JPS6396618A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS6396618A
JPS6396618A JP61243688A JP24368886A JPS6396618A JP S6396618 A JPS6396618 A JP S6396618A JP 61243688 A JP61243688 A JP 61243688A JP 24368886 A JP24368886 A JP 24368886A JP S6396618 A JPS6396618 A JP S6396618A
Authority
JP
Japan
Prior art keywords
image
spherical
lens
spherical lens
transmission member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61243688A
Other languages
Japanese (ja)
Inventor
Masayuki Suzuki
雅之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61243688A priority Critical patent/JPS6396618A/en
Priority to US07/103,126 priority patent/US5004328A/en
Publication of JPS6396618A publication Critical patent/JPS6396618A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Abstract

PURPOSE:To obtain a wide angle of view and high resolution by arranging a spherical lens, an optical transmission member bundle whose incidence ends are arranged on or nearby a curved image plane formed by the lens, and an image pickup means on its projection side. CONSTITUTION:Pieces l1 and l2 of incident luminous flux which form images on a spherical image plane through the spherical lens 1 are made incident as plane images on corresponding picture elements of the image pickup element 5 through at least one optical transmission member 4 which has its incidence ports at the image formation positions. The incident object image is converted by the element 5 photoelectrically to generate an image signal consisting of an electric signal, which is processed by a processor 2 to display a specific image on a display device 6. Thus, the high angle of view and high resolution are obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は撮像装置に関し、特に大略球形を一有するレン
ズを用いて広画角かつ高解像度の撮像を行なう撮像装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an imaging device, and more particularly to an imaging device that performs wide-angle, high-resolution imaging using a lens having a generally spherical shape.

〔従来技術〉 従来から撮像光学系の広画角化の為に各種レンズ系が設
計されている。この種の光学系はレンズ径が大きくなる
と共に必然的に画面サイズが大きくなり、撮像光学系の
大型化を招くという欠点を有していた。又、従来の光学
系に於いて広画角化を図った場合、良く知られているコ
サイン4乗則により周辺光量が大きく低下するという問
題を生じる。
[Prior Art] Various lens systems have been designed to widen the angle of view of imaging optical systems. This type of optical system has the disadvantage that as the lens diameter increases, the screen size inevitably increases, leading to an increase in the size of the imaging optical system. Furthermore, when widening the angle of view in a conventional optical system, a problem arises in that the amount of peripheral light decreases significantly due to the well-known cosine fourth power law.

広画角化を達成し得る簡便な光学系として、従来から球
レンズが知られているが、この球レンズの焦平面は平面
上に存在しない為、従来の撮像装置に於いて、例えばC
CD等の撮像素子に球形レンズを用いて物体像を結像せ
しめ画像情報を得ることは無し得なかった。従って、高
画角且つ高解像度を有する新規な撮像装置を望む声が高
まっている。
A ball lens has been known as a simple optical system that can achieve a wide angle of view, but since the focal plane of this ball lens does not lie on a plane, in conventional imaging devices, for example, C
It has become inevitable to use a spherical lens in an imaging device such as a CD to form an object image and obtain image information. Therefore, there is an increasing demand for a new imaging device with a high angle of view and high resolution.

(発明の概要) 本発明の目的は、上記従来の問題点に鑑み、高画角化を
成すことが容易で高解像力を有する撮像装置を提供する
ことにある。
(Summary of the Invention) In view of the above-mentioned conventional problems, an object of the present invention is to provide an imaging device that can easily achieve a wide angle of view and has high resolution.

上記目的を達成する為に、本発明に係る撮像装置は、球
形レンズと前記球形レンズが形成する曲面像面に入射端
を位置させた光伝達部材束と前記光伝達部材束の出射端
側に配した撮像手段とを有することを特徴としている。
In order to achieve the above object, an imaging device according to the present invention includes a spherical lens, a light transmitting member bundle whose input end is located on a curved image surface formed by the spherical lens, and a light transmitting member bundle having an output end side of the light transmitting member bundle. It is characterized by having an imaging means arranged.

尚、本発明の更なる特徴は下記実施例に記載されている
Further features of the present invention are described in the Examples below.

〔実施例〕〔Example〕

通常、歪曲が小さく像面が平面のレンズ系では、その画
角を180°に近づけていくと像面サイズは無限に大き
くなる。これに伴ない像面に達する周辺光量の低下も著
しく生じる。従って、従来の魚眼レンズでは負の歪曲収
差を故意に大きく生じせしめ、180°の画角を達成す
ると共に周辺光量の著しい低下をも防いでいる。
Normally, in a lens system with small distortion and a flat image plane, as the angle of view approaches 180°, the image plane size becomes infinitely large. As a result, the amount of peripheral light reaching the image plane also decreases significantly. Therefore, in the conventional fisheye lens, negative distortion is intentionally generated to a large extent to achieve an angle of view of 180° while also preventing a significant decrease in the amount of peripheral light.

しかしながら、負の歪曲収差を発生させるということは
、像面の周辺部で像を圧縮することである為、結局解像
度が低下して結像性能を劣化させる。
However, generating negative distortion means compressing the image at the periphery of the image plane, resulting in lower resolution and deterioration of imaging performance.

一方、球形レンズを用いて無限遠に存する物体を結像さ
せる場合、球形レンズの球対称性に起因して、像面ば球
形レンズと同心の球面となる。
On the other hand, when a spherical lens is used to image an object located at infinity, the image surface becomes a spherical surface concentric with the spherical lens due to the spherical symmetry of the spherical lens.

従って、球形レンズに於いては軸上の軸外の収差が同等
の収差を持つことになる。依って、軸上でほぼ良好な収
差補正を達成すれば軸外の収差も同様に補正される。
Therefore, in a spherical lens, on-axis and off-axis aberrations have equivalent aberrations. Therefore, if substantially good aberration correction on the axis is achieved, off-axis aberrations will also be corrected in the same way.

又、上記球面のi象面上に球面状の受光面を有するセン
サを設けることにより180°に近い広画角に亘っての
良好な撮像が行なえる。
Further, by providing a sensor having a spherical light-receiving surface on the i-quadrant surface of the spherical surface, good imaging can be performed over a wide angle of view of nearly 180 degrees.

具体的には、球形レンズの焦点距離がfであれば、使用
するセンサの受光面面積を2πf2とすることにより1
80°の画角が得られる為、センサとして小型の装置を
使用出来る。又、球形レンズの球対称性に起因して周辺
部に於ける画像度の低下もない。更に、通常のレンズ系
で生じるコサイン4乗則に従う周辺光量の大幅な低下も
なく、周辺光量は入射角のコサインの1乗に比例して低
下するのみである。
Specifically, if the focal length of the spherical lens is f, then the area of the light-receiving surface of the sensor used is 2πf2.
Since an 80° angle of view can be obtained, a small device can be used as a sensor. Furthermore, due to the spherical symmetry of the spherical lens, there is no reduction in image quality in the peripheral areas. Furthermore, there is no significant decrease in the amount of peripheral light according to the cosine fourth power law that occurs in ordinary lens systems, and the amount of peripheral light only decreases in proportion to the first power of the cosine of the incident angle.

従って、通常のレンズ系に比べて、小型且つ簡便な光学
系であるにも係わらず、適当な収差補正を実行すること
により周辺光量の低下が小さい為に画面全体に亘り明る
く且つ結像性能も良好な広画角の光学系とすることが可
能である。
Therefore, although it is a smaller and simpler optical system than a normal lens system, by performing appropriate aberration correction, the decrease in peripheral illumination is small, resulting in brightness over the entire screen and improved imaging performance. It is possible to provide an optical system with a good wide angle of view.

又、球形レンズが形成する曲面像面に沿った入射端を備
えるファイバー束を介して撮像素子から得られる画像信
号を電気的に処理し、光学的に補正不可能な歪曲収差を
補正することが出来る。
Furthermore, it is possible to electrically process the image signal obtained from the image sensor through a fiber bundle having an incident end along the curved image surface formed by the spherical lens, thereby correcting distortion that cannot be corrected optically. I can do it.

換言すれば、電気処理によって任意の歪曲を発生出来る
。更に受光面上に形成された物体像の任意の領域を電気
的に選択し、例えばこの領域部分の像を拡大表示すると
いうような処理も容易に出来る。(以下、この様な部分
的拡大化の機能を「電子ズーム」機能と称す。) 以下、本発明の実施例を具体的な構成例とデータにもと
づき詳述する。
In other words, any distortion can be generated by electrical processing. Furthermore, processing such as electrically selecting an arbitrary region of the object image formed on the light-receiving surface and enlarging and displaying the image of this region can be easily performed. (Hereinafter, such a partial enlargement function will be referred to as an "electronic zoom" function.) Hereinafter, embodiments of the present invention will be described in detail based on specific configuration examples and data.

第1図は本発明に係る撮像装置の一実施例を示す概略図
であり、1は球形レンズ、2は種々の画像処理を実行す
る処理装置、3は絞り、4は光ファイバー等から成る光
伝達部材束、5はCOD等から成る撮像素子、6はCR
T、液晶ディスジ1/イ等から成る表示装置を示してい
る。
FIG. 1 is a schematic diagram showing an embodiment of an imaging device according to the present invention, in which 1 is a spherical lens, 2 is a processing device that performs various image processing, 3 is an aperture, and 4 is a light transmission device consisting of an optical fiber, etc. Component bundle, 5 is an image sensor made of COD etc., 6 is CR
The figure shows a display device consisting of T, liquid crystal display 1/A, and the like.

又、1.、 IL2は夫々球形レンズ1に入射する軸上
入射光束と軸外入射光束とを示し、同図に於いては無限
遠に位置する被写体からの光束として描いである。
Also, 1. , IL2 indicate an on-axis incident light flux and an off-axis incident light flux that enter the spherical lens 1, respectively, and in the figure, they are depicted as light fluxes from an object located at infinity.

球形レンズ1の球中心を通る面内には絞り3が設けられ
ており、絞り3は球形レンズ1を介して結像される軸上
及び軸外光束L1.λ2の光束径を規制することにより
結像性能を制御している。
A diaphragm 3 is provided in a plane passing through the spherical center of the spherical lens 1, and the diaphragm 3 collects axial and off-axis light beams L1. Imaging performance is controlled by regulating the beam diameter of λ2.

球形レンズ1を構成する媒質は所定の屈折率を有してお
り、この球形レンズ1のパワーは屈折率で決定される。
The medium constituting the spherical lens 1 has a predetermined refractive index, and the power of the spherical lens 1 is determined by the refractive index.

