JPH0471109B2 - - Google Patents

Info

Publication number
JPH0471109B2
JPH0471109B2 JP59061831A JP6183184A JPH0471109B2 JP H0471109 B2 JPH0471109 B2 JP H0471109B2 JP 59061831 A JP59061831 A JP 59061831A JP 6183184 A JP6183184 A JP 6183184A JP H0471109 B2 JPH0471109 B2 JP H0471109B2
Authority
JP
Japan
Prior art keywords
acetylene
gas
oxygen
acetylene black
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59061831A
Other languages
Japanese (ja)
Other versions
JPS6134073A (en
Inventor
Juji Myazaki
Akio Nishijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP6183184A priority Critical patent/JPS6134073A/en
Priority to US06/717,063 priority patent/US4664900A/en
Priority to DE8585103750T priority patent/DE3570886D1/en
Priority to EP85103750A priority patent/EP0156390B1/en
Publication of JPS6134073A publication Critical patent/JPS6134073A/en
Publication of JPH0471109B2 publication Critical patent/JPH0471109B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、アセチレンブラツク及びその製造方
法に関する。 本発明のアセチレンブラツクは、乾電池の陽極
合剤中に乾電池電解液の吸液保持と合剤への導電
性附与に使用でき、乾電池に対して従来のアセチ
レンブラツク以上の性能を与える。 また、合成樹脂に配合した場合、高性能な導電
性樹脂を与え、その様な導電性樹脂は、帯電防止
用シート、静電気除去用アース、ベルト、通信用
アンテナ、面状発熱、電磁波遮蔽用の筐体、同軸
ケーブル、ビデオデイスク、導電性塗料への利用
が期待できる。 〔従来の技術〕 アセチレンブラツクについて 本発明の高性能なアセチレンブラツクに四敵す
る吸液性能と導電性附与能力の有するカーボンブ
ラツクとしては、副生カーボンブラツクと特
開昭53−110992号公報記載のアセチレンブラツク
が知られているが、いずれも次の様な欠点があ
り、乾電池業界及び導電性樹脂業界の要望を満足
するものではない。 副生カーボンブラツクは炭化水素の部分燃焼
反応によつて合成ガス原料である水素ガス及び
一酸化炭素ガスを製造する際に副生物として得
られるカーボンブラツクである。このカーボン
ブラツクは、原料の炭化水素に対して2〜3%
得られ、高い吸液性能を示し、且つ導電性も高
いが、アセチレンブラツクに比して、鉄、ニツ
ケル、コバルト、バナジウム等の重金属不純物
が多量に含有するため、乾電池用として使用し
た場合、乾電池の貯蔵安定性能を劣化させる。 また、導電性樹脂に使用した場合には、副生
カーボンブラツク中の不純物が異物として残
り、製品の外観を大幅に損ねるため導電性ブラ
ツクとして使用できない。 特開昭53−110992号公報記載のアセチレンブ
ラツクは、乾電池業界及び導電性樹脂業界の要
望を十分に満足していない。すなわち、このア
セチレンブラツクは、比表面積が小さいので樹
脂等に混練しても十分な導電性附与能力を示さ
ない。また、乾電池合剤等に使用した場合は、
吸液性能は高いが、粉体加圧時における電気比
抵抗が低いのでストラクチヤーの強度が弱く、
合剤充填時での電解液保持能力が十分でない。 アセチレンブラツクの製法について 前述の特開昭53−110992号公報にはアセチレン
ガスの空気による部分酸化(燃焼)の記載があ
る。しかし、単にアセチレンガスの空気による部
分酸化では、純度のよいものは得られても、アセ
チレンブラツクの比表面積が大きくならず、十分
な導電性附与能力は得られず、しかも電気比抵抗
が低すぎるので乾電池等の用途としては十分でな
い。 〔発明の目的〕 本発明は、従来以上にストラクチヤー構造が発
達し、吸液性能及び導電性附与能力を高めた高性
能なアセチレンブラツク及びその製造方法を提供
することを目的とする。 〔発明の構成〕 本発明の第1の発明は、50Kg/cm2加圧下の電気
比抵抗値0.15〜0.30Ω未満、塩酸吸液量21〜40
ml/5g及び比表面積130〜400m2/gであるアセ
チレンブラツクであり、第2の発明は、アセチレ
ンガスに不飽和炭化水素を存在させ又は存在させ
ずして、酸素含有気体と水蒸気の混合ガス流によ
つて、しかも両者の割合をアセチレンに対する酸
素含有気体の純酸素の割合(a)とアセチレンに対す
る水蒸気の割合(b)との間に、モル単位でa+b/2 <1(但し、0.06<a<1、0.09<b<2)の関
係にして、連続的に熱分解させることを特徴とす
る50Kg/cm2加圧下の電気比抵抗値0.15〜0.30Ωcm
未満、塩酸吸液量21〜40ml/5g及び比表面積
130〜400m2/gであるアセチレンブラツクの製造
方法である。 第1の発明の説明 塩酸吸液量が21ml/5g未満、比表面積130
m2/g未満では、乾電池作製時に合剤中の乾電池
電解液の吸液保持と合剤の導電性附与能力が劣
り、また、合成樹脂に配合して導電性樹脂を製造
しても導電性附与能力が十分でない。一方、塩酸
吸液量が40ml/5gを越え、比表面積400m2/g
を越えると、乾電池作製時に合剤中の乾電池電解
液の吸液保持と合剤への導電性附与能力に優れる
が合剤の充填性が悪くなり、さらには合成樹脂に
配合して導電性樹脂を製造するときにその流動性
が悪くなる。また、電気比抵抗が0.15Ωcm未満で
あると、ストラクチヤーの強度が弱くなつて乾電
池合剤の圧縮時における吸液性能が低下したり、
樹脂に混錬しても導電性附与能力が十分でなくな
る。電気比抵抗が0.30Ωcmを越えても導電性附与
能力が劣る。 第2の発明の説明 本発明は、アセチレンガスの熱分解反応につい
て鋭意研究したところ、次の反応式に導かれた方
法によつて得られたアセチレンブラツクが極めて
高品質になることが判つた。 つまり、アセチレンガスに酸素O2と水蒸気
H2Oを供給して次の反応を行わせる。 C2H2+aO2+bH2O=(2−2a−b)c +(2a+b)CO+(b+1)H2 ここで、a、bはそれぞれアセチレンガス1モ
ルの酸素、水蒸気のモル比を表わす。 つまり、本発明者は、アセチレンガスを熱分解
するに当り、酸素と水蒸気を存在させると、従来
想像もできなかつた高性能なアセチレンブラツク
を得ることを見出したものである。 ここで、アセチレンガスは、カーバイド法ある
いは石油化学法で得られた高純度のガスである。
また酸素含有気体はクロード法等で得られた高純
度酸素がよいが、空気でもよい。さらに両者の混
合ガスであつてもよい。水蒸気は、イオン交換さ
れた水又は蒸発法によつて得られた高純度の水を
加熱して蒸気状とし、完全に乾燥した水蒸気が望
ましい。湿つた状態の水があると、アセチレンガ
ス、酸素、水の3者が十分混合された状態とはな
らず、従つて生成したアセチレンブラツクを高倍
率の透過型電子顕微鏡で観察すると、部分的に粒
径の大なるアセチレンブラツクが見られ、均一に
粒径のそろつたアセチレンブラツクが得られな
い。 アセチレンガスに対して、自己継続的発熱分解
を阻害しない限りにおいて、エチレン、プロピレ
ン、ブタジエン、ベンゼン、ナフタレン、アント
ラセン等の不飽和炭化水素を混合することができ
る。不飽和炭化水素の混合量は、アセチレンガス
100重量部に対して40重量部以下が好ましい。40
重量部を越えると、本発明が目的とする電気比抵
抗0.30Ωcm未満のアセチレンブラツクを得ること
が困難となる。 アセチレンガス又はアセチレンガスに不飽和炭
化水素を存在させた原料(以下アセチレンガス等
と略す)から得られるアセチレンブラツクの収率
は、酸素含有気体と水蒸気の使用量によつて影響
を受ける。 つまり、上式よりアセチレンブラツクの収率を
算出すると、 アセチレンブラツクの収率=2−2a−b/2×100 (%) の関係であり、アセチレンブラツクの収率は1%
以上好ましくは10%以上が望まれる。そのために
は、0.06<a<1、0.09<b<2で、且つ、 1−a−b/2>0を満足する必要があるが、a 値が0.06以下では比表面積を大きくすることがで
きない。 酸素含有気体の量は純酸素として、アセチレン
ガス等1モル当り、0.1以上1.0モル未満が好まし
く、また水蒸気は0.01以上2.0モル未満が好まし
い。 熱分解炉にアセチレンガス等と酸素含有気体と
しての酸素及び/又は空気と水蒸気を供給するに
当り、垂直型分解炉の頂部に設けたアセチレンガ
ス供給ノズルを2重管構造あるいは3重管構造と
して、2重管中央部より酸素及び/又は空気と水
蒸気の混合ガス流を、一方、2重管の外側環状部
からアセチレンガス等を供給するか、または3重
管構造にあつては、3重管の中央部と最外側環状
部に酸素及び/又は空気と水蒸気の混合ガスを、
3重管の中外側の環状部からアセチレンガス等を
供給する。さらには、2重管あるいは3重管構造
のノズルの内部でアセチレンガス等、酸素及び/
又は空気、水蒸気が予混合されて、分解炉に供給
されてもよい。 この様に、アセチレンガス等と酸素含有気体と
水蒸気が熱分解にて熱分解反応を受けてアセチレ
ンブラツクを生成するが、その際、酸素含有気
体、水蒸気の混合ガス流の界面においてアセチレ
ンガスの一部が燃焼及び熱分解反応によつて水素
ガス、一酸化炭素ガスを生成し、高度に発達した
アセチレンブラツクとなる。 熱分解炉は800℃以上に保持されていることが
好ましい。800℃未満では失火するので好ましく
ない。熱分解炉を800℃以上にするには外部加熱
を行つてもよい。 熱分解炉から排出されたアセチレンブラツクは
常法により冷却され、次いでこれを懸濁するガス
相から分離・捕集される。 本発明のアセチレンブラツクは、乾電池の陽極
合剤中に乾電池電解液の吸液保持と合剤への導電
性附与に使用でき、乾電池に対して従来のアセチ
レンブラツク以上の性能を与える。 また、合成樹脂に配合した場合、高性能な導電
