JPH0473349B2 - - Google Patents

Info

Publication number
JPH0473349B2
JPH0473349B2 JP58184083A JP18408383A JPH0473349B2 JP H0473349 B2 JPH0473349 B2 JP H0473349B2 JP 58184083 A JP58184083 A JP 58184083A JP 18408383 A JP18408383 A JP 18408383A JP H0473349 B2 JPH0473349 B2 JP H0473349B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
optical system
conversion elements
circumference
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58184083A
Other languages
Japanese (ja)
Other versions
JPS6073416A (en
Inventor
Hajime Koshiishi
Kozo Pponma
Masao Naka
Daisaku Abura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
YUUKARI KOGAKU KENKYUSHO KK
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
YUUKARI KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO, YUUKARI KOGAKU KENKYUSHO KK filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP58184083A priority Critical patent/JPS6073416A/en
Publication of JPS6073416A publication Critical patent/JPS6073416A/en
Publication of JPH0473349B2 publication Critical patent/JPH0473349B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Optical Transform (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、走査処理により面を連続撮影する撮
影装置に関しリモートセンシング等の分野に適用
されるものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a photographing device that continuously photographs a surface by scanning processing, and is applied to fields such as remote sensing.

<従来の技術> 第1図に人工衛星による地表面の走査方式を示
す。人工衛星1が軌道2に沿つて飛行しながら、
像面を軌道と垂直な方向に走査するとき、地表の
帯状地帯3の像が得られる。帯状地帯3内の細線
4は走査線を模型的に表わしている。そして、こ
のような走査を行なうため、第2図に示すよう
に、被写体の実像を得る光学系5の結像面6に、
軌道と垂直な方向に沿つて光電変換素子7…7を
配列し、これら一連の光電変換素子の出力をシフ
トレジスタ等に並列入力したのちクロツクパルス
により直列に取り出す装置が用いられていた。
<Prior art> Figure 1 shows a method of scanning the earth's surface using an artificial satellite. While the artificial satellite 1 is flying along the orbit 2,
When scanning the image plane in a direction perpendicular to the orbit, an image of a strip 3 of the earth's surface is obtained. A thin line 4 within the strip 3 schematically represents a scanning line. In order to perform such scanning, as shown in FIG.
A device was used in which photoelectric conversion elements 7...7 were arranged in a direction perpendicular to the orbit, and the outputs of these photoelectric conversion elements were input in parallel to a shift register or the like, and then taken out in series by a clock pulse.

このような光学系において、像面弯曲を補正す
るためには、第2図に点線Aで示すような所定の
曲線に沿つて光電変換素子を配列しなければなら
ないが、これには製作が煩雑になつて製造コスト
の増大を招き、他方、既製のCCDアレイ等の高
精度で安価な光電変換素子を使用しようとすれ
ば、画角を小さくするか、解像力の低下を許容せ
ざるを得ないという欠点を生ずる。
In such an optical system, in order to correct field curvature, the photoelectric conversion elements must be arranged along a predetermined curve as shown by dotted line A in Figure 2, but this requires complicated manufacturing. On the other hand, if you try to use high-precision, inexpensive photoelectric conversion elements such as off-the-shelf CCD arrays, you will have to either reduce the angle of view or accept a decrease in resolution. This results in the following drawbacks.

なお従来、本発明者らが「円周方向走査型」と
命名した走査方式は存在していない。
Heretofore, there has been no scanning method that the present inventors have named "circumferential scanning type."

<発明が解決しようとする課題> 人工衛星による地表の撮影には大口径比、広画
角、高分解能が要求される。第3図a,bに示す
ようなマクストフ光学系、あるいなシユミツト光
学系は、コマ収差、非点収差の発生がなく、球面
収差、歪曲収差を設計的に打消すことが容易であ
り、且つ色収差も皆無に近いという長所がある
が、像面弯曲収差のみその補正が困難であるとい
う重大な欠点があるため、大口径比、広画角、高
分解能が要求される装置に採用することができな
かつた。
<Problems to be Solved by the Invention> Photographing the earth's surface using an artificial satellite requires a large aperture ratio, wide angle of view, and high resolution. A Maksutov optical system or a Schmidt optical system as shown in FIGS. 3a and 3b does not produce coma aberration or astigmatism, and it is easy to cancel spherical aberration and distortion by design. Although it has the advantage of having almost no chromatic aberration, it has the serious drawback of curvature of field, which is difficult to correct, so it cannot be used in equipment that requires a large aperture ratio, wide angle of view, and high resolution. I couldn't do it.