ここに示される球形レンズ1はその焦点をレンズ外部に
有しており、入射光束fi、、u2は球形レンズ1から
所定距離部れた球面像面上に結像する。この球面像面上
には光伝達部材束4の入射端が位置しており、光伝達部
材4の出射端に該出射端側に受光面が向けられた撮像素
子5が配されている。従フて、球形レンズ1によって球
面像面上に結像した入射光束fl+、Ilzは、夫々の
結像位置に入射口を存する少なくとも1つの光伝達部材
を介して撮像素子5の対応する画素に入射することにな
る。即ち、不図示の被写体の像は球形レンズ1により、
球形レンズ1の球面像面に所定の結像倍率で湾曲した像
として結像され、この湾曲像は光伝達部材束4により撮
像素子5へ平面像として入射する。
The spherical lens 1 shown here has its focal point outside the lens, and the incident light beams fi, , u2 are imaged on a spherical image plane located a predetermined distance from the spherical lens 1. The input end of the light transmission member bundle 4 is located on this spherical image plane, and the image pickup element 5 whose light receiving surface is directed toward the output end is arranged at the output end of the light transmission member 4. Therefore, the incident light beams fl+ and Ilz that are imaged on the spherical image surface by the spherical lens 1 are transmitted to the corresponding pixels of the image sensor 5 via at least one light transmission member having an entrance at each image formation position. It will be incident. That is, the image of the subject (not shown) is captured by the spherical lens 1.
A curved image is formed at a predetermined imaging magnification on the spherical image surface of the spherical lens 1, and this curved image is incident on the image sensor 5 as a plane image by the light transmission member bundle 4.

一方、撮像素子5に光伝達部材束を介して導かれた被写
体像は、撮像素子5で光電変換され。
On the other hand, the subject image guided to the image sensor 5 via the light transmission member bundle is photoelectrically converted by the image sensor 5.

電気信号から成る画像信号として処理装置5に入力され
る。
The image signal is input to the processing device 5 as an image signal consisting of an electrical signal.

処理装置5は撮像素子5で得られる画像信号に対してズ
ーミングや歪曲補正等の処理を施し、処理後の画像信号
を例えば表示装置6へ出力して、表示装置6により、被
写体に関する所定の画像を表示する。
The processing device 5 performs processing such as zooming and distortion correction on the image signal obtained by the image sensor 5, and outputs the processed image signal to, for example, a display device 6. The display device 6 displays a predetermined image of the subject. Display.

第1図於ける光伝達部材束4は、曲面像面側での個々の
伝達部材の光軸方向が曲面像面にほぼ垂直であるような
放射状の光伝達部材束となっており、このような構成の
光伝達部材束は受光効率が良く且つ広画角にわたって画
像を伝送できることから有用である。一方、ファイバー
等の光伝達部材を平行に配列した、一般的な光伝達部材
束は放射状の光伝達部材束に比べると画角は小さくなる
が、コストや加工精度の点で有利である。
The light transmission member bundle 4 in FIG. 1 is a radial light transmission member bundle in which the optical axis direction of each transmission member on the curved image surface side is approximately perpendicular to the curved image surface. A light transmission member bundle having such a configuration is useful because it has good light reception efficiency and can transmit images over a wide angle of view. On the other hand, a general light transmission member bundle in which light transmission members such as fibers are arranged in parallel has a smaller angle of view than a radial light transmission member bundle, but is advantageous in terms of cost and processing accuracy.

又、球形レンズ1と光伝達部材束4の曲面像面側は離し
て配置されているが、密着していてもかまわない。
Further, although the spherical lens 1 and the light transmitting member bundle 4 are arranged apart from each other on the curved image surface side, they may be in close contact with each other.

球形レンズ1と光伝達部材束4とを密着させるか瀧すか
は主として球形レンズ1の仕様(レンズバック)による
。又、フォーカシングに際して球形レンズ1と光伝達部
材束4の入射端の間隔を変化させてもよいものとする。
Whether the spherical lens 1 and the light transmission member bundle 4 are brought into close contact with each other or not depends mainly on the specifications of the spherical lens 1 (lens back). Furthermore, during focusing, the distance between the spherical lens 1 and the incident end of the light transmitting member bundle 4 may be changed.

この場合、遠距離の被写体に対しては球形レンズ1と光
伝達部材束4の入射端とが密着しているが、近距離の被
写体にフォーカシングすると、球形レンズ1と光伝達部
材束の入射端とが離れるといった状態も起こりつる。
In this case, the spherical lens 1 and the incident end of the light transmitting member bundle 4 are in close contact with a distant subject, but when focusing on a close distance subject, the spherical lens 1 and the incident end of the light transmitting member bundle There may also be situations where the two become separated.

球形レンズの如き球対称性をもつレンズは軸上光線と軸
外光線が同様に屈折されるために、軸外に於ける収差の
悪化は無く、広画角にわたって高解像の画像が得られる
Lenses with spherical symmetry, such as spherical lenses, refract axial and off-axis rays in the same way, so there is no aberration worsening off-axis, and high-resolution images can be obtained over a wide angle of view. .

しかし、この場合には、像面も曲面となり、そのままで
は感光面が平面の撮像素子は使用できない。そこで、光
ファイバー等から成る光伝達部材束を利用して曲面像を
平面像に変換した後で撮像素子へ入力する。光伝達部材
束は一端を平面、他端を球形レンズによる曲面像面に近
い形状とし、光伝達部材束の入射端を球形レンズの像面
にほぼ一致させ、光伝達部材束の出射端を撮像素子の平
面状の感光面に密着させることにより、高解像性を保持
したまま球形レンズによる像を撮像素子へと伝達するこ
とができる。
However, in this case, the image surface also becomes a curved surface, and an image sensor with a flat photosensitive surface cannot be used as it is. Therefore, the curved surface image is converted into a plane image using a bundle of light transmission members made of optical fibers, etc., and then input to the image sensor. One end of the light transmission member bundle is flat, and the other end is shaped like a curved image surface formed by a spherical lens.The input end of the light transmission member bundle is made to approximately match the image plane of the spherical lens, and the output end of the light transmission member bundle is imaged. By bringing the spherical lens into close contact with the planar photosensitive surface of the element, an image formed by the spherical lens can be transmitted to the imaging element while maintaining high resolution.

又、光伝達部材束と撮像素子との間に結像光学系を配し
、光伝達部材束の出射端に形成された平面像を撮像素子
の感光面上に結像させても良い。この時、該光学系に任
意の歪曲収差をもたせて、球形レンズで発生する不可避
の歪曲をこの光学系で補正してやることも可能である。
Alternatively, an imaging optical system may be disposed between the bundle of light transmitting members and the image sensor, and a planar image formed at the output end of the bundle of light transmitting members may be formed on the photosensitive surface of the image sensor. At this time, it is also possible to provide the optical system with an arbitrary distortion aberration so that the unavoidable distortion caused by the spherical lens can be corrected by this optical system.

又、ファイバーやレンズの人出射面に反射防止処理を施
してフレア等の発生を押えることにより更なる像性能の
向上が図れることは言うまでもない。
It goes without saying that the image performance can be further improved by applying anti-reflection treatment to the exit surface of the fiber or lens to suppress the occurrence of flare and the like.

本発明に於いて、光伝達部材束の入射端は必ずしも球形
レンズと同心の球面上になくてもよく、又、後述する様
に入射端は必ずしも球面である必要はない。また、球形
レンズの屈折面も非球面化しても良いものとする。また
、球面光学系であって、球対称性がわずかに崩れていて
も良い。
In the present invention, the incident end of the light transmission member bundle does not necessarily have to be on a spherical surface concentric with the spherical lens, and as will be described later, the incident end does not necessarily have to be a spherical surface. Further, the refractive surface of the spherical lens may also be made aspherical. Moreover, it is a spherical optical system, and the spherical symmetry may be slightly broken.

この様に球形レンズを適宜膜付することにより至近性能
の改善が期待できる。
By appropriately coating the spherical lens in this way, it is expected that the close-up performance will be improved.

又、表示装置6の代わりにプリンタ等の記録装置に被写
体像に関する画像信号を送り画像を出力させても良い。
Further, instead of the display device 6, an image signal related to the subject image may be sent to a recording device such as a printer to output the image.

その上、ファクシミリ等の画像送信装置に画像信号を出
力して遠隔位置へ撮影画像を送ることも可能である。
Furthermore, it is also possible to send the photographed image to a remote location by outputting the image signal to an image transmission device such as a facsimile.

第2図は第1図に示す処理装置の一例を示す図で、撮像
素子2としてCODを用いた場合の、CODから得られ
るカラー画像信号を伝達、処理してCRTで表示するま
での電気系を示している。同図に於いて、20R,20
G、20Bはそれぞれ赤、緑、青に対応するCC’D、
21はCODとの接続を切り替える為のアナログスイッ
チ、22は増幅器、23はA、 / D変換器、26R
,26G、25Bはそれぞれ赤、緑、青に対応する入力
画像メモリ、28R,28G。
FIG. 2 is a diagram showing an example of the processing device shown in FIG. 1. When a COD is used as the image sensor 2, the electrical system for transmitting and processing color image signals obtained from the COD and displaying them on a CRT is shown. It shows. In the same figure, 20R, 20
G, 20B are CC'D corresponding to red, green, and blue, respectively.
21 is an analog switch for switching the connection with COD, 22 is an amplifier, 23 is an A/D converter, 26R
, 26G and 25B are input image memories 28R and 28G corresponding to red, green and blue, respectively.

28Bはそれぞれ赤、緑、青に対応するフレームメモリ
、29R,29G、29BはD/A変換器、30は表示
装置としてのCRT、25は入力画像メモリ26R,2
6G、26Bに対するアドレス発生部、27はフレーム
メモリ28R128G、28Bに対するアドレス発生部
、24はアナログスイッチ21への5elect信号や
アドレス発生部25.27などに対する信号を全系のタ
イミングに従って制御するための制御部である。
28B is a frame memory corresponding to red, green, and blue, respectively; 29R, 29G, and 29B are D/A converters; 30 is a CRT as a display device; 25 is an input image memory 26R, 2
6G and 26B address generation section; 27 is an address generation section for frame memories 28R128G and 28B; 24 is a control for controlling the 5elect signal to the analog switch 21 and signals to the address generation section 25.27, etc. according to the timing of the entire system. Department.

CCD20R,20G、20Bからの出力信号は、アナ
ログスイッチ21を通過して増幅器22で増幅され、A
/D変換器23によってデジタル信号に変換された後、
入力画像メモリ26R128G、26Bに送られる。そ
して、入力画像メモリ26R,26G、26Bの画像デ
ータはフレームメモリ28R,28G、28Bへと転送
され、フレームメモリ28R,28G、28Bのデータ
はそれぞれD/A変換器29R,29G。
The output signals from the CCDs 20R, 20G, and 20B pass through an analog switch 21 and are amplified by an amplifier 22.
After being converted into a digital signal by the /D converter 23,
It is sent to input image memories 26R128G and 26B. The image data in the input image memories 26R, 26G, and 26B are transferred to frame memories 28R, 28G, and 28B, and the data in the frame memories 28R, 28G, and 28B are transferred to D/A converters 29R and 29G, respectively.

29Bでアナログ信号に変換されてCRT30に送られ
表示される。
29B, it is converted into an analog signal and sent to the CRT 30 for display.

入力画像メモリ26R,26G、26Bに対するアドレ
スはアドレス発生部A25が発生し、フレームメモリ2
8R,28G、28Bに対するアドレスはアドレス発生
部B27が発生する。
Addresses for the input image memories 26R, 26G, and 26B are generated by the address generator A25, and are sent to the frame memory 2.
Addresses for 8R, 28G, and 28B are generated by the address generator B27.

また、アナログスイッチ21の切替え用の5elact
信号やアドレス発生のタイミングなどは制御部でコント
ロールする。
In addition, 5elact for switching the analog switch 21
The control unit controls the timing of signal and address generation.

さて、本実施例に係る撮像装置の処理装置においては、
アドレス発生を工夫することによフて種々の効果を生み
出すことができる。例えばアドレス発生部A25に於け
る発生アドレスを元のアドレスからずらすことによフて
画像に歪曲を与えることができる0球形レンズの場合、
焦点距離をfとすると、入射角(光軸となす角)θfr
ad+ の光線の像高はfθとなる。通常のレンズの像
高はftanθであるため、球レンズは平面の像に直し
た場合そのままでは歪曲をもっている。
Now, in the processing device of the imaging device according to this embodiment,
Various effects can be produced by devising address generation. For example, in the case of a 0-spherical lens that can distort the image by shifting the generated address in the address generation section A25 from the original address,
When the focal length is f, the angle of incidence (angle with the optical axis) θfr
The image height of the ad+ ray is fθ. Since the image height of a normal lens is ftanθ, when a spherical lens is converted into a flat image, it has distortion as it is.

そこで、今述べた方法によって球レンズの画像のもつ歪
曲を補正することができる。また、他の効果として、ア
ドレス発生部B2フに於ける発生アドレスをフレームメ
モリ28R,28G。
Therefore, the distortion of the image of the ball lens can be corrected by the method just described. In addition, as another effect, the generated addresses in the address generation section B2 are stored in the frame memories 28R and 28G.

28Bの画像の一部分のみに限定して画像をCRT30
に出力すれば、画像の一部分を拡大して表示することが
できる。これは電子的なズーミング効果である。
The image is limited to only a part of the 28B image and transferred to a CRT30.
If you output the image to , you can enlarge and display a portion of the image. This is an electronic zooming effect.

又、CODに於ける電荷の蓄積時間を可変にしてやるこ
とにより光量調節を電気処理によフて実行出来、電子絞
りの機能を具備させることも可能である。
Furthermore, by making the charge accumulation time in the COD variable, the amount of light can be adjusted by electrical processing, and it is also possible to provide an electronic aperture function.

第3図(a)〜(h)は本発明に係る撮像装置の種々の
形態を示す模式図であり、図中、1は上記実施例同様に
均質媒質から成る球形レンズ、3は絞り、5は撮像素子
、11は既述した同心球レンズ、41.42は光フアイ
バー束で、41は各ファイバーの光軸が平行で入射端が
球面形状を有するファイバー束、42は各ファイバーの
入射端の光軸が球レンズ1.11の球中心に対して放射
状になる様に構成されたファイバー束を示している。
3(a) to 3(h) are schematic diagrams showing various forms of the imaging device according to the present invention, in which 1 is a spherical lens made of a homogeneous medium as in the above embodiment, 3 is an aperture, and 5 11 is an image sensor, 11 is the concentric spherical lens mentioned above, 41 and 42 are optical fiber bundles, 41 is a fiber bundle whose optical axes are parallel and each fiber has a spherical input end, and 42 is a fiber bundle at the input end of each fiber. A fiber bundle is shown whose optical axis is radial to the spherical center of the spherical lens 1.11.

第3図(a)〜(d)は均質媒質の球形レンズ1を用い
る装置を示している。第3図(a)。
FIGS. 3(a) to 3(d) show an apparatus using a spherical lens 1 made of a homogeneous medium. Figure 3(a).

(C)は球形レンズ1の外方に位置する球形レンズ1に
よる球面像面上に光ファイバー41の入射端を配してお
り、第3図(b)、(d)では球形レンズ1の球面上に
位置する球形レンズ1による球面像面上に光ファイバー
41の入射端が密着している例を示しており、第3図(
a)。
In (C), the input end of the optical fiber 41 is placed on the spherical image plane of the spherical lens 1 located outside the spherical lens 1, and in FIGS. This shows an example in which the input end of the optical fiber 41 is in close contact with the spherical image surface of the spherical lens 1 located at
a).

(b)に於ける光ファイバー束41光ファイバーの光軸
は平行で、第3図(C)、(d)に於ける光フアイバー
束42の入射端の光軸は放射状を成すものである。一方
、第3図(e)〜(h)は同心球レンズ11を用いる装
置を示しており、第3図(e)〜(h)の構成はレンズ
の構成が異なる他は夫々第3図(a)〜(d)に対応し
ている。
The optical axes of the optical fiber bundle 41 in FIG. 3(b) are parallel, and the optical axes of the input ends of the optical fiber bundle 42 in FIGS. 3(C) and 3(d) are radial. On the other hand, FIGS. 3(e) to 3(h) show a device using a concentric spherical lens 11, and the configurations shown in FIGS. 3(e) to 3(h) are different from each other except that the lens configuration is different. Corresponds to a) to (d).

球形レンズの構成としては、第3図に示した均質媒質の
球形レンズや同心球レンズ以外にも例えば既述した屈折
率分布型レンズ等も使用出来る。とりわけ同心球レンズ
や屈折率分布型レンズ、又は物体側、像側の少なくとも
一方を非球面とした球形レンズは収差補正を行ない易く
、結像性能に優れている為高い解像度を示す。
As for the configuration of the spherical lens, in addition to the homogeneous medium spherical lens and the concentric spherical lens shown in FIG. 3, for example, the gradient index lens described above can also be used. In particular, a concentric spherical lens, a gradient index lens, or a spherical lens with an aspheric surface on at least one of the object side and the image side is easy to correct aberrations, and exhibits high resolution because of its excellent imaging performance.

又、絞り3は必ずしも用いる必要はなく、要求される像
性能や装置のスペックによって使用の有無を判断すれば
良い。特に、第3図及び第1図に示した絞り3は球形レ
ンズの球中心を通る平面内に存するものであるが、絞り
3の位置も上述の要求される像性能や装置のスペックに
よって任意に変更可能である。但し、軸上から軸外にか
けて良好な像性能を得る為には第1図及び第3図に示す
球中心を通る平面内に設置するのが好ましく、可変絞り
とすれば更に有用な装置となり得る。
Further, it is not necessary to use the aperture 3, and whether or not to use it may be determined depending on the required image performance and the specifications of the apparatus. In particular, the diaphragm 3 shown in Figures 3 and 1 is located within a plane passing through the center of the sphere of the spherical lens, but the position of the diaphragm 3 can also be arbitrarily determined depending on the above-mentioned required image performance and specifications of the device. Can be changed. However, in order to obtain good image performance from on-axis to off-axis, it is preferable to install it within a plane passing through the center of the sphere as shown in Figures 1 and 3, and a variable diaphragm can make the device even more useful. .

以上、第1図及び第3図で示した撮像装置は本発明の一
実施例を示すものであり、この他にも種々の形態をとり
えることは言うまでもない。
As described above, the imaging apparatus shown in FIGS. 1 and 3 represents one embodiment of the present invention, and it goes without saying that it can take various other forms.

特に先に述べた様に球形レンズの形態、光ファイバー等
の光伝達部材及び光伝達部材束の形態、CCD等の撮像
素子から成5る撮像手段の形態は任意に変更出来る。本
発明によれば、球形レンズがもつ広画角性を利用し、且
つ該球形レンズを介して得られる湾曲像を簡便な手法で
平面像として撮像素子に導くことにより広画角、高角像
度を備えた撮像装置としている。
In particular, as mentioned above, the form of the spherical lens, the form of the light transmission member such as an optical fiber, the form of the light transmission member bundle, and the form of the imaging means consisting of an image sensor such as a CCD can be changed arbitrarily. According to the present invention, a wide angle of view and a high angle of image can be achieved by utilizing the wide angle of view of a spherical lens and guiding a curved image obtained through the spherical lens to an image sensor as a plane image using a simple method. The imaging device is equipped with

次に、零撮像装置に用いる球形レンズの具体的実施例を
示す。
Next, a specific example of a spherical lens used in a zero imaging device will be shown.

下記表1は種々の球形レンズのレンズデータを示しであ
る。ここでは実施例1〜実施例6まで記載されており、
実施例1は均質媒質から成る球形レンズであってレンズ
外方に焦点が存するもの、実施例2は均質媒質から成る
球形レンズであってレンズの球面上に焦点が存するもの
(端面結像)、実施例3.4は2層から成る同心球レン
ズであってレンズ外方に焦点が存し、又、色収差補正を
行なったもの、実施例5は媒質内部に屈折率分布を備え
た屈折率分布型球レンズであってレンズの球面上に焦点
が存し、又、色収差補正を行なりたもの(端面結像)、
実施例6は2層から成る同心球レンズであってレンズの
球面上に焦点が存し、又、色収差補正を行なったもの、
を示している。
Table 1 below shows lens data for various spherical lenses. Examples 1 to 6 are described here,
Example 1 is a spherical lens made of a homogeneous medium and the focal point is located outside the lens. Example 2 is a spherical lens made of a homogeneous medium and the focal point is located on the spherical surface of the lens (end face imaging). Examples 3 and 4 are concentric spherical lenses consisting of two layers, the focal point is located outside the lens, and chromatic aberration is corrected, and Example 5 is a concentric spherical lens with a refractive index distribution inside the medium. A spherical lens with a focal point on the spherical surface of the lens and with chromatic aberration correction (end-face imaging),
Example 6 is a concentric spherical lens consisting of two layers, the focal point is on the spherical surface of the lens, and chromatic aberration is corrected.
It shows.

表1に於いて、γは球形レンズの曲率半径、ndはd線
に対するレンズ媒質の屈折率、fは焦点距離、γ、は曲
面像面の曲率半径(γ、〉0)、1は球形レンズと光伝
達部材束の入射端との空気間隔、γ!は同心球レンズに
於ける外側の球面の曲率半径、γ、は同心球レンズに於
ける内側の球面の曲率半径、nld+ ν1dは同心球
レンズに於ける外側の球殻状レンズを成す媒質のd線に
対する屈折率とアツベ数、f12d+ ν2dは同心球
レンズに於ける内側の球形レンズを成す媒質のd線に対
する屈折率とアツベ数、を示している。
In Table 1, γ is the radius of curvature of the spherical lens, nd is the refractive index of the lens medium for the d-line, f is the focal length, γ is the radius of curvature of the curved image surface (γ, 〉0), and 1 is the spherical lens. The air distance between and the incident end of the light transmission member bundle, γ! is the radius of curvature of the outer spherical surface in the concentric spherical lens, γ is the radius of curvature of the inner spherical surface in the concentric spherical lens, nld + ν1d is d of the medium forming the outer spherical shell-like lens in the concentric spherical lens The refractive index and Abbe number for the line, f12d+v2d, indicate the refractive index and Abbe number for the d-line of the medium forming the inner spherical lens in the concentric spherical lens.

更に、実施例5に記載のn(ρ)はレンズ内部に存する
屈折率分布を示す式で、ρは球中心からの距離であり、
d線及びg線の2波長に対してn(ρ)をρの6次の多
項式で示している。
Furthermore, n(ρ) described in Example 5 is a formula indicating the refractive index distribution existing inside the lens, and ρ is the distance from the center of the sphere,
n(ρ) is shown as a sixth-order polynomial of ρ for two wavelengths, d-line and g-line.

又、第4図〜第8図に上記実施例1〜実施例5までのレ
ンズに係る収差図を示す。第4図〜第8図に示す収差図
は主として球面収差を示しており、この種の光学系とし
て良好に収差補正が成されていることが解る。
Further, aberration diagrams related to the lenses of Examples 1 to 5 are shown in FIGS. 4 to 8. The aberration diagrams shown in FIGS. 4 to 8 mainly show spherical aberration, and it can be seen that the aberrations are well corrected for this type of optical system.

上記実施例の如く光伝達部材束の入射端は球形レンズと
同心状にあることが好ましいが、該入射端と球形レンズ
との間隔を変化させてフォーカシングを行なう場合、こ
の関係を満たすには入射端面の曲率を連続的に変化させ
ねばならず、実用的ではない、当然入射端面の曲率半径
γ1は固定であるのが実用上好ましく、更にこのとき次
の関係を満たすことが望ましい。
It is preferable that the incident end of the light transmitting member bundle be concentric with the spherical lens as in the above embodiment, but when focusing is performed by changing the distance between the incident end and the spherical lens, in order to satisfy this relationship, The curvature of the end face must be changed continuously, which is not practical.Of course, it is practically preferable that the radius of curvature γ1 of the incident end face is fixed, and furthermore, in this case, it is desirable that the following relationship be satisfied.

ここに、fは球形レンズの焦点距離、Sは至近物点から
球形レンズの中心までの距離である。
Here, f is the focal length of the spherical lens, and S is the distance from the closest object point to the center of the spherical lens.

(1)式の右辺は至近物点に対する近軸的な像面位置(
レンズ中心からの距離)を示している。
The right side of equation (1) is the paraxial image plane position (
(distance from the center of the lens).

γ、の値を(1)式を満たすように選択することにより
、無限遠から至近に至る全フォーカシング域で、入射端
面の同心状球面からのズレを小さくし、軸外の結像特性
を良好に保つことができる。
By selecting the value of γ so as to satisfy equation (1), the deviation from the concentric spherical surface of the entrance end surface is reduced in the entire focusing range from infinity to close range, and the off-axis imaging characteristics are improved. can be kept.

また、受光面の曲率半径γ、は次の関係を満たすことが
更に望ましい。
Further, it is more desirable that the radius of curvature γ of the light-receiving surface satisfies the following relationship.

既に述べたように、光伝達部材束の入射端が球形レンズ
に対し同心状の場合、有限物体距離において負の像面湾
曲が発生し、物体距離が小さくなる程その発生量は増大
する。一方、入射端面の曲率半径γ8が上記(2)式を
満たす場合は、物体が至近に近づくに従ってγ、は同心
状球面の曲率半径より小さくなり、これは負の像面湾曲
の発生と相殺する方向である。即ち、像面湾曲を考慮す
るとき、上記(2)式の関係を満たすことにより、軸外
の結像特性、特に至近近傍のそれを更に良好に保つこと
ができる。従って上記各実施例に於いて光伝達部材束の
入射端面ば球面としたが、この入射端面は必ずしも球面
に限定するものではなく、非球面を用いてもよい。
As already mentioned, when the incident end of the light transmission member bundle is concentric with the spherical lens, negative field curvature occurs at a finite object distance, and the amount of negative field curvature increases as the object distance becomes smaller. On the other hand, when the radius of curvature γ8 of the incident end face satisfies the above equation (2), as the object approaches, γ becomes smaller than the radius of curvature of the concentric spherical surface, and this cancels out the occurrence of negative field curvature. It is the direction. That is, when taking field curvature into consideration, by satisfying the relationship of equation (2) above, off-axis imaging characteristics, especially those in the close vicinity, can be maintained even better. Therefore, in each of the above embodiments, the incident end surface of the light transmission member bundle is made spherical, but the incident end surface is not necessarily limited to a spherical surface, and may be an aspherical surface.

このような光伝達部材束の入射端面の非球面化は光伝達
部材束を作成する際に任意の加工法で端面を非球面加工
すれば良く、例えば非球面形状の受光面をもつ撮像素子
を作成するのに比べ極めて容易に作成可能である。
To make the incident end face of such a light transmitting member bundle aspherical, the end face may be aspherically processed using any processing method when creating the light transmitting member bundle. For example, if an image sensor having an aspherical light receiving surface is used, It is much easier to create than

〔発明の効果〕〔Effect of the invention〕

以上、本発明に係る撮像装置は、高画角及び高解像力を
有する新規な装置である。且つ又、各構成要素が容易に
入手出来る為簡単に構成することが可能な装置である。
As described above, the imaging device according to the present invention is a novel device having a high angle of view and high resolution. Moreover, since each component is easily available, the device can be easily constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る撮像装置の一実施例を示す概略構
成図。 第2図は第1図に於ける処理装置の一例を示す図。 第3図(a)〜(h)は本発明に係る撮像装置の種々の
形態を示す模式図。 第4図〜第8図は表1の実施例1〜実施例5に於ける球
形レンズの球面収差を示す収差図。 i  −−−−−−−一球形レンズ 2−−−−−−−一処理装置 3 −−−−−−−一絞り 4−−−−−−−導光伝達部材束 5−−−−−一−−撮像素子 6 −−−−−−−一表示装置 ul  −−−−−一軸上入射光東 fL2 −−−−−一軸外入射光束 ニゴ 腫 (〕 全QJT差 Flo、67 玉子mu2差 etJZ差
FIG. 1 is a schematic configuration diagram showing an embodiment of an imaging device according to the present invention. FIG. 2 is a diagram showing an example of the processing device in FIG. 1. FIGS. 3(a) to 3(h) are schematic diagrams showing various forms of the imaging device according to the present invention. 4 to 8 are aberration diagrams showing spherical aberrations of spherical lenses in Examples 1 to 5 of Table 1. i ---------- One spherical lens 2 ---------- One processing device 3 ---------- One diaphragm 4 ------- Light guide transmission member bundle 5 ---- -1--Image sensor 6--Display device ul-----One-axis incident light east fL2-----One-axis off-axis incident light flux Nigoma (] Total QJT difference Flo, 67 Egg mu2 Difference et JZ difference

