JPH0468241B2 - - Google Patents

Info

Publication number
JPH0468241B2
JPH0468241B2 JP23241987A JP23241987A JPH0468241B2 JP H0468241 B2 JPH0468241 B2 JP H0468241B2 JP 23241987 A JP23241987 A JP 23241987A JP 23241987 A JP23241987 A JP 23241987A JP H0468241 B2 JPH0468241 B2 JP H0468241B2
Authority
JP
Japan
Prior art keywords
nitride
raw material
powder
azide
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23241987A
Other languages
Japanese (ja)
Other versions
JPS6476905A (en
Inventor
Yosha Kaieda
Tadashi Oie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
KYORITSU YOGYO GENRYO KK
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
KYORITSU YOGYO GENRYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO, KYORITSU YOGYO GENRYO KK filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP23241987A priority Critical patent/JPS6476905A/en
Publication of JPS6476905A publication Critical patent/JPS6476905A/en
Publication of JPH0468241B2 publication Critical patent/JPH0468241B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化物の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing nitrides.

〔従来の技術〕[Conventional technology]

一般に、窒化物に対して、各種の産業分野にお
いて様々な実用化が進められているが、これらの
実用化が進展するためには更に窒化物の性能を向
上させるとともに、その製造原価も低減させる必
要がある。
In general, nitrides are being put to practical use in various industrial fields, but in order for these practical applications to progress, it is necessary to further improve the performance of nitrides and reduce their manufacturing costs. There is a need.

一方、窒化物の性能と用途は多用であるため、
その性能向上の方策は単一ではあり得ないが、一
般に性能向上のためには次の3通りの方策があ
る。
On the other hand, the performance and applications of nitrides are versatile;
Although there is no single method for improving performance, there are generally three methods for improving performance.

(1) 窒化物中の不純物を低減させる。(1) Reduce impurities in nitride.

(2) 窒化物中の窒素の組成比を精密に制御する。(2) Precisely control the composition ratio of nitrogen in nitride.

(3) 窒化物中の窒素および他の元素の偏析を減少
させる。
(3) Reduce the segregation of nitrogen and other elements in nitrides.

このような性能向上を図るために、種々の窒化
物の製造方法が提案されている。
In order to improve such performance, various methods for producing nitrides have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、現在は、窒化物は主として水素
やアンモニアの共存下の窒素気流中で反応させる
直接窒化法、酸化物還元法、気相合成法、イミ
ド・アミド分解法などで製造しているので、原料
の正確な配合が困難で、化学量論的組成が不正確
になりやすく、偏析を起こしやすいものであつ
た。
However, currently, nitrides are mainly produced by direct nitriding, which involves reacting in a nitrogen stream in the coexistence of hydrogen or ammonia, oxide reduction, gas phase synthesis, imide/amide decomposition, etc. It was difficult to formulate the mixture accurately, the stoichiometric composition was likely to be inaccurate, and segregation was likely to occur.

本発明はこれらの点に鑑みてなされたものであ
り、特性を向上させた窒化物を製することがで
き、その製造工程も容易であるという窒化物の製
造方法を提供することを目的とする。
The present invention has been made in view of these points, and it is an object of the present invention to provide a method for producing nitrides that can produce nitrides with improved characteristics and that the production process is easy. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の窒化物の製造方法の第1の発明は、合
成反応により窒化物を製する窒化物の製造方法に
おいて、窒素原料としてのアジ化物粉末と、窒素
以外の原料粉末とを混合して原料混合粉末とし、
この原料混合粉末を真空下で、かつ、温度が前記
合成反応時に生じる反応生成熱により前記原料混
合粉末が合成反応の伝播を起こすことのできる値
である条件下に置き、前記原料混合粉末の一部に
入熱して点火することにより合成反応を開始さ
せ、その合成反応を原料混合粉末全体に渡つて伝
播進行させる自己伝播高温合成法により合成し
て、窒化物を製造することを特徴とする。
The first invention of the nitride manufacturing method of the present invention is a nitride manufacturing method in which nitride is manufactured by a synthesis reaction, in which an azide powder as a nitrogen raw material and a raw material powder other than nitrogen are mixed to form a raw material. As a mixed powder,
This raw material mixed powder is placed under vacuum and under conditions where the temperature is such that the raw material mixed powder can propagate the synthesis reaction due to the reaction generated heat generated during the synthesis reaction. The nitride is produced by a self-propagating high-temperature synthesis method in which a synthesis reaction is started by heating and igniting a part, and the synthesis reaction is propagated throughout the entire raw material mixed powder.

