d、
すなわち画素7がBa+Bb+Bc+Bdの輝度で発光
する。かくして、透明電極2と背面電極6間の印
加電圧を変化することにより、各画素7の発光面
積を変えて、非発光時を含めて5段階の階調表示
が可能になる。
By partially varying the layer thickness of the light emitting layer 4 in each pixel 7 in this way, the pixel regions 7a to 7
The emission threshold voltage of d can be changed from V a to V d . Therefore, when a voltage V a is applied between the transparent electrode 2 and the back electrode 6, only the pixel region 7a emits light with a brightness B a . Next, when the applied voltage is set to V b ,
Pixel regions 7a and 7b emit light with a brightness of B a +B b .
Moreover, when the applied voltage is increased to V c , the pixel area 7a
~7c emits light with a brightness of B a +B b +B c . Furthermore,
When the applied voltage is set to Vd , the pixel regions 7a to 7d,
That is, the pixel 7 emits light with a brightness of B a +B b +B c +B d . In this way, by changing the voltage applied between the transparent electrode 2 and the back electrode 6, the light emitting area of each pixel 7 can be changed, making it possible to display five levels of gradation including the time when no light is emitted.

尚、各画素7中に発光層4a〜4dの層厚a〜
dの設定により、各段階間の輝度差を任意に設定
できる。
Note that the layer thickness a of the light emitting layers 4a to 4d in each pixel 7 is
By setting d, the brightness difference between each stage can be set arbitrarily.

又、上記実施例は、各画素7が4分割された場
合について説明したが、それに限らず、それ以外
の数に分割することも可能である。
Further, in the above embodiment, a case has been described in which each pixel 7 is divided into four, but the invention is not limited to this, and it is also possible to divide into other numbers.

発明の効果 この発明は以上のように、各画素中の発光層の
層厚を部分的に異ならせると共に、誘電体層の層
厚を同一にしたので、印加電圧によつて、各画素
の発光面積かつしたがつて輝度を変えることが可
能になり画素等の階調表示が可能になる。そし
て、前述した従来ののEL素子を多層化する方
法に比較して、電極数が少なく、駆動回路が簡単
になり、従来の駆動方式のまゝで駆動電圧を変化
するのみで階調表示が可能になるし、階調数を増
大しても、下層の発光が上方のEL素子によつて
吸収されることもない。又、の誘電体層の層厚
を部分的に異ならしめる方法に比較して、誘電体
層の厚さが一定であるため、局部的に耐電圧が小
なくなることがなく、この点においてより信頼性
の高いパネルが得られ、又同一の階調数であつて
も輝度の階調の変化範囲を大きくとれる。
Effects of the Invention As described above, in this invention, the thickness of the light emitting layer in each pixel is partially different, and the thickness of the dielectric layer is made the same, so that the light emission of each pixel can be adjusted depending on the applied voltage. It becomes possible to change the area and therefore the brightness, making it possible to display gradations of pixels, etc. Compared to the conventional method of multi-layering EL elements mentioned above, the number of electrodes is smaller, the drive circuit is simpler, and gradation display can be achieved by simply changing the drive voltage while using the conventional drive method. Even if the number of gradations is increased, the light emitted from the lower layer will not be absorbed by the EL element above. Also, compared to the method of partially varying the thickness of the dielectric layer, since the thickness of the dielectric layer is constant, the withstand voltage does not decrease locally, making it more reliable. A panel with high brightness can be obtained, and even with the same number of gradations, the range of change in luminance gradation can be widened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜EL素子の断面図、第2図
は第1図の対向電極の平面図、第3図は電圧−輝
度特性図である。第4図はこの発明の一実施例の
薄膜EL素子の平面図、第5図は第4図の1画素
子の要部拡大平面図、第6図は第5図の−線
に沿う断面図、第7図は第5図の−線に沿う
断面図、第8図は電圧−輝度特性図である。 1……ガラス基板、2……透明電極、3,5…
…誘電体層、4,4a〜4d……発光層、7……
画素、7a〜7d……画素領域。
FIG. 1 is a cross-sectional view of a conventional thin film EL element, FIG. 2 is a plan view of the counter electrode shown in FIG. 1, and FIG. 3 is a voltage-luminance characteristic diagram. FIG. 4 is a plan view of a thin film EL device according to an embodiment of the present invention, FIG. 5 is an enlarged plan view of a main part of one pixel element in FIG. 4, and FIG. 6 is a cross-sectional view taken along the - line in FIG. 5. , FIG. 7 is a sectional view taken along the - line in FIG. 5, and FIG. 8 is a voltage-luminance characteristic diagram. 1... Glass substrate, 2... Transparent electrode, 3, 5...
...Dielectric layer, 4, 4a to 4d...Light emitting layer, 7...
Pixels, 7a to 7d...pixel area.

Claims (1)

【特許請求の範囲】 1 少なくとも一方が透明である複数のストライ
プ状電極をマトリクス状に対向配置し、該電極間
に誘電体層と発光層とを挟持してなり、かつ前記
電極の交差部分の画素に発光しきい電圧の異なる
複数領域を形成したマトリクス型の薄膜EL素子
において、 前記画素の複数領域の発光層の層厚をそれぞれ
異ならせると共に、前記複数領域の誘電体層の層
厚を同一にしたことを特徴とする薄膜EL素子。
[Scope of Claims] 1 A plurality of striped electrodes, at least one of which is transparent, are arranged facing each other in a matrix, and a dielectric layer and a light emitting layer are sandwiched between the electrodes, and the intersections of the electrodes are In a matrix-type thin film EL element in which a pixel is formed with a plurality of regions having different emission threshold voltages, the thickness of the light emitting layer in the plurality of regions of the pixel is made different, and the layer thickness of the dielectric layer in the plurality of regions is made the same. A thin film EL element characterized by the following.
JP59059759A 1984-03-27 1984-03-27 Thin film el element Granted JPS60202471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059759A JPS60202471A (en) 1984-03-27 1984-03-27 Thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059759A JPS60202471A (en) 1984-03-27 1984-03-27 Thin film el element

Publications (2)

Publication Number Publication Date
JPS60202471A JPS60202471A (en) 1985-10-12
JPH0473880B2 true JPH0473880B2 (en) 1992-11-24

Family

ID=13122508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059759A Granted JPS60202471A (en) 1984-03-27 1984-03-27 Thin film el element

Country Status (1)

Country Link
JP (1) JPS60202471A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2617924B2 (en) * 1986-09-26 1997-06-11 松下電器産業株式会社 Method of manufacturing electroluminescence display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918630Y2 (en) * 1979-12-28 1984-05-29 アルプス電気株式会社 EL display device

Also Published As

Publication number Publication date
JPS60202471A (en) 1985-10-12

Similar Documents

Publication Publication Date Title
US4977350A (en) Color electroluminescence display panel having alternately-extending electrode groups
JP2001217081A (en) Organic light emitting display device
JPS5823191A (en) Thin film el element
JPH0473880B2 (en)
JPS63121296A (en) Thin film light emitting device
JPS6323640B2 (en)
JPS59101794A (en) Thin film electroluminescent element
JP2621057B2 (en) Thin film EL element
JPS60203984A (en) Thin film el element
JPS5829880A (en) Electric field luminescent element
JPH027072B2 (en)
JPH0115876B2 (en)
JPH0773971A (en) El element
JP2002280185A (en) Thin film el element
JPS61142689A (en) Luminescence apparatus and driving thereof
KR860002206B1 (en) El display device
JPH046274B2 (en)
JPS6035496A (en) El panel
JPS61142691A (en) Electroluminescence element
JPS60257096A (en) Thin film el element
JPS6089098A (en) Electrode structure of thin film el element
JPS623427B2 (en)
JPS6050577A (en) Thin film electroluminescence panel
JPS58175293A (en) Electric field light emitting element
JPS60264096A (en) El panel light source