Claims (1)

【特許請求の範囲】[Claims] 形レンズと前記球形レンズが形成する曲面像面上又はそ
の近傍に入射端を位置させた光伝達部材束と前記光伝達
部材束の出射端側に配した撮像手段とを有する撮像装置
An imaging device comprising: a bundle of light transmitting members having an incident end located on or near a curved image plane formed by a shaped lens and the spherical lens; and an imaging means disposed on an output end side of the bundle of light transmitting members.
JP61243688A 1986-09-26 1986-10-13 Image pickup device Pending JPS6396618A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61243688A JPS6396618A (en) 1986-10-13 1986-10-13 Image pickup device
US07/103,126 US5004328A (en) 1986-09-26 1987-09-25 Spherical lens and imaging device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243688A JPS6396618A (en) 1986-10-13 1986-10-13 Image pickup device

Publications (1)

Publication Number Publication Date
JPS6396618A true JPS6396618A (en) 1988-04-27

Family

ID=17107506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243688A Pending JPS6396618A (en) 1986-09-26 1986-10-13 Image pickup device

Country Status (1)

Country Link
JP (1) JPS6396618A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0384377A2 (en) * 1989-02-24 1990-08-29 Honeywell Inc. Optical sensing system
US5067792A (en) * 1990-09-18 1991-11-26 Lloyd O H Perry Method and apparatus for interfacing of holographic and electronic data
JP2002338282A (en) * 2001-05-09 2002-11-27 Hamamatsu Photonics Kk Optical lens and method for manufacturing optical lens
US7477312B2 (en) 2003-07-04 2009-01-13 Sony Corporation Photographing apparatus, photographing method, and method for measuring converted data representing a fiber-array image
JP2012132958A (en) * 2010-12-20 2012-07-12 Canon Inc Imaging apparatus
WO2012147841A1 (en) * 2011-04-26 2012-11-01 ソニー株式会社 Image pickup device and electronic apparatus
JP2013210538A (en) * 2012-03-30 2013-10-10 Canon Inc Imaging apparatus
JP2016005197A (en) * 2014-06-18 2016-01-12 キヤノン株式会社 Imaging apparatus
WO2017010086A1 (en) * 2015-07-16 2017-01-19 Canon Kabushiki Kaisha Imaging apparatus
JP2017015906A (en) * 2015-06-30 2017-01-19 キヤノン株式会社 Imaging apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0384377A2 (en) * 1989-02-24 1990-08-29 Honeywell Inc. Optical sensing system
EP0384377A3 (en) * 1989-02-24 1991-10-16 Honeywell Inc. Optical sensing system
US5067792A (en) * 1990-09-18 1991-11-26 Lloyd O H Perry Method and apparatus for interfacing of holographic and electronic data
JP2002338282A (en) * 2001-05-09 2002-11-27 Hamamatsu Photonics Kk Optical lens and method for manufacturing optical lens
US7477312B2 (en) 2003-07-04 2009-01-13 Sony Corporation Photographing apparatus, photographing method, and method for measuring converted data representing a fiber-array image
JP2012132958A (en) * 2010-12-20 2012-07-12 Canon Inc Imaging apparatus
WO2012147841A1 (en) * 2011-04-26 2012-11-01 ソニー株式会社 Image pickup device and electronic apparatus
US10330888B2 (en) 2011-04-26 2019-06-25 Sony Corporation Imaging device and electronic apparatus
JP2013210538A (en) * 2012-03-30 2013-10-10 Canon Inc Imaging apparatus
JP2016005197A (en) * 2014-06-18 2016-01-12 キヤノン株式会社 Imaging apparatus
JP2017015906A (en) * 2015-06-30 2017-01-19 キヤノン株式会社 Imaging apparatus
WO2017010086A1 (en) * 2015-07-16 2017-01-19 Canon Kabushiki Kaisha Imaging apparatus

Similar Documents

Publication Publication Date Title
US5004328A (en) Spherical lens and imaging device using the same
US20090135500A1 (en) Zoom lens and camera device including the same
JP2013045089A (en) Imaging system and imaging optical system
JP5972010B2 (en) Imaging device
JPH0572474A (en) Aspherical zoom lens and video camera using the same
JPH1039207A (en) Image forming lens
JPH1039206A (en) Image forming lens
JPS6396618A (en) Image pickup device
JP2004109993A (en) Zoom lens and image pickup device
JP2006084886A (en) Lens device
JP2001356269A (en) Zoom lens
JP6004073B2 (en) Optical system and imaging apparatus
JPH1184234A (en) Photographing lens
JPS6396616A (en) Image pickup device
JP5783314B2 (en) Spherical optical system and imaging system
JP2004029641A (en) Focus system for monofocal lens
JPS6411924B2 (en)
US4585314A (en) Projection lens
JPS6396617A (en) Image pickup device
US6124990A (en) Close-up photographing lens
JP5839135B2 (en) Spherical optical system and imaging device
JPH07168093A (en) Imaging lens by means of three lenses
JP2002162561A (en) Photographic lens
CN115494612A (en) Optical lens, camera module and electronic equipment
US10571651B2 (en) Image pickup optical system, image pickup apparatus having the image pickup optical system, lens apparatus having the image pickup optical system, and image pickup system having the image pickup optical system