本発明の窒化物の製造方法の第2の発明は、合
成反応により窒化物を製する窒化物の製造方法に
おいて、窒素原料としてのアジ化物粉末と、窒素
以外の原料粉末とを混合して原料混合粉末とし、
この原料混合粉末を10Kg/cm2未満の窒素ガス中
で、かつ、温度が前記合成反応時に生じる反応生
成熱により前記原料混合粉末が合成反応の伝播を
起こすことのできる値である条件下に置き、更に
前記原料混合粉末の一端部に接して前記アジ化物
と混合していない窒素以外の原料の純元素粉末を
置き、この純元素粉末を強熱し、雰囲気の前記窒
素ガスと反応させて発熱させ、ここを起点として
前記原料混合粉末に合成反応を開始させ、その合
成反応を原料混合粉末全体に渡つて伝播進行させ
る自己伝播高温合成法により合成して、窒化物を
製造することを特徴とする。
A second invention of the nitride manufacturing method of the present invention is a nitride manufacturing method in which nitride is manufactured by a synthesis reaction, in which an azide powder as a nitrogen raw material and a raw material powder other than nitrogen are mixed to form a raw material. As a mixed powder,
This raw material mixed powder is placed in a nitrogen gas of less than 10 kg/cm 2 and at a temperature that allows the raw material mixed powder to propagate the synthetic reaction due to the heat of reaction generated during the synthesis reaction. Further, a pure elemental powder of a raw material other than nitrogen that is not mixed with the azide is placed in contact with one end of the raw material mixed powder, and this pure elemental powder is ignited to react with the nitrogen gas in the atmosphere to generate heat. The nitride is produced by a self-propagating high-temperature synthesis method in which a synthesis reaction is started in the raw material mixed powder using this as a starting point, and the synthesis reaction is propagated and progressed throughout the raw material mixed powder. .

〔作用〕[Effect]

本発明によれば、アジ化物粉末と窒素以外の原
料元素粉末とからなる原料混合粉末を、真空下ま
たは10Kg/cm2未満の窒素ガス中で、温度がアジ化
物と窒素以外の元素の間の合成反応時に生じる反
応生成熱により前記原料混合粉末が自己伝播高温
合成を起こすことのできる値の空間内に入れ、そ
の原料混合粉末の一部に外部から入熱して合成反
応を開始させると、その合成反応によつて発生し
た反応生成熱が反応部に隣接している未反応の原
料混合粉末を加熱して合成反応させ、更にこの部
分で発生した反応生成熱が次の隣接している未反
応原料混合粉末を加熱するいわゆる自己伝播を生
じ、ついには原料混合粉末が高温で合成される自
己伝播高温合成が生じて、全体が所望の窒化物と
される。
According to the present invention, a raw material mixed powder consisting of an azide powder and a powder of a raw material element other than nitrogen is heated under vacuum or in nitrogen gas of less than 10 kg/cm 2 at a temperature between that of the azide and an element other than nitrogen. When the raw material mixed powder is placed in a space with a value that allows self-propagating high-temperature synthesis to occur due to the reaction generated heat generated during the synthesis reaction, and heat is input from the outside to a part of the raw material mixed powder to start the synthesis reaction, the The reaction heat generated by the synthesis reaction heats the unreacted raw material mixed powder adjacent to the reaction area to cause a synthesis reaction, and the reaction generation heat generated in this area also heats the unreacted raw material mixture powder adjacent to the reaction area. So-called self-propagation occurs in which the raw material mixed powder is heated, and finally self-propagating high-temperature synthesis occurs in which the raw material mixed powder is synthesized at a high temperature, and the entire material is converted into a desired nitride.

〔実施例〕〔Example〕

本発明は本発明者らによる鋭意研究によつてな
されたものである。
The present invention was achieved through intensive research by the inventors.

すなわち、研究の結果、合成する時に反応生成
熱を発生する窒化物を、自己伝播高温合成法を用
いて合成させる際に、原料混合粉末を耐火性容器
に充填して、真空下または10Kg/cm2未満の窒素ガ
ス中で、なおかつ所定の温度の空間内に置いて、
その原料混合粉末の一部を強熱すると、合成反応
が発生するとともに、その反応生成熱が隣接部分
の原料混合粉末を加熱して合成させ、更に、この
部分の反応生成熱が次の隣接部分を加熱させるい
わゆる自己伝播が発生し、ついには試料全体が高
温で合成される自己伝播高温合成が生じるという
合成反応の現象と、次のような効果が発生するこ
とが究明された。
That is, as a result of research, when synthesizing nitrides that generate reaction heat during synthesis using the self-propagating high temperature synthesis method, the raw material mixed powder is packed into a fireproof container and heated under vacuum or at 10 kg/cm. Placed in a space with nitrogen gas at a temperature of less than 2 and at a predetermined temperature,
When a part of the raw material mixed powder is ignited, a synthesis reaction occurs, and the heat generated by the reaction heats the raw material mixed powder in the adjacent part to synthesize it. It was discovered that a so-called self-propagating process occurs that causes the sample to heat up, and that a self-propagating high-temperature synthesis occurs in which the entire sample is synthesized at a high temperature, and that the following effects occur.

(1) 真空下または10Kg/cm2未満の窒素ガス中で反
応するので、雰囲気中の酸素による汚染がな
く、合成された窒化物中の酸素の含有量は原料
混合粉末と同等かそれ以下である。
(1) Since the reaction is carried out under vacuum or in nitrogen gas of less than 10 kg/ cm2 , there is no contamination by oxygen in the atmosphere, and the oxygen content in the synthesized nitride is equal to or lower than that of the raw material mixed powder. be.

(2) 窒素原料として、高圧窒素ガスを使用しない
ので、作業環境が安全である。また高価な高圧
ガス機器を使用しなくてすむので、製造コスト
の低減化が計れる。
(2) Since high-pressure nitrogen gas is not used as a nitrogen raw material, the working environment is safe. Furthermore, since there is no need to use expensive high-pressure gas equipment, manufacturing costs can be reduced.

(2) 窒素原料として、アジ化物粉末を使用してい
るので、組成の制御が容易で、偏析が少なく、
従来の窒素ガスを原料とする方法に比べて、確
実にかつ正確な化学量論的組成を持つ窒化物を
製造しやすい。
(2) Since azide powder is used as the nitrogen raw material, the composition can be easily controlled and there is little segregation.
Compared to conventional methods using nitrogen gas as a raw material, it is easier to reliably produce nitrides with accurate stoichiometric composition.

本発明は、これらの知見に基づいてなされたも
のである。
The present invention has been made based on these findings.

以下、本発明の製造工程を第1図から第3図に
ついて説明する。
Hereinafter, the manufacturing process of the present invention will be explained with reference to FIGS. 1 to 3.

第1図は製造装置の一例を示し、第2図を第1
の発明による合成反応の伝播状態を示している。
Figure 1 shows an example of manufacturing equipment, and Figure 2 shows an example of the manufacturing equipment.
This figure shows the propagation state of the synthetic reaction according to the invention.

まず、目的とする窒化物の組成になるようにア
ジ化物粉末と窒素以外の原料元素粉末を秤量す
る。次に、秤量した原料粉末を、ボールミル、乳
鉢その他の適当な混合機で十分に混合する。そし
て、第1図に示すように、十分に混合した原料混
合粉末4を適当な金属製または耐火性容器3に入
れ、この容器3と共に高真空耐圧容器1内の電気
炉2中に挿入する。この高真空耐圧容器1は、シ
ーリング機構7によりシールされており、真空と
10Kg/cm2未満の内圧に耐える。また、電気炉2内
はヒーター10へ通電制御することにより正確に
希望の温度に調節される。次に、この原料混合粉
末4の一端にタングステン線や、ニクロム線のよ
うな点火用の抵抗加熱線5を接触させる。また、
電気炉2のヒーター10、点火用の抵抗加熱線
5、温度制御用熱電対9その他に必要な電極8等
は、すべて高真空耐圧容器1の壁を気密を保持し
たまま貫通して外側へ通じており、外部から必要
な操作ができるようになつている。次に、この高
真空耐圧容器1内を真空排気および窒素ガス供給
系6によつて排気して、5×10-2Torr以下の高
真空にする。この時、電気炉2内の温度を100℃
〜200℃にまで昇温して、原料混合粉末4から脱
水および脱ガスを行なう。すなわち、原料混合粉
末4の表面に付着している水分を離脱させたり原
料混合粉末4中に含まれている離脱しやすい酸
素、塩素等の軽元素を除去する。次いで、高真空
耐圧容器1内の真空度を真空排気系6によつて5
×10-3Torr〜5×10-7Torrの真空度となるよう
に排気を続け、同時に電気炉2を調整して、原料
混合粉末4の環境温度を室温〜200℃に保持する。
そして、点火用の抵抗加熱線5に数A〜数100A
の電流を流して、接触している原料混合粉末4の
一端を強熱して、合成反応を開始させる。
First, azide powder and raw material element powder other than nitrogen are weighed so as to have the desired composition of nitride. Next, the weighed raw material powders are thoