JPH0469539A - Liquid particulate generating device - Google Patents

Liquid particulate generating device

Info

Publication number
JPH0469539A
JPH0469539A JP18117890A JP18117890A JPH0469539A JP H0469539 A JPH0469539 A JP H0469539A JP 18117890 A JP18117890 A JP 18117890A JP 18117890 A JP18117890 A JP 18117890A JP H0469539 A JPH0469539 A JP H0469539A
Authority
JP
Japan
Prior art keywords
liquid
size distribution
generator
wind tunnel
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18117890A
Other languages
Japanese (ja)
Inventor
Yoshiaki Iwazawa
岩沢 嘉昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18117890A priority Critical patent/JPH0469539A/en
Publication of JPH0469539A publication Critical patent/JPH0469539A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and properly select fine liquid drops which have plural different kinds of particle size distribution characteristic by providing plural liquid drop generators which differ in particle size distribution characteristic, one liquid supplier, and a switch. CONSTITUTION:One liquid drop generator which has particle size distribution characteristics requested for an icing test between the liquid drop generators 4a and 4b is put in a wind tunnel 1 and after the air flow speed in the wind tunnel 1 is set and the temperature of the air flow is adjusted by a cooler 3, liquid is supplied from the liquid supplier 13 to the liquid drop generator 4a or 4b at a necessary flow rate. Then the flow speed, temperature, and water content of the air flow are set to requested values and icing meteorological conditions having a liquid drop size distribution characteristic to the generator 4a or 4b in use can be simulated. Further, when the liquid drop size distribution is altered, the generator 4a or 4b in use is put out of the wind tunnel 1 and the other is switched and put in the wind tunnel 1; and other conditions are unchanged to simulate icing conditions while only the particle size distribution is changed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、航空機等の着氷試験を行う着氷風洞用に好適
な液体微粒子発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid particulate generator suitable for use in icing wind tunnels for conducting icing tests on aircraft and the like.

〔従来の技術〕[Conventional technology]

従来、着氷風洞に設置される液体微粒子発生装置は、第
4図(A)模式図及び(B)矢視図に示すように、風洞
1の供試体を置く計測部2とその上流に設けられた気流
用冷却器3との間に、支柱5に支えられた複数の配管6
に多数のノズル7が穿設されている液滴発生器4を配設
し、液体供給器13から供給管11を介して液滴発生器
4に規定流量の液体を供給し、流速と温度を調整した風
洞1内の気流中へその含水量を要求値に合わせた液滴を
発生させている。
Conventionally, a liquid particulate generator installed in an icing wind tunnel is installed at the measuring section 2 where the specimen of the wind tunnel 1 is placed and upstream thereof, as shown in FIG. 4 (A) schematic diagram and (B) arrow view. A plurality of pipes 6 supported by struts 5 are connected to the airflow cooler 3.
A droplet generator 4 in which a large number of nozzles 7 are bored is provided, and a specified flow rate of liquid is supplied from the liquid supply device 13 to the droplet generator 4 via the supply pipe 11, and the flow rate and temperature are controlled. Droplets whose water content matches the required value are generated in the adjusted airflow in the wind tunnel 1.

このように従来の装置は、気流温度を冷却器3で調整し
た気流中へ流量を調整した液体を液滴発生器4のノズル
7で微粒化して供給し、流速、温度及び含水量が要求値
を満たす着氷条件を実現させているが、しかし実在の着
氷条件には、この他微粒液滴の粒径分布が主要ファクタ
ーとして含まれている。
In this way, in the conventional device, a liquid whose flow rate is adjusted is atomized by the nozzle 7 of the droplet generator 4 and supplied into the air stream whose temperature is adjusted by the cooler 3, and the flow rate, temperature and water content are adjusted to the required values. However, actual icing conditions also include the particle size distribution of fine droplets as a major factor.