性樹脂を与え、その様な導電性樹脂は、帯電防止
用シート、静電気除去用アース、ベルト、通信用
アンテナ、面状発熱、電磁波遮蔽用の筐体、同軸
ケーブル、ビデオデイスク、導電性塗料への利用
が期待できる。 〔発明の実施例〕 本発明のアセチレンブラツクの物性測定は次に
よつた。すなわち、電気比抵抗はJIS K−1469、
塩酸吸液量はJIS K−1469、比表面積はカンタソ
ーブ法によつた。 次に、実施例と比較例をあげて具体的に説明す
る。 実施例 1 使用したアセチレンガス熱分解炉は、竪型の全
長2.4m、内径0.4m、排出口の径0.25m、炉内頂部
から0.3m迄の内壁が水冷ジヤケツトによつて構
成され、他の内壁が耐火レンガで構築されたもの
である。熱分解炉温度を800℃以上に保持するた
め、一酸化炭素10Nm3/H、空気60Nm3/H供給
して燃焼させたところ850℃となつた。 この熱分解炉によつて熱分解炉頂部中央に設け
た2重管ノズル中央から、酸素8.3Nm3/Hと4.0
Kg/cm2で飽和された水蒸気(温度150℃)8.3N
m3/Hの混合ガス16.6Nm3/Hを供給し、一方、
2重管ノズルの外側環状部からアセチレンガスを
18Nm3/H供給して、アセチレンガス、酸素、水
蒸気を反応せしめ、次いで常法に従い生成したア
セチレンブラツクを冷却補集した。 アセチレンガスの熱分解炉への供給線速度は、
5.9m/secであり、また酸素と水蒸気の混合ガス
の供給線速度は69.7m/secである。アセチレン
ガス対する酸素、水蒸気のモル比は各々0.46であ
り、また水蒸気に対する酸素のモル比は1.0で収
率は30%であつた。 得られたアセチレンブラツクの品質を見ると電
気比抵抗0.20Ωcm、塩酸吸液量24.5ml/5g、比
表面積250m2/gの高性能なアセチレンブラツク
であつた。第1表に各種ブラツクの特性を参考例
として示す。
[Industrial Field of Application] The present invention relates to acetylene black and a method for producing the same. The acetylene black of the present invention can be used to absorb and retain a dry battery electrolyte in the anode mixture of a dry battery and to impart conductivity to the mixture, and provides performance to the dry battery better than that of conventional acetylene black. In addition, when blended with synthetic resin, it provides a high-performance conductive resin, and such conductive resin can be used for antistatic sheets, static electricity removal grounding, belts, communication antennas, sheet heating, and electromagnetic wave shielding. It is expected to be used in housings, coaxial cables, video disks, and conductive paints. [Prior art] Regarding acetylene black Carbon black that has liquid absorption performance and conductivity imparting ability that rival the high-performance acetylene black of the present invention includes by-product carbon black and those described in JP-A-53-110992. Acetylene black is known, but all of them have the following drawbacks and do not satisfy the needs of the dry battery industry and the conductive resin industry. By-product carbon black is carbon black obtained as a by-product when hydrogen gas and carbon monoxide gas, which are raw materials for synthesis gas, are produced by a partial combustion reaction of hydrocarbons. This carbon black accounts for 2 to 3% of the raw material hydrocarbon.
Although it has high liquid absorption performance and high conductivity, it contains large amounts of heavy metal impurities such as iron, nickel, cobalt, and vanadium compared to acetylene black, so when used for dry batteries, it Deteriorates the storage stability performance of Furthermore, when used in a conductive resin, impurities in the by-product carbon black remain as foreign matter, which significantly impairs the appearance of the product, making it impossible to use it as a conductive black. The acetylene black described in JP-A-53-110992 does not fully satisfy the needs of the dry battery industry and the conductive resin industry. That is, since this acetylene black has a small specific surface area, it does not exhibit sufficient conductivity imparting ability even when kneaded into a resin or the like. In addition, when used in dry cell mixture etc.
Although the liquid absorption performance is high, the electrical resistivity during powder pressurization is low, so the strength of the structure is weak.
The electrolyte holding capacity is insufficient when filling the mixture. Regarding the manufacturing method of acetylene black, the above-mentioned Japanese Patent Application Laid-Open No. 110992/1983 describes the partial oxidation (combustion) of acetylene gas with air. However, by simply partial oxidation of acetylene gas with air, even if a highly pure acetylene black is obtained, the specific surface area of the acetylene black will not become large, sufficient conductivity imparting ability will not be obtained, and the specific electrical resistance will be low. Since it is too large, it is not sufficient for use in dry batteries, etc. [Object of the Invention] An object of the present invention is to provide a high-performance acetylene black whose structure is more developed than before, and which has improved liquid absorption performance and ability to impart conductivity, and a method for producing the same. [Structure of the Invention] The first invention of the present invention has an electric specific resistance value of 0.15 to less than 0.30 Ω under a pressure of 50 kg/cm 2 and a hydrochloric acid absorption amount of 21 to 40 Ω.
ml/5g and a specific surface area of 130 to 400 m 2 /g, and the second invention is acetylene black with or without the presence of an unsaturated hydrocarbon in the acetylene gas to produce a mixed gas of an oxygen-containing gas and water vapor. The ratio between the ratio of pure oxygen (a) of the oxygen-containing gas to acetylene and the ratio of water vapor to acetylene (b) is determined in molar units by a+b/2 <1 (where 0.06 < Electrical resistivity under pressure of 50Kg/cm 2 0.15 to 0.30Ωcm characterized by continuous thermal decomposition with the relationship of a < 1, 0.09 < b < 2)
Hydrochloric acid absorption amount 21-40ml/5g and specific surface area
This is a method for producing acetylene black having an area of 130 to 400 m 2 /g. Description of the first invention Hydrochloric acid absorption amount is less than 21ml/5g, specific surface area is 130
If it is less than m 2 /g, the liquid absorption and retention of the dry cell electrolyte in the mixture during dry battery production and the ability of the mixture to impart conductivity will be poor, and even if it is blended with a synthetic resin to produce a conductive resin, it will not be conductive. The ability to give sex is not sufficient. On the other hand, the amount of hydrochloric acid absorbed exceeds 40ml/5g, and the specific surface area is 400m 2 /g.
If it exceeds 100%, the mixture will have excellent ability to absorb and hold the battery electrolyte in the mixture and impart conductivity to the mixture when producing dry batteries, but the filling properties of the mixture will deteriorate, and furthermore, it will be difficult to mix it into synthetic resins to make it conductive. When producing resin, its fluidity becomes poor. In addition, if the electrical resistivity is less than 0.15 Ωcm, the strength of the structure will be weakened, and the liquid absorption performance during compression of the dry battery mixture will be reduced.
Even if it is kneaded into the resin, the ability to impart conductivity will not be sufficient. Even if the electrical resistivity exceeds 0.30Ωcm, the ability to impart conductivity is poor. Description of the Second Invention In the present invention, as a result of intensive research into the thermal decomposition reaction of acetylene gas, it was found that acetylene black obtained by a method derived from the following reaction formula can be of extremely high quality. In other words, acetylene gas contains oxygen O 2 and water vapor
Supply H 2 O to carry out the next reaction. C2H2 + aO2 + bH2O =(2-2a-b)c+(2a+b)CO+(b+1) H2Here , a and b represent the molar ratio of oxygen and water vapor in 1 mol of acetylene gas, respectively. In other words, the present inventors have discovered that when oxygen and water vapor are present when acetylene gas is thermally decomposed, acetylene black with a previously unimaginable high performance can be obtained. Here, acetylene gas is a highly purified gas obtained by a carbide method or a petrochemical method.
Further, the oxygen-containing gas is preferably high-purity oxygen obtained by Claude's method or the like, but air may also be used. Furthermore, a mixed gas of both may be used. The water vapor is desirably water vapor obtained by heating ion-exchanged water or high-purity water obtained by an evaporation method to form a vapor, and then completely drying the water vapor. When water is wet, acetylene gas, oxygen, and water are not sufficiently mixed, and when the acetylene black produced is observed with a high-magnification transmission electron microscope, some parts of the acetylene black are observed. Acetylene black with large particle size was observed, and acetylene black with uniform particle size could not be obtained. Unsaturated hydrocarbons such as ethylene, propylene, butadiene, benzene, naphthalene, and anthracene can be mixed with acetylene gas as long as they do not inhibit self-continuous exothermic decomposition. The amount of unsaturated hydrocarbon mixed is acetylene gas.
It is preferably 40 parts by weight or less per 100 parts by weight. 40
If the amount exceeds 1 part by weight, it becomes difficult to obtain an acetylene black having an electric specific resistance of less than 0.30 Ωcm, which is the object of the present invention. The yield of acetylene black obtained from acetylene gas or a raw material in which unsaturated hydrocarbons are present in acetylene gas (hereinafter abbreviated as acetylene gas, etc.) is affected by the amounts of oxygen-containing gas and water vapor used. In other words, when calculating the yield of acetylene black from the above formula, the relationship is as follows: yield of acetylene black = 2-2a-b/2 x 100 (%), and the yield of acetylene black is 1%.