これに対し本発明者らは、像面弯曲の補正を必
要とせず、換言すれば像面弯曲の大きな光学系を
用いながらも、従来不可能であつた広画角、高分
解能の走査、撮影を可能にする新規な円周方向走
査型撮影装置を提供することを解決課題とする。
In contrast, the present inventors have developed an optical system that does not require correction of field curvature, in other words, uses an optical system with a large field curvature, but can achieve wide angle of view and high resolution scanning and imaging, which was previously impossible. The problem to be solved is to provide a novel circumferential scanning imaging device that enables the following.

<課題を解決するための手段> 本発明の円周方向走査型撮影装置は、被写体か
らの入射光を制限する絞り、マクストフレンズ、
結像面、球面反射鏡の順に配例されたマクストフ
光学系と、そのマクストフ光学系の結像面上の光
軸対称の一円周上のみに沿う像点の受光量を電気
信号に変換する複数個の光電変換素子と、その光
電変換素子の出力を走査する走査手段と、上記マ
クストフ光学系と被写体を相対的に1次元運動さ
せる手段を有することにより特徴づけられる。
<Means for Solving the Problems> The circumferential scanning type photographing device of the present invention includes an aperture that limits incident light from a subject, a Maxtofriend lens,
A Maksutov optical system is arranged in the order of an imaging surface and a spherical reflector, and the amount of light received at an image point along only one circumference of the optical axis symmetry on the imaging surface of the Maksutov optical system is converted into an electrical signal. It is characterized by having a plurality of photoelectric conversion elements, a scanning means for scanning the output of the photoelectric conversion elements, and means for moving one-dimensionally the Maksutov optical system and the subject relative to each other.

上記した円周上の像点の配列には、全円周上に
わたつて配列される実施態様と、軌道方向を軸と
して左右対称の扇形ないし半円形の範囲内の円弧
上のみ配列される実施態様がある。
The above-mentioned arrangement of image points on the circumference includes an embodiment in which the image points are arranged over the entire circumference, and an embodiment in which the image points are arranged only on an arc within a symmetrical fan-shaped or semicircular range with the orbit direction as an axis. There are certain aspects.

また、上記した円周上の像点には、光電変換素
子の受光部を直接配列する場合と、別の場所に設
けられている光電変換素子へ光を導く光学フアイ
バの受光面を配列する場合とがある。
In addition, at the above-mentioned image point on the circumference, there are cases in which the light-receiving parts of photoelectric conversion elements are directly arranged, and cases in which the light-receiving surfaces of optical fibers that guide light to the photoelectric conversion element installed at another location are arranged. There is.

更に、本発明の被写体と光学系を相対的に1次
元運動させる手段として、人工衛星のように被写
体に対し光学系を所定軌道に沿つて飛行させる場
合と、製鉄業、製紙業、紡積業等の検査装置によ
うに固定された光学系に対し被写体が所定方向に
走行する場合がある。
Furthermore, as a means for relatively one-dimensionally moving the subject and the optical system of the present invention, the optical system may be used in cases where the optical system is flown along a predetermined trajectory relative to the subject such as in an artificial satellite, and in the steel industry, paper industry, and spinning industry. In some cases, a subject moves in a predetermined direction with respect to a fixed optical system, such as in an inspection apparatus such as the above.

<作用> マクストフ光学系は、コマ、非点、球面、歪
曲、色の各収差について問題がなく、唯一つの欠
点として像面弯曲収差を有しているが、光電変換
素子が光軸と垂直な一平面上の光軸対称の一円周
上のみに沿う像点を受光するよう配列されている
ので、各像点相互間の像面弯曲収差は全無とな
る。従つて像面弯曲収差の大きなレンズを用いて
も像面弯曲収差に影響されない高分解能の像が得
られる。
<Operation> The Maksutov optical system has no problems with coma, astigmatism, spherical, distortion, and chromatic aberrations, and the only drawback is field curvature, but the photoelectric conversion element is perpendicular to the optical axis. Since they are arranged so as to receive light from image points along only one circumference of the optical axis on one plane, there is no field curvature aberration between the image points. Therefore, even if a lens with a large field curvature aberration is used, a high-resolution image that is not affected by the field curvature aberration can be obtained.

また、画角θは焦点距離と円周上像点の径によ
り決定され、この径を大きく設定しても像面弯曲
収差を悪くしないので、従来不可能であつた広画
角の撮像が可能となる。
In addition, the angle of view θ is determined by the focal length and the diameter of the image point on the circumference, and even if this diameter is set large, field curvature aberration will not worsen, making it possible to capture images with a wide angle of view that was previously impossible. becomes.

被写体と光学系を相対的に1次元運動させる手
段と、光電変換素子の出力を走査する走査手段に
より、画像の面走査が実行される。被写体と光学
系は例えば人工衛星の飛行のように運動により行
われるので電気的走査の必要がなく、複数ビツト
の光電変換素子はクロツクパルスにより容易に走
査することができるので、例えば円周上に沿つて
回転させるような機構を必要としない。
Surface scanning of the image is performed by a means for moving the subject and the optical system in one dimension relative to each other, and a scanning means for scanning the output of the photoelectric conversion element. Since the object and the optical system are moved by movement, such as when an artificial satellite flies, there is no need for electrical scanning, and multi-bit photoelectric conversion elements can be easily scanned by clock pulses, so they can be scanned, for example, along the circumference. There is no need for a mechanism to hold and rotate it.

<実施例> 第4図に本発明実施例を示す。<Example> FIG. 4 shows an embodiment of the present invention.

被写体の実像を結ぶ光軸対称の光学系であるマ
クストフ光学系11の結像面12に、光軸13に
対し対称な円周上に沿つて受光素子14…14が
密に配列されている。この受光素子の出力は、シ
フトレジスタ16により並列直列変換されたのち
画像処理される。画像処理には、全円周のうち軌
道方向に対し左右各α(ただしαは180゜以下)の
扇形ないし半円の範囲内のものが供される。
On the imaging plane 12 of the Maksutov optical system 11, which is an optical system symmetrical about the optical axis that forms a real image of a subject, light receiving elements 14...14 are densely arranged along a circumference symmetrical with respect to the optical axis 13. The output of this light-receiving element is subjected to parallel-to-serial conversion by a shift register 16 and then subjected to image processing. For image processing, the entire circumference within a fan-shaped or semicircular range of α (however, α is 180° or less) on the left and right sides of the orbit direction is used.

第5図に本発明の他の実施例を示す。結像面1
2の円周上に沿つて光学フアイバ15…15の一
端が密に配列され、その光学フアイバの他端が
CCDアレイ17の受光部に当接し、このCCDア
レイ17の出力端子から直列変換された信号が取
り出される。
FIG. 5 shows another embodiment of the invention. Image plane 1
One end of the optical fibers 15...15 are densely arranged along the circumference of the optical fiber 2, and the other end of the optical fiber is
It comes into contact with the light receiving section of the CCD array 17, and a serially converted signal is taken out from the output terminal of the CCD array 17.

第6図に、本発明による走査方式を第1図と対
比して示す。地表の帯状地帯3の像は細線41に
示すように円弧状に走査される。
FIG. 6 shows the scanning method according to the invention in comparison with FIG. The image of the belt-shaped zone 3 on the ground surface is scanned in an arc shape as shown by a thin line 41.

光軸に対し対称な円周上の360゜すべてにわたつ
て受光素子又は光学フアイバ受光端が配列されて
いる場合、第7図に示すように、軌道方向に対し
た左右対称の中心角αの範囲内の像点群が一円周
上に二群(A,B)存在する。そのため、各群ご
とに別個のシフトレジスタを設けて同時に異るデ
ータ処理を行わせることができる。更に、半径が
異る同心円上に受光素子又は光学フアイバ受光端
を配列して二群以上の多数のデータを同時に得る
ように構成することもできる。この場合、像点
360゜の全円周上になく、中心角αのものが同心円
上に多重配列して実施しうること勿論である。
When the light-receiving elements or optical fiber light-receiving ends are arranged over the entire 360° of a circumference symmetrical to the optical axis, as shown in Figure 7, the center angle α of left-right symmetry with respect to the orbital direction is There are two groups of image points within the range (A, B) on one circumference. Therefore, separate shift registers can be provided for each group to simultaneously perform different data processing. Furthermore, it is also possible to arrange the light-receiving elements or the light-receiving ends of optical fibers on concentric circles with different radii so that two or more groups of data can be obtained simultaneously. In this case, the image point
It goes without saying that it is possible to implement the configuration by arranging multiple concentric circles with central angle α instead of arranging them on the entire circumference of 360°.

<設計例> 次に、マクストフ光学系を用いた実施例を設け
データを説明する。
<Design Example> Next, an example using the Maksutov optical system will be provided and data will be explained.

第8図に光学系の光路図を示す。 FIG. 8 shows an optical path diagram of the optical system.

図において21は絞り、22はマクストフレン
ズ23は球面反射鏡、24は像画である。マクス
トフレンズの屈曲率はN=1.51633、マクストフ
レンズのν値はν=64.2、マクストフレンズ及び
反射鏡の曲率半径R1R2R3及び直径D1D2はそれぞ
れ R1−136.55(mm) D1 20.5(mm) R2−157.0 D2 263.0 R3−430.0 絞りの位置はマクストフレンズの前面の前方
136.5mm、光学系の焦点距離fは f=200.0 である。
In the figure, 21 is an aperture, 22 is a Maxtofriend lens 23, which is a spherical reflecting mirror, and 24 is an image. The curvature index of the Maxtofriend is N=1.51633, the ν value of the Maxtofriend is ν=64.2, the radius of curvature R 1 R 2 R 3 and the diameter D 1 D 2 of the Maxtofriend and the reflector are each R 1 -136.55 (mm) D 1 20.5 (mm) R 2 −157.0 D 2 263.0 R 3 −430.0 The aperture is located at the front of the MaxtoFriend lens.
136.5 mm, and the focal length f of the optical system is f=200.0.

第9図にこの実施例の球面収差、非点収差、歪
曲のデータを示す。ここで注目すべきことは、非
点収差を示すb図において、メリジオナル像面収
差Mとサジタル像面収差Sがほぼ同じ特性を示
し、画角θが大きくなつても非点収差が非常に小
さいことである。このことは第10図のコンピユ
ータシユミレーシヨンチヤートにより更に明らか
にされる。第10図aは光軸上から出た光束の結
像状態を1000倍の倍率でプロツトしたものであ
る。b図は画角4゜で入射する光束の結像状態を
1000の倍率でプロツトしたものある。a,b両図
の対比から明らかなように、画角4゜の入射光の焦
点性は画角0゜のものにいささかも劣つてていな
い。
FIG. 9 shows data on spherical aberration, astigmatism, and distortion of this example. What should be noted here is that in diagram b showing astigmatism, meridional field aberration M and sagittal field aberration S show almost the same characteristics, and even if the angle of view θ becomes large, the astigmatism is very small. That's true. This is further clarified by the computer simulation chart in FIG. FIG. 10a is a plot of the imaging state of the light beam emitted from the optical axis at a magnification of 1000 times. Figure b shows the imaging state of the incident light flux at a field angle of 4°.
Some plots were plotted at a magnification of 1000. As is clear from the comparison between Figures a and b, the focus of the incident light at a field angle of 4° is not in the slightest inferior to that at a field angle of 0°.

<発明の効果> 本発明によれば、マクストフ光学系の結像面上
の光軸対称の一円周上のみの沿う像点のみを用い
ているので、例えば1枚構成の像面弯曲の大きな
光学系であつても、コマ、非点、球面、歪曲、像
面弯曲および色収差のすべての収差が実質的皆無
となり、軽量の光学装置ながら極めて高分解能の
像を得ることができる。また、従来は光軸近傍の
像のみに注目していたから、広画角の像を得るこ
とが困難であつたが、本発明によれば従来不可能
であつた広画角、例えば人工衛星撮影において画
角4゜の像を容易に得ることができる。
<Effects of the Invention> According to the present invention, only an image point along one circumference of the optical axis symmetry on the imaging plane of the Maksutov optical system is used. Even in the optical system, all aberrations such as coma, astigmatism, spherical surface, distortion, field curvature, and chromatic aberration are virtually eliminated, making it possible to obtain extremely high-resolution images with a lightweight optical device. In addition, since conventional methods focused only on images near the optical axis, it was difficult to obtain images with a wide angle of view, but with the present invention, it is possible to obtain images with a wide angle of view, which was previously impossible, such as in satellite photography. Images with an angle of view of 4° can be easily obtained.