しかしながら、液滴粒径分布や噴霧パターンはノズルの
構造1寸法によって決まるノズル固有の特性であるため
、従来の装置ではそのノズルで定まる液滴粒径分布や噴
霧パターンを発生させるだけであり、模擬できる着氷条
件の範囲が限られている。またノズル自体の構造を可変
にして粒径分布や噴霧パターンを任意に設定することは
極めて困難である。
However, since the droplet size distribution and spray pattern are unique characteristics of the nozzle that are determined by one dimension of the nozzle structure, conventional devices only generate the droplet size distribution and spray pattern determined by the nozzle, and do not simulate it. The range of possible icing conditions is limited. Furthermore, it is extremely difficult to arbitrarily set the particle size distribution and spray pattern by changing the structure of the nozzle itself.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような事情に鑑みて提案されたもので、
簡便な装置で容易に、複数種の異なる粒径分布特性の微
粒液滴を適宜選定することができる液体微粒子発生装置
を提供することを目的とする。
The present invention was proposed in view of these circumstances, and
It is an object of the present invention to provide a liquid microparticle generator that can easily select a plurality of types of microparticle droplets having different particle size distribution characteristics with a simple device.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明は、多数個の微粒液滴の粒径分布特性
が互いに異なる複数個の液滴発生器と、上記複数個の液
滴発生器へ液体を供給する1個の液体供給器と、上記液
体供給器から液滴発生器への供給管系に介装された切換
器とを具えたことを特徴とする。
To this end, the present invention provides a plurality of droplet generators in which a large number of fine droplets have different particle size distribution characteristics, a liquid supply device that supplies liquid to the plurality of droplet generators, The present invention is characterized by comprising a switching device interposed in the supply pipe system from the liquid supply device to the droplet generator.

〔作用〕[Effect]

上述の構成により、簡便な装置で容易に、複数種の異な
る粒径分布特性の微粒液滴を適宜選定することができる
液体微粒子発生装置を得ることができる。
With the above-described configuration, it is possible to obtain a liquid microparticle generator that can easily select a plurality of types of microparticle droplets having different particle size distribution characteristics with a simple device.

〔実施例〕〔Example〕

本発明液体微粒子発生装置を着氷風洞用に通用した実施
例を図面について説明すると、第1図は第1実施例を示
し、同図(A)は装置全体の模式図、同図(B)は(A
)のB−Bに沿った矢視図、第2図は第2実施例におけ
る液滴発生器の模式図、第3図は第3実施例を示し、同
図(A)は液滴発生器の模式図、同図(B)は(A)の
B−Bに沿った矢視図である。
An embodiment in which the liquid particulate generator of the present invention is applied to an icing wind tunnel will be explained with reference to the drawings. Fig. 1 shows the first embodiment, Fig. 1 (A) is a schematic diagram of the entire device, and Fig. 1 (B) (A
), Fig. 2 is a schematic diagram of the droplet generator in the second embodiment, Fig. 3 shows the third embodiment, and (A) of the same figure shows the droplet generator. A schematic diagram of FIG.

まず第1実施例の第1図(A)、  (B)において、
風洞1の供試体を置く計測部2とその上流に設けられた
気流用冷却器3との間に液滴粒径分布特性を異にする2
個の液滴発生器4a、4bが流路へ直角に出入可能に配
設されており、この液滴発生器4a、4bは、複数の支
柱5に複数の配管6がクロス状に固定された枠盤から形
成されて、それぞれ固有の液滴粒径分布特性を有するノ
ズル7a。
First, in FIGS. 1(A) and 1(B) of the first embodiment,
Differentiating the droplet size distribution characteristics between the measurement section 2 in which the specimen of the wind tunnel 1 is placed and the airflow cooler 3 provided upstream thereof 2
Droplet generators 4a and 4b are arranged so as to be able to enter and exit the flow path at right angles, and each of the droplet generators 4a and 4b has a plurality of pipes 6 fixed to a plurality of supports 5 in a cross shape. Nozzles 7a are formed from frames and each have unique droplet size distribution characteristics.

7bが縦、横に多数個均一に配列されるとともに、両側
部のスライド8により風洞l外部の収納ケース9内から
出入するようになっている。また風洞1と収納ケース9
の間はスライドドア10により仕切られるようになって
いる。
A large number of 7b are uniformly arranged vertically and horizontally, and can be moved in and out from inside the storage case 9 outside the wind tunnel 1 by means of slides 8 on both sides. Also wind tunnel 1 and storage case 9
The space is partitioned off by a sliding door 10.