More preferably, 10% or more is desired. To do this, it is necessary to satisfy 0.06<a<1, 0.09<b<2, and 1-a-b/2>0, but if the a value is 0.06 or less, the specific surface area cannot be increased. . The amount of oxygen-containing gas is preferably 0.1 or more and less than 1.0 mol as pure oxygen per 1 mol of acetylene gas, and the amount of water vapor is preferably 0.01 or more and less than 2.0 mol. When supplying acetylene gas, etc., oxygen and/or air as an oxygen-containing gas, and water vapor to the pyrolysis furnace, the acetylene gas supply nozzle installed at the top of the vertical cracking furnace has a double-pipe structure or a triple-pipe structure. , a mixed gas flow of oxygen and/or air and water vapor is supplied from the central part of the double pipe, and acetylene gas etc. is supplied from the outer annular part of the double pipe, or in the case of a triple pipe structure, a mixed gas flow of oxygen and/or air and water vapor is supplied from the central part of the double pipe. A mixed gas of oxygen and/or air and water vapor is introduced into the center and outermost annular parts of the tube.
Acetylene gas, etc. is supplied from the inner and outer annular portions of the triple pipe. Furthermore, acetylene gas, etc., and oxygen and/or
Alternatively, air and steam may be premixed and supplied to the cracking furnace. In this way, acetylene gas, etc., oxygen-containing gas, and water vapor undergo a thermal decomposition reaction to produce acetylene black, but at this time, at the interface of the mixed gas flow of oxygen-containing gas and water vapor, a portion of the acetylene gas is absorbed. The hydrogen gas produces hydrogen gas and carbon monoxide gas through combustion and thermal decomposition reactions, resulting in highly developed acetylene black. It is preferable that the temperature of the pyrolysis furnace is maintained at 800°C or higher. Temperatures below 800°C are undesirable because they will misfire. External heating may be used to raise the temperature of the pyrolysis furnace to 800°C or higher. The acetylene black discharged from the pyrolysis furnace is cooled by conventional methods, and then separated and collected from the suspended gas phase. The acetylene black of the present invention can be used to absorb and retain a dry battery electrolyte in the anode mixture of a dry battery and to impart conductivity to the mixture, and provides performance to the dry battery better than that of conventional acetylene black. In addition, when blended with synthetic resin, it provides a high-performance conductive resin, and such conductive resin can be used for antistatic sheets, static electricity removal grounding, belts, communication antennas, sheet heating, and electromagnetic wave shielding. It is expected to be used for housings, coaxial cables, video disks, and conductive paints. [Examples of the Invention] The physical properties of the acetylene black of the present invention were measured as follows. In other words, the electrical resistivity is JIS K-1469,
The hydrochloric acid absorption amount was determined according to JIS K-1469, and the specific surface area was determined according to the Cantasorb method. Next, a detailed explanation will be given by giving examples and comparative examples. Example 1 The acetylene gas pyrolysis furnace used was a vertical type with a total length of 2.4 m, an inner diameter of 0.4 m, an outlet diameter of 0.25 m, an inner wall of 0.3 m from the top of the furnace, and a water-cooled jacket. The interior walls are constructed of firebrick. In order to maintain the temperature of the pyrolysis furnace at 800°C or higher, 10Nm 3 /H of carbon monoxide and 60Nm 3 /H of air were supplied for combustion, resulting in a temperature of 850°C. With this pyrolysis furnace, oxygen of 8.3Nm 3 /H and 4.0
Water vapor saturated with Kg/ cm2 (temperature 150℃) 8.3N
A mixed gas of 16.6 Nm 3 /H of m 3 /H was supplied, while
Acetylene gas is released from the outer annular part of the double pipe nozzle.
18Nm 3 /H was supplied to react the acetylene gas, oxygen and water vapor, and then the acetylene black produced was cooled and collected in accordance with a conventional method. The linear velocity of acetylene gas supply to the pyrolysis furnace is
5.9 m/sec, and the linear velocity of the mixed gas of oxygen and water vapor is 69.7 m/sec. The molar ratio of oxygen and water vapor to acetylene gas was each 0.46, and the molar ratio of oxygen to water vapor was 1.0, and the yield was 30%. Looking at the quality of the obtained acetylene black, it was a high performance acetylene black with an electric specific resistance of 0.20 Ωcm, a hydrochloric acid absorption capacity of 24.5 ml/5 g, and a specific surface area of 250 m 2 /g. Table 1 shows the characteristics of various blacks as reference examples.

【表】 ここで参考例は以下のとおりである。 アセチレンブラツク:商品名「デンカブラツク粉
状」 特開昭53−110992号公報:アセチレンガスを空気
によつて部分燃焼させて得たアセチレンブ
ラツク 副生ブラツク:一酸化炭素、水素の混合ガスを得
るプロセスとして、テキサコ法、あるいは
宇部法によつて副生したカーボンブラツク 実施例1によつて得られた本発明のアセチレン
ブラツクは、塩酸吸液量と比表面積が共に優れ、
また電気比抵抗も速度な値を示していた。特開昭
53−110992号公報は、塩酸吸液量と比表面積が小
さく、また電気比抵抗も低いものであつた。高性
能ブラツクは、比表面積が大きすぎる。 実施例 2〜13 実施例1と同様にアセチレンガスの流量18N
m3/Hとし、酸素、水蒸気の流量を変えてその時
のアセチレンガスに対する酸素と水蒸気のモル比
及び酸素に対する水蒸気のモル比の関係を試験し
た。 製造条件と得られたアセチレンブラツクの品質
を第2表に示す。
[Table] Reference examples are as follows. Acetylene black: Trade name "Denka black powder" JP-A-53-110992: Acetylene black obtained by partially burning acetylene gas with air Black by-product Black: Process for obtaining a mixed gas of carbon monoxide and hydrogen The acetylene black of the present invention obtained in Example 1 is excellent in both hydrochloric acid absorption amount and specific surface area.
The electrical resistivity also showed a speedy value. Tokukai Akira
Publication No. 53-110992 had a small amount of hydrochloric acid absorption and a small specific surface area, and also had a low electrical resistivity. High performance black has too large a specific surface area. Examples 2 to 13 Same as Example 1, acetylene gas flow rate 18N
m 3 /H, and the relationship between the molar ratio of oxygen and water vapor to acetylene gas and the molar ratio of water vapor to oxygen was tested by changing the flow rates of oxygen and water vapor. The manufacturing conditions and the quality of the obtained acetylene black are shown in Table 2.