また本発明によれば、光学系光軸と垂直な一平
面上の光軸対称の円周上のみに沿つて光電変換素
子を配列しているので、従来、試みられながら未
だ為し得ない、収差を打ち消す曲線または曲面に
光電変換素子を配設しようとする技術に比べて、
極めて簡単かつ容易に製作することができ、製造
コストも格段に安価であり、産業上の利用価値が
高い。
Further, according to the present invention, since the photoelectric conversion elements are arranged only along the circumference of the optical axis symmetrical plane on one plane perpendicular to the optical axis of the optical system, it is possible to achieve the following, which has been attempted in the past but has not yet been possible. Compared to technology that attempts to arrange photoelectric conversion elements on curved lines or curved surfaces that cancel out aberrations,
It can be manufactured extremely simply and easily, and the manufacturing cost is extremely low, so it has high industrial utility value.

さらに、一つの地表データから同時に異るデー
タ処理を施こす場合、従来は光学系内にハーフミ
ラを設けて光を分岐させていたが、本発明によれ
ば多数の像点群を設けることにより、光学系を複
雑化せず、しかみ減衰しない良質の光信号を直
接、同時に得ることができる。また、光学フアイ
バを用いるときは、CCDアレイ等の安価かつ小
型の光電変換素子を使用することができる。
Furthermore, when performing different data processing simultaneously from one ground data, conventionally a half mirror was provided in the optical system to split the light, but according to the present invention, by providing a large number of image points, It is possible to directly and simultaneously obtain high-quality optical signals without complicating the optical system and without attenuation. Furthermore, when using optical fibers, inexpensive and small photoelectric conversion elements such as CCD arrays can be used.

さらに、従来のように人工衛星の軌道方向と垂
直な方向の像を走査する場合は、軌道方向の回転
に応じて受光素子を回転制御しなければならなか
つたが、本発明によれば、円周上に受光素子又は
光学フアイバ受光端が配列されているから、画像
処理の段階で信号を取捨選択すればよく、受光部
の方向制御を必要とせず、人工衛星のように起動
が回転する場合でも、受光素子の回転制御が不要
である。
Furthermore, when scanning an image in a direction perpendicular to the orbital direction of a satellite as in the past, it was necessary to control the rotation of the light receiving element according to the rotation in the orbital direction. Since the light-receiving elements or optical fiber light-receiving ends are arranged on the circumference, it is only necessary to select signals at the image processing stage, and there is no need to control the direction of the light-receiving part, and when the activation rotates like an artificial satellite. However, there is no need to control the rotation of the light receiving element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例による走査を説明する俯瞰図、
第2図が従来例を示す斜視図、第3図は本発明を
適用しうる光学系の例を示す構成図、第4図は本
発明の実施例を示す斜視図、第5図は本発明の他
の実施例を示す斜視図、第6図は本発明による走
査を説明する俯瞰図、第7図は本発明の更に他の
実施例の結像面を説明する図、第8図は本発明実
施例に光路図、第9図は第8図に示す実施例に各
収差を示す特性図、第10図は第8図に示す実施
例の結像状態を示すコンピユータシユミレーシヨ
ンチヤートを示す。 11……光学系、12……結像面、13……光
軸、14……受光素子、14……光学フアイバ、
16……シフトレジスタ。
FIG. 1 is an overhead view illustrating scanning by a conventional example;
FIG. 2 is a perspective view showing a conventional example, FIG. 3 is a configuration diagram showing an example of an optical system to which the present invention can be applied, FIG. 4 is a perspective view showing an embodiment of the present invention, and FIG. 5 is a perspective view showing an example of the present invention. FIG. 6 is an overhead view illustrating scanning according to the present invention, FIG. 7 is a diagram illustrating an imaging plane of still another embodiment of the present invention, and FIG. 9 shows a characteristic diagram showing each aberration in the embodiment shown in FIG. 8, and FIG. 10 shows a computer simulation chart showing the imaging state of the embodiment shown in FIG. 8. . 11... Optical system, 12... Image forming surface, 13... Optical axis, 14... Light receiving element, 14... Optical fiber,
16...Shift register.

Claims (1)

【特許請求の範囲】 1 被写体からの入射光を制限する絞り、マクス
トフレンズ、結像面、球面反射鏡の順に配列され
たマクストフ光学系と、そのマクストフ光学系の
結像面上の光軸対称の一円周上のみに沿う像点の
受光量を電気信号に変換する複数個の光電変換素
子と、その光電変換素子の出力を走査する走査手
段と、上記マクストフ光学系と被写体を相対的に
1次元運動させる手段を有する円周方向走査型撮
影装置。 2 上記円周上に光電変換素子を配列してなる特
許請求の範囲第1項記載の円周方向走査型撮影装
置。 3 上記円周上の像点に光学フアイバの一端を配
列し、その光学フアイバの他端に光電変換素子を
設けてなる特許請求の範囲第1項記載の円周方向
走査型撮影装置。 4 中心各180゜以下の円弧上に限り、上記光電変
換素子または上記光学フアイバの一端が配列され
た特許請求の範囲第2項または第3項記載の円周
方向走査型撮影装置。 5 互に半径が異る同心円周上に光電変換素子ま
たは光学フアイバの一端が配列された特許請求の
範囲第2項、第3項または第4項記載の円周方向
走査型撮影装置。
[Scope of Claims] 1. A Maksutov optical system in which an aperture that restricts incident light from a subject, a Maksut friend lens, an imaging surface, and a spherical reflecting mirror are arranged in this order, and optical axis symmetry on the imaging surface of the Maksutov optical system. A plurality of photoelectric conversion elements that convert the amount of light received at an image point along only one circumference into electrical signals, a scanning means that scans the output of the photoelectric conversion elements, and a relative position between the Maksutov optical system and the subject. A circumferential scanning imaging device having means for one-dimensional movement. 2. A circumferential scanning type imaging device according to claim 1, wherein photoelectric conversion elements are arranged on the circumference. 3. The circumferential scanning type imaging device according to claim 1, wherein one end of an optical fiber is arranged at an image point on the circumference, and a photoelectric conversion element is provided at the other end of the optical fiber. 4. The circumferential direction scanning type photographing device according to claim 2 or 3, wherein the photoelectric conversion elements or one end of the optical fiber are arranged only on a circular arc of 180° or less at the center. 5. A circumferential scanning imaging device according to claim 2, 3 or 4, wherein one end of the photoelectric conversion elements or optical fibers are arranged on concentric circles having different radii.
JP58184083A 1983-09-30 1983-09-30 Circumferential scanning type photographing device Granted JPS6073416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58184083A JPS6073416A (en) 1983-09-30 1983-09-30 Circumferential scanning type photographing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58184083A JPS6073416A (en) 1983-09-30 1983-09-30 Circumferential scanning type photographing device

Publications (2)

Publication Number Publication Date
JPS6073416A JPS6073416A (en) 1985-04-25
JPH0473349B2 true JPH0473349B2 (en) 1992-11-20

Family

ID=16147095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58184083A Granted JPS6073416A (en) 1983-09-30 1983-09-30 Circumferential scanning type photographing device

Country Status (1)

Country Link
JP (1) JPS6073416A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502811A (en) * 1973-05-09 1975-01-13
JPS5829274A (en) * 1981-08-14 1983-02-21 Olympus Optical Co Ltd Image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502811A (en) * 1973-05-09 1975-01-13
JPS5829274A (en) * 1981-08-14 1983-02-21 Olympus Optical Co Ltd Image pickup device

Also Published As

Publication number Publication date
JPS6073416A (en) 1985-04-25

Similar Documents

Publication Publication Date Title
JP3549898B2 (en) Wide angle image forming system and method
EP0475399B1 (en) Optical beam scanning apparatus and method
US5004328A (en) Spherical lens and imaging device using the same
US4353617A (en) Optical system capable of continuously varying the diameter of a beam spot
US5291334A (en) Micro-lens panoramic imager
JP3365606B2 (en) Infrared zoom lens
US5444574A (en) Electronic image pickup apparatus equipped with means for eliminating moire
JPS6226444B2 (en)
JP2563260B2 (en) Optical beam scanning device
JPH0672981B2 (en) Optical beam scanning optical system
JPH06130321A (en) Optical device for splitting real image
EP0250147B1 (en) Electro-optical imaging apparatus
JPS6269217A (en) Focus detecting device
US3972584A (en) Compound optical system with image tilt compensation
US3873180A (en) Light beam scanning system with scan angle demagnification
JPS58150920A (en) Focus detector
US6003998A (en) System and method for panoramic imaging using concentric spherical mirrors
JPS6396618A (en) Image pickup device
JPH0473349B2 (en)
US4118622A (en) Cone optical system
CA1082504A (en) Lens system for modifying spherical aberration
JPH01119178A (en) Image pickup device
US7589872B2 (en) Imaging apparatus
JPH0252307A (en) Ftheta lens
EP0052395A1 (en) Imaging apparatus