更に液滴発生器4a、4bにはそれぞれ専用の供給管1
1a、llbが接続されており、この1対の供給管11
a’、11bは切換器12により切換えられ供給管11
を介し互換的に液体供給器13に接続される。なおこの
切換B12は、供給管11a、llbの切換えの他、液
滴発生器4a、4bの出入の切換え及びスライドドア1
0の開閉も制御する。
Furthermore, each of the droplet generators 4a and 4b has its own supply pipe 1.
1a and llb are connected, and this pair of supply pipes 11
a' and 11b are switched by the switch 12 and the supply pipe 11
It is interchangeably connected to the liquid supply device 13 via. Note that this switching B12 is used for switching the supply pipes 11a and llb, as well as for switching the in/out of the droplet generators 4a and 4b, and for switching the sliding door 1.
It also controls the opening and closing of 0.

このような装置において、液滴発生器4a。In such a device, a droplet generator 4a.

4bのうち、着氷試験に要求される粒径分布特性のもの
を風洞1内へ入れておき、風洞1の気流速度を設定し冷
却B3で気流の温度を調整した後、液体供給器13がら
所要の流量で液滴発生器4a又は4bに液体を供給する
と、気流の流速、温度及び含水量が要求値に設定され、
使用中の液滴発生器4a又は4bの固有の液滴粒径分布
を有する着氷気象条件が模擬できる。また液滴粒径分布
を変更する場合には、液滴発生器4a又は4bの使用中
のものを風洞1外へ出して他方を切換えて風洞1内に入
れ、他の条件をそのままとすれば、粒径分布のみを変更
した着氷条件が模擬できる。
Of 4b, those with particle size distribution characteristics required for the icing test are put into the wind tunnel 1, and after setting the airflow velocity of the wind tunnel 1 and adjusting the temperature of the airflow with the cooling B3, Upon supplying liquid to the droplet generator 4a or 4b at the required flow rate, the flow rate, temperature and water content of the air stream are set to the required values;
Icing weather conditions with the unique droplet size distribution of the droplet generator 4a or 4b in use can be simulated. In addition, when changing the droplet size distribution, take the droplet generator 4a or 4b that is in use out of the wind tunnel 1, switch the other one, and put it into the wind tunnel 1, leaving the other conditions unchanged. , icing conditions can be simulated by changing only the particle size distribution.

次に第2実施例の第2図において、この場合は、第1実
施例が液滴発生器4a、4bをスライドさせて風洞1内
へ出入れしているのに対し、1対の収納ケース9a、9
bを風洞1の対向側部に設けて、液滴発生器4a。
Next, in FIG. 2 of the second embodiment, whereas in the first embodiment the droplet generators 4a and 4b are slid in and out of the wind tunnel 1, in this case, a pair of storage cases are used. 9a, 9
b is provided on the opposite side of the wind tunnel 1, and a droplet generator 4a.

4bの端部をそれぞれ収納ケース9a、9b内の回転軸
14へ取付けており、液滴発生器4a、4bは回転によ
って切換えられ、使用しないものは収納ケース9a又は
9bに収められスライドドア10でカバーされる。
The ends of the droplet generators 4b are attached to the rotating shafts 14 in the storage cases 9a and 9b, respectively, and the droplet generators 4a and 4b are switched by rotation, and those that are not in use are stored in the storage cases 9a or 9b and closed by the sliding door 10. covered.

更に第3実施例の第3図において、この場合の液滴発生
器4は、風洞1内に固定した支柱5′に液滴粒径分布特
性が異なる2種のノズル7a’、7b’が配置されると
ともに、異種ノズル7a、7b’群にそれぞれ別の専用
の供給管11a’、Ilb’が接続されており、従って
この場合は、供給管11a′flb’への液体の切換え
供給だけでノズル7a’、7b’ の使い分けができる
Further, in FIG. 3 of the third embodiment, the droplet generator 4 in this case has two types of nozzles 7a' and 7b' having different droplet size distribution characteristics arranged on a support 5' fixed in the wind tunnel 1. At the same time, different dedicated supply pipes 11a' and Ilb' are connected to the groups of different types of nozzles 7a and 7b', respectively. Therefore, in this case, the nozzles can be connected simply by switching the supply of liquid to the supply pipes 11a'flb'. 7a' and 7b' can be used properly.

かくして、上記第1.第2.第3実施例の液体微粒子発
生装置においては、試験着氷条件に必要な液滴粒径分布
特性を有する液滴発生器4a、4b又はノズル7a’、
7b’を選定しセントする。その後気流の流速及び温度
を必要な条件に設定したうえ、気流の含水量が所要の値
になるよう液量を設定して液滴発生器4a又は4bに供
給する。これにより、気流の流速、温度及び含水量だけ
でなく液滴粒径分布も含めた実在着氷条件の模擬が実現
する。
Thus, the above 1. Second. In the liquid particulate generator of the third embodiment, droplet generators 4a, 4b or nozzles 7a' having droplet size distribution characteristics necessary for test icing conditions,
Select 7b' and cent. Thereafter, the flow rate and temperature of the air stream are set to the required conditions, and the amount of liquid is set so that the water content of the air stream becomes a required value, and the liquid is supplied to the droplet generator 4a or 4b. This allows simulation of actual icing conditions, including not only airflow velocity, temperature, and water content, but also droplet size distribution.

〔発明の効果〕〔Effect of the invention〕

要するに本発明によれば、多数個の微粒液滴の粒径分布
特性が互いに異なる複数個の液滴発生器と、上記複数個
の液滴発生器へ液体を供給する1個の液体供給器と、上
記液体供給器から液滴発生器への供給管系に介装された
切換器とを具えたことにより、簡便な装置で容易に、複
数種の異なる粒径分布特性の微粒液滴を適宜選定するこ
とができる液体微粒子発生装置を得るから、本発明は産
業上極めて有益なものである。
In short, according to the present invention, a plurality of droplet generators each having a large number of fine droplets having different particle size distribution characteristics, and one liquid supply device that supplies liquid to the plurality of droplet generators. By including a switching device interposed in the supply pipe system from the liquid supply device to the droplet generator, a simple device can easily produce multiple types of fine droplets with different particle size distribution characteristics. The present invention is industrially extremely useful because it provides a liquid particulate generator that can be selected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明液体微粒子発生装置を着氷風洞用に適用
した第1実施例を示し、同図(A)は装置全体の模式図
、同図(B)は(A)のB−Bに沿った矢視図、第2図
は第2実施例における液滴発生器の模式図、第3図は第
3実施例を示し、同図(A)は液滴発生器の模式図、同
図(B)は(A)のB−Bに沿った矢視図である。 第4図は従来装置を示し、同図(A)は模式図、同図(
B)は(A)のB−Bに沿った矢視図である。 工・・・風洞、2・・・計測部、3・・・冷却器、4゜
4a、4b・・・液滴発生器、5,5′・・・支柱、6
・・・配管、7.7a、7a’ 、7b、7b’・・・
ノズル、8・・・スライド、9.9a、9b・・・収納
ケース、10・・・スライドドア、1111a、lla
’ 、llb、llb’ −供給管、12・・・切換器
、13・・・液体供給器、14・・・回転軸。 第1図 代理人 弁理士 塚 本 正 文 CB) 第 図 第 図 (A) 第4図 (A) 3う即( /i屓 (Bン
Figure 1 shows a first embodiment in which the liquid particulate generator of the present invention is applied to an icing wind tunnel. 2 is a schematic diagram of a droplet generator in the second embodiment, FIG. 3 is a schematic diagram of a droplet generator in the third embodiment, and FIG. Figure (B) is an arrow view taken along line BB in (A). Figure 4 shows a conventional device; Figure (A) is a schematic diagram; Figure (A) is a schematic diagram;
B) is a view taken along line B-B in (A). Engineering...Wind tunnel, 2...Measuring unit, 3...Cooler, 4゜4a, 4b...Droplet generator, 5, 5'...Strut, 6
...Piping, 7.7a, 7a', 7b, 7b'...
Nozzle, 8...Slide, 9.9a, 9b...Storage case, 10...Slide door, 1111a, lla
',llb,llb'-supply pipe, 12...switcher, 13...liquid supply device, 14...rotating shaft. Figure 1 Agent Patent Attorney Masafumi Tsukamoto CB Figure Figure Figure (A) Figure 4 (A)

Claims (1)

【特許請求の範囲】[Claims] 多数個の微粒液滴の粒径分布特性が互いに異なる複数個
の液滴発生器と、上記複数個の液滴発生器へ液体を供給
する1個の液体供給器と、上記液体供給器から液滴発生
器への供給管系に介装された切換器とを具えたことを特
徴とする液体微粒子発生装置。
A plurality of droplet generators each having a large number of fine droplets with different particle size distribution characteristics, one liquid supply device that supplies liquid to the plurality of droplet generators, and a liquid supply device that supplies liquid from the liquid supply device to the plurality of droplet generators. A liquid particulate generator comprising: a switching device interposed in a supply pipe system to a droplet generator.
JP18117890A 1990-07-09 1990-07-09 Liquid particulate generating device Pending JPH0469539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18117890A JPH0469539A (en) 1990-07-09 1990-07-09 Liquid particulate generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18117890A JPH0469539A (en) 1990-07-09 1990-07-09 Liquid particulate generating device

Publications (1)

Publication Number Publication Date
JPH0469539A true JPH0469539A (en) 1992-03-04

Family

ID=16096245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18117890A Pending JPH0469539A (en) 1990-07-09 1990-07-09 Liquid particulate generating device

Country Status (1)

Country Link
JP (1) JPH0469539A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152405A2 (en) 2011-05-06 2012-11-15 Eads Deutschland Gmbh Apparatus for dispensing liquid droplets into a gas flow
CN103092233A (en) * 2012-12-31 2013-05-08 邓彬伟 Material sample icing condition real-time collecting control system based on second-level cooling mode
JP2013190426A (en) * 2012-03-13 2013-09-26 Boeing Co:The Supercooled large drop icing condition simulation system
CN104571123A (en) * 2014-12-08 2015-04-29 北京农业智能装备技术研究中心 Method and system for aerial pesticide application real time dynamic wind field simulation
CN104897358A (en) * 2015-06-17 2015-09-09 北京航空航天大学 Experiment apparatus applied to water film generation and measurement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152405A2 (en) 2011-05-06 2012-11-15 Eads Deutschland Gmbh Apparatus for dispensing liquid droplets into a gas flow
JP2013190426A (en) * 2012-03-13 2013-09-26 Boeing Co:The Supercooled large drop icing condition simulation system
EP2650665A3 (en) * 2012-03-13 2017-09-13 The Boeing Company Supercooled large drop icing condition simulation system
CN103092233A (en) * 2012-12-31 2013-05-08 邓彬伟 Material sample icing condition real-time collecting control system based on second-level cooling mode
CN103092233B (en) * 2012-12-31 2014-11-26 邓彬伟 Material sample icing condition real-time collecting control system based on second-level cooling mode
CN104571123A (en) * 2014-12-08 2015-04-29 北京农业智能装备技术研究中心 Method and system for aerial pesticide application real time dynamic wind field simulation
CN104897358A (en) * 2015-06-17 2015-09-09 北京航空航天大学 Experiment apparatus applied to water film generation and measurement

Similar Documents

Publication Publication Date Title
Oster et al. The forced mixing layer between parallel streams
CN105203291A (en) Wind tunnel experiment system used for vector-boosting airplane model
JPH0469539A (en) Liquid particulate generating device
Zhang et al. An experimental study of icing distribution on a symmetrical airfoil for wind turbine blade in the offshore environmental condition
Oleskiw et al. In-flight icing simulation capabilities of NRC's altitude icing wind tunnel
US20120304671A1 (en) Mixed-phase generator and use thereof
US20140069182A1 (en) Testing apparatus and method
Orchard et al. Altitude scaling of thermal ice protection systems in running wet operation
Al-Khalil et al. Development of the Cox icing research facility
Baumert et al. Implementation of an innovative ice crystal generation system to the Icing Wind Tunnel Braunschweig
Patel Effects of stream turbulence on free shear flows
Sargison Development of a novel film cooling hole geometry
Medved et al. The Yugoslav 1.5 m trisonic blowdown wind tunnel
MaCleod et al. Ice crystal accretion test rig development for a compressor transition duct
JP2017037079A (en) Control method of snowstorm and snow blow-out device
Du et al. Effect of unsteady wake on detailed heat transfer coefficient and film effectiveness distributions for a gas turbine blade
Hoffs et al. An investigation of effectiveness and heat transfer on a showerhead-cooled cylinder
CN201149539Y (en) Two phase flow ground simulation test device under flight load function
CN111366389B (en) Moisture-containing dust-containing air flow supply device and control method
Qian et al. Analysis and calculation of droplet-air mixed phase flow model in icing wind tunnel
CN208314096U (en) Temperature change test equipment
Saeed et al. A new wind tunnel facility for ice crystal icing experiments
Noca et al. Large-scale vortex generation (and bursting) using windshapers
Cain et al. Boeing Research Aerodynamic/Icing Tunnel Capabilities and Calibration
MacLean et al. Hot gas environment around STOVL aircraft in ground proximity. I-Experimental study