【表】【table】

【表】 実施例2〜13は、いずれも電気比抵抗が適度で
あり、塩酸吸液量の優れた高比表面積のアセチレ
ンブラツクであつた。 比較例 1〜7 実施例1と同じ熱分解炉を使用してアセチレン
ガスの流量を18Nm3/Hとし、酸素と水蒸気を供
給しない場合、あるいは各々単独の効果を試験し
たのが比較例1〜6である。また、比較例7は、
酸素と水蒸気の混合ガス流を用いるが、酸素供給
量を本発明の範囲外とした例である。 製造条件と得られたアセチレンブラツクの品質
を第3表に示す。
[Table] Examples 2 to 13 were all acetylene blacks with appropriate electrical resistivity and high specific surface area with excellent hydrochloric acid absorption. Comparative Examples 1 to 7 In Comparative Examples 1 to 7, the same pyrolysis furnace as in Example 1 was used, the flow rate of acetylene gas was set to 18 Nm 3 /H, and the effects of oxygen and steam were not supplied, or the effects of each alone were tested. It is 6. In addition, Comparative Example 7 is
This is an example in which a mixed gas flow of oxygen and water vapor is used, but the amount of oxygen supplied is outside the scope of the present invention. Table 3 shows the manufacturing conditions and the quality of the acetylene black obtained.

【表】【table】

【表】 以上の様に、酸素及び水蒸気単独を供給した場
合、又は酸素と水蒸気の混合ガス流を用いても酸
素供給量が適切でない場合は、いずれも高性能の
アセチレンブラツクは得られなかつた。 実施例14〜18 比較例8〜9 実施例1と同じ熱分解炉を使用した。 実施例14〜15は不飽和炭化水素としてエチレン
ガスを使用し、その量をアセチレンガス100部に
対して10、20部(アセチレンガス18Nm3/Hに対
して各々1.7Nm3/H、3.3Nm3/H)共存せしめ
た。 実施例16〜18は、不飽和炭化水素として、ベン
ゼンをガス状態とした。その添加量は10、20部
(アセチレンガス18Nm3/Hに対して各々0.6N
m3/H、1.2Nm3/H)、40部(アセチレンガス
15Nm3/Hに対して2.0Nm3/H)とした。 比較例8と9は、エチレンガス、ベンゼンガス
を各々50部(アセチレンガス15Nm3/Hに対して
エチレンガスは7.0Nm3/H、ベンゼンガスは
2.5Nm3/H)をアセチレンガスに共存せしめた。
不飽和炭化水素はアセチレンガスと混合して2重
管ノズルの外側環状部から供給した。 製造条件と得られたアセチレンブラツクの品質
を第4表に示す。
[Table] As shown above, high-performance acetylene black could not be obtained when oxygen and water vapor were supplied alone, or when a mixed gas flow of oxygen and water vapor was used but the oxygen supply amount was not appropriate. . Examples 14-18 Comparative Examples 8-9 The same pyrolysis furnace as in Example 1 was used. In Examples 14 and 15, ethylene gas was used as the unsaturated hydrocarbon, and the amount thereof was 10 and 20 parts per 100 parts of acetylene gas (1.7Nm 3 /H and 3.3Nm, respectively, for 18Nm 3 /H of acetylene gas). 3 /H) made them coexist. In Examples 16 to 18, benzene was used as the unsaturated hydrocarbon in a gaseous state. The amount added is 10 and 20 parts (each 0.6N per acetylene gas 18Nm 3 /H).
m 3 /H, 1.2Nm 3 /H), 40 parts (acetylene gas
15Nm 3 /H vs. 2.0Nm 3 /H). Comparative Examples 8 and 9 contained 50 parts each of ethylene gas and benzene gas (15 Nm 3 /H for acetylene gas, 7.0 Nm 3 /H for ethylene gas, and 50 parts for benzene gas).
2.5Nm 3 /H) was made to coexist with the acetylene gas.
The unsaturated hydrocarbon was mixed with acetylene gas and fed through the outer annular portion of the double tube nozzle. Table 4 shows the manufacturing conditions and the quality of the acetylene black obtained.

【表】【table】

【表】 実施例14〜18に示す様に、アセチレンガス、ベ
ンゼンガスの様な不飽和炭化水素を40部迄共存さ
せても高性能なアセチレンブラツク得ることがで
きた。 比較例8〜9の様に、50部程度となると、不飽
和炭化水素の熱分解熱量がアセチレンガスの熱分
解熱に比して小さいため、炉内の温度が低くな
り、本発明の目的とする物性のアセチレンブラツ
クが得られなかつた。 実施例19〜20 比較例10〜11 実施例1と同じ熱分解炉を使用してアセチレン
ガスの流量を12Nm3/Hとし、酸素源として純酸
素及び空気(酸素21%、窒素79%)の効果を試験
した。 製造条件と得られたアセチレンブラツクの品質
を第5表に示す。
[Table] As shown in Examples 14 to 18, high-performance acetylene black could be obtained even when up to 40 parts of unsaturated hydrocarbons such as acetylene gas and benzene gas were coexisting. As in Comparative Examples 8 and 9, when the amount is about 50 parts, the heat of thermal decomposition of the unsaturated hydrocarbon is smaller than the heat of thermal decomposition of acetylene gas, so the temperature in the furnace becomes low, which does not meet the objective of the present invention. An acetylene black with the same physical properties could not be obtained. Examples 19-20 Comparative Examples 10-11 Using the same pyrolysis furnace as in Example 1, the flow rate of acetylene gas was set to 12Nm 3 /H, and pure oxygen and air (21% oxygen, 79% nitrogen) were used as oxygen sources. The effectiveness was tested. Table 5 shows the manufacturing conditions and the quality of the acetylene black obtained.

【表】【table】

【表】 比較例10〜11の様に、a値が適切でないと比表
面積を大きくしたアセチレンブラツクを製造する
ことができなかつた。 比較例 12 実施例1と同様の熱分解炉を用いて、熱分解炉
の頭頂部中央に設けた単管ノズルからアセチレン
40Nm3/H、水蒸気1Nm3/Hの混合ガスを供給
し、次いで常法に従い生成したアセチレンブラツ
クを冷却した。アセチレンと水蒸気の混合ガスに
おける供給線速度は27.0m/秒であつた。 得られたアセチレンブラツクは電気比抵抗
0.211Ωcm、塩酸吸液量16.1ml/g、比表面積68
m3/gであつた。 比較例 13 供給ガスをアセチレン40Nm3/Hと二酸化炭素
1Nm3/Hの混合ガスを使用した他は比較例12と
同様の方法でアセチレンブラツクを製造した。 得られたアセチレンブラツクは電気比抵抗
0.221Ωcm、塩酸吸液量16.1ml/5、比表面積71
m2/gであつた。 比較例12および13から、分解ガスとして適正な
比率の酸素と水蒸気を供給する本発明の方法によ
らなければ、塩酸吸液量、比表面積共に優れたア
セチレンブラツクが得られないことが明らかであ
る。 利用例 1 実施例15で得られたアセチレンブラツクと比較
例8で得られたアセチレンブラツクを用いてマン
ガン乾電池を製造した。 すなわちアセチレンブラツクと二酸化マンガン
(三井金属(株)製、電解マンガンTAB、MnO291重
量%)の比率をほぼ16:84とした。これに酸化亜
鉛(石津製薬(株)製、特級試薬)2重量部を加え
た。電解液として、塩化亜鉛(石津製薬(株)製、特
級試薬)28重量部、塩化アンモニウム(石津製薬
(株)製、特級試薬)2重量部、塩化第2水銀(石津
製薬(株)製、特級試薬)0.06重量部とからなる溶液
を用いた。 合剤の電解液量は容積30.5cm3のUM−1型乾電
池用亜鉛罐に合剤を入れ、重量40Kgの荷重を加え
たとき、電解液が浸み出す程度の量に調整した。 このような電解液量を保持する合剤を、澱粉糊
40g/m2を塗布したペーパーラインドを挿入した
UM−1型亜鉛罐に充填し、上部から40〜44Kgの
鍾を載置してプレス成形し、乾電池用の炭素棒を
挿入し、上部をシールして供試用の乾電池を作成
した。 この乾電池の放電時間を測定するために、抵抗
4Ωで連続放電を0.85Vまで行つた。又、間歇放
電の場合は、抵抗2Ωで1日4時間以上の間隔で
2回放電し、0.9Vまで測定した。又、開路電圧、
短絡電流を併せて測定し、その結果を第6表に示
した。 (注) (1) 開路電圧は低抵抗メーター(タケダ理研(株)
製、TR−6856)を用いて測定した。 (2) 短絡電流は直流電流計(横河電気(株)製、商品
明「TYPE 2011 CLASS0.5」を用いて測定し
た。 利用例 2 実施例15及び比較例8によつて得られたアセチ
レンブラツクを配合した合成樹脂の電気抵抗を測
定比較した。 アセチレンブラツク30重量部と、EVA樹脂
(日本ユニカー(株)製、商品名「NUC−3145」)100
重量部とを内容積60mlの混練試験機(東洋精機製
作所(株)製、商品名「ラボプラストグラフR−60」)
内でブレード回転数60r.p.m.、温度120℃で10分
間混練しテスト用試料それぞれ作成した。 この試料について体積固有抵抗をそれぞれ測定
した。測定方法は試料を180℃の加熱下100Kg/cm2
の圧力でプレス成形して得た2×20×70mmのプレ
ートの電気抵抗をデジタルマルチメーター(タケ
ダ理研(株)製、商品名「TR−6856」)により測定
した。 その結果、実施例15で得られたアセチレンブラ
ツクを混練した樹脂は17Ωcmであるのに対し、比
較例8で得られたアセチレンブラツクを混練した
樹脂は30Ωcmであつた。
[Table] As in Comparative Examples 10 and 11, it was not possible to produce acetylene black with a large specific surface area unless the a value was appropriate. Comparative Example 12 Using the same pyrolysis furnace as in Example 1, acetylene was produced from a single tube nozzle installed at the center of the top of the pyrolysis furnace.
A mixed gas of 40 Nm 3 /H and water vapor of 1 Nm 3 /H was supplied, and then the acetylene black produced was cooled in accordance with a conventional method. The feed linear velocity in the mixed gas of acetylene and steam was 27.0 m/sec. The obtained acetylene black has electrical resistivity
0.211Ωcm, hydrochloric acid absorption amount 16.1ml/g, specific surface area 68
m 3 /g. Comparative example 13 Supply gas is acetylene 40Nm 3 /H and carbon dioxide
Acetylene black was produced in the same manner as in Comparative Example 12, except that a mixed gas of 1 Nm 3 /H was used. The obtained acetylene black has electrical resistivity
0.221Ωcm, hydrochloric acid absorption amount 16.1ml/5, specific surface area 71
m 2 /g. From Comparative Examples 12 and 13, it is clear that acetylene black with excellent hydrochloric acid absorption and specific surface area cannot be obtained unless the method of the present invention is used to supply an appropriate ratio of oxygen and water vapor as cracked gases. . Application Example 1 A manganese dry battery was manufactured using the acetylene black obtained in Example 15 and the acetylene black obtained in Comparative Example 8. That is, the ratio of acetylene black and manganese dioxide (manufactured by Mitsui Kinzoku Co., Ltd., electrolytic manganese TAB, MnO 2 91% by weight) was approximately 16:84. To this was added 2 parts by weight of zinc oxide (manufactured by Ishizu Pharmaceutical Co., Ltd., special grade reagent). As an electrolyte, 28 parts by weight of zinc chloride (manufactured by Ishizu Pharmaceutical Co., Ltd., special grade reagent), ammonium chloride (manufactured by Ishizu Pharmaceutical Co., Ltd., special grade reagent),
A solution containing 2 parts by weight of mercuric chloride (Special Grade Reagent, manufactured by Ishizu Pharmaceutical Co., Ltd.) and 0.06 parts by weight of mercuric chloride (Special Grade Reagent, manufactured by Ishizu Pharmaceutical Co., Ltd.) was used. The amount of electrolyte in the mixture was adjusted to such an extent that when the mixture was placed in a zinc can for a UM-1 type dry battery with a volume of 30.5 cm 3 and a load of 40 kg was applied, the electrolyte would ooze out. A mixture that maintains this amount of electrolyte is added to starch paste.
A paper line coated with 40g/ m2 was inserted.
A UM-1 type zinc can was filled with the material, a 40 to 44 kg peg was placed from the top, and a carbon rod for a dry battery was inserted, and the top was sealed to create a dry battery for testing. In order to measure the discharge time of this dry battery, continuous discharge was performed to 0.85V with a resistance of 4Ω. In the case of intermittent discharge, discharge was performed twice a day at intervals of 4 hours or more with a resistance of 2Ω, and the voltage was measured to 0.9V. Also, open circuit voltage,
The short circuit current was also measured and the results are shown in Table 6. (Note) (1) Use a low resistance meter (Takeda Riken Co., Ltd.) to measure the open circuit voltage.
(manufactured by TR-6856). (2) Short-circuit current was measured using a DC ammeter (manufactured by Yokogawa Electric Co., Ltd., product name "TYPE 2011 CLASS0.5". Application example 2 Acetylene obtained in Example 15 and Comparative Example 8 The electrical resistance of synthetic resins containing black was measured and compared. 30 parts by weight of acetylene black and 100 parts by weight of EVA resin (manufactured by Nippon Unicar Co., Ltd., trade name "NUC-3145")
parts by weight and a kneading tester with an internal volume of 60 ml (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name "Laboplastograph R-60")
Each test sample was prepared by kneading the mixture for 10 minutes at a blade rotation speed of 60 rpm and a temperature of 120°C. The volume resistivity of each sample was measured. The measurement method is to heat the sample to 180℃ at 100Kg/cm 2
The electrical resistance of a 2 x 20 x 70 mm plate obtained by press-molding at a pressure of 100 mm was measured using a digital multimeter (manufactured by Takeda Riken Co., Ltd., trade name "TR-6856"). As a result, the resistance of the resin obtained by kneading the acetylene black obtained in Example 15 was 17 Ωcm, while that of the resin obtained by kneading the acetylene black obtained in Comparative Example 8 was 30 Ωcm.

〔発明の効果〕〔Effect of the invention〕

アセチレンガスを酸素含有気体と水蒸気の混合
ガス流で熱分解することにより、高品質のアセチ
レンブラツクを得ることができる。酸素含有気体
だけでは品質の向上が十分でなく、水蒸気だけで
は炉内温度が低く品質のよいアセチレンブラツク
は得られない。また、酸素含有気体と水蒸気の混
合ガス流であつても、両者の割合が適切でない
と、これまた品質のよいアセチレンブラツクは得
られない。 さらには、エチレンガスやベンゼンガスの様な
不飽和炭化水素の適切量を共存させても高性能な
アセチレンブラツクを得ることができる。
High quality acetylene black can be obtained by pyrolyzing acetylene gas with a mixed gas stream of oxygen-containing gas and water vapor. Oxygen-containing gas alone is not enough to improve quality, and steam alone does not provide high-quality acetylene black due to the low furnace temperature. Furthermore, even in the case of a mixed gas flow of oxygen-containing gas and water vapor, if the ratio of the two is not appropriate, acetylene black of good quality cannot be obtained. Furthermore, high-performance acetylene black can be obtained by coexisting an appropriate amount of an unsaturated hydrocarbon such as ethylene gas or benzene gas.

Claims (1)

【特許請求の範囲】 1 50Kg/cm2加圧下の電気比抵抗値0.15〜0.30Ω
未満、塩酸吸液量21〜40ml/5g及び比表面積
130〜400m2/gであることを特徴とするアセチレ
ンブラツク。 2 アセチレンガスに不飽和炭化水素を存在させ
又は存在させずして、酸素含有気体と水蒸気の混
合ガス流によつて、しかも両者の割合をアセチレ
ンに対する酸素含有気体の純酸素の割合(a)とアセ
チレンに対する水蒸気の割合(b)との間に、モル単
位でa+b/2<1(但し、0.06<a<1、0.09
<b<2)の関係にして、連続的に熱分解させる
ことを特徴とする50Kg/cm2加圧下の電気比抵抗値
0.15〜0.30Ωcm未満、塩酸吸液量21〜40ml/5g
及び比表面積130〜400m2/gであるアセチレンブ
ラツクの製造方法。
[Claims] 1 50Kg/cm 2 Electrical specific resistance value under pressure 0.15 to 0.30Ω
Hydrochloric acid absorption amount 21-40ml/5g and specific surface area
Acetylene black characterized in that it has a density of 130 to 400 m 2 /g. 2. In the presence or absence of unsaturated hydrocarbons in acetylene gas, by a mixed gas flow of oxygen-containing gas and water vapor, the ratio of both is determined to be the ratio (a) of pure oxygen in the oxygen-containing gas to acetylene. The ratio of water vapor to acetylene (b) is expressed in molar units as a+b/2<1 (however, 0.06<a<1, 0.09
<b<2), electrical resistivity value under pressure of 50Kg/ cm2 characterized by continuous thermal decomposition
Less than 0.15~0.30Ωcm, hydrochloric acid absorption amount 21~40ml/5g
and a method for producing acetylene black having a specific surface area of 130 to 400 m 2 /g.
JP6183184A 1984-03-29 1984-03-29 Acetylene black and production thereof Granted JPS6134073A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6183184A JPS6134073A (en) 1984-03-29 1984-03-29 Acetylene black and production thereof
US06/717,063 US4664900A (en) 1984-03-29 1985-03-28 Electrically conductive compositions
DE8585103750T DE3570886D1 (en) 1984-03-29 1985-03-28 Electrically conductive composition
EP85103750A EP0156390B1 (en) 1984-03-29 1985-03-28 Electrically conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6183184A JPS6134073A (en) 1984-03-29 1984-03-29 Acetylene black and production thereof

Publications (2)

Publication Number Publication Date
JPS6134073A JPS6134073A (en) 1986-02-18
JPH0471109B2 true JPH0471109B2 (en) 1992-11-12

Family

ID=13182430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6183184A Granted JPS6134073A (en) 1984-03-29 1984-03-29 Acetylene black and production thereof

Country Status (1)

Country Link
JP (1) JPS6134073A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3828317B2 (en) * 1999-08-09 2006-10-04 東海カーボン株式会社 Carbon black and PTC composition comprising the same
JP4932543B2 (en) * 2007-03-06 2012-05-16 電気化学工業株式会社 Polarized electrode forming material and its use
JP6084063B2 (en) * 2012-02-23 2017-02-22 旭カーボン株式会社 Production method of carbon black
US20240002670A1 (en) * 2020-12-04 2024-01-04 Denka Company Limited Carbon black, slurry, and lithium ion secondary battery
WO2023054377A1 (en) * 2021-09-30 2023-04-06 デンカ株式会社 Carbon black, composition, laminate, and battery
WO2023054375A1 (en) * 2021-09-30 2023-04-06 デンカ株式会社 Carbon black, composition, laminate, and battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110992A (en) * 1977-03-09 1978-09-28 Ugine Kuhlmann Acetylene black having high electric conductivity and high absorbing power and method of making same
JPS5711576A (en) * 1980-06-24 1982-01-21 Ricoh Co Ltd Facsimile system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110992A (en) * 1977-03-09 1978-09-28 Ugine Kuhlmann Acetylene black having high electric conductivity and high absorbing power and method of making same
JPS5711576A (en) * 1980-06-24 1982-01-21 Ricoh Co Ltd Facsimile system

Also Published As

Publication number Publication date
JPS6134073A (en) 1986-02-18

Similar Documents

Publication Publication Date Title
JP5430571B2 (en) Carbon nanotube powder, carbon nanotube and method for producing the same
KR101620720B1 (en) Catalysts for preparing carbon nanotubes and carbon nanotubes prepared using same
US9356293B2 (en) Composite carbon fibers
EP3831773B1 (en) Carbon nanotubes, method of manufacturing same, and positive electrode for primary battery comprising same
Ji et al. High yield production of 3D graphene powders by thermal chemical vapor deposition and application as highly efficient conductive additive of lithium ion battery electrodes
JP5960059B2 (en) Carbon nanofiber manufacturing method, carbon composite, and manufacturing method thereof
CA3074223A1 (en) Conductive additives and uses thereof
JP2007012450A (en) Method of manufacturing active material for use in electrode of electrochemical element
KR20160015236A (en) Method for producing multi-walled carbon nanotubes, multi-walled carbon nanotubes and carbon nanotube powder
Nakajima et al. Electrochemical behavior of carbon alloy CxN prepared by CVD using a nickel catalyst
JPH0471109B2 (en)
KR20190048554A (en) Catalyst for synthesizing carbon nanotube and method of preparing carbon nanotube
JPS60152569A (en) Novel carbon black
Dadsetan et al. Carbon film produced from microwave-driven methane pyrolysis
Nam et al. Upcycling of plastic waste into carbon nanotubes as efficient battery additives
CN113754927B (en) Method for producing carbon nanofiber composite and carbon nanofiber composite
Sreeramoju Preparation, characterization and applications of functionalized carbon nano-onions
EP4234639A1 (en) Carbon black, slurry, and lithium-ion secondary battery
Fu et al. Ultralight FeSiAl micro-flake flying with propylene to favor fast growth of carbon nanotube arrays at 99% high-efficient conversion
Ji et al. Synthesis of large-size bulk hierarchically graphene-structured porous carbon and its versatile applications as hosts of sulfur and lithium for Li-S full cells and electrocatalyst for water splitting
Li et al. Thermolysis Synthesis of MoS2 Microrods for Noble Metal-Free Catalytic Reduction of 4-Nitrophenol
EP4245814A1 (en) Carbon black, carbon black production method, composition for electrode, electrode, and secondary battery
EP4245813A1 (en) Carbon black, carbon black production method, composition for electrode, electrode, and secondary battery
KR20230172023A (en) Positive electrode composition, positive electrode, and battery
JPH01188568A (en) Production of high-performance acetylene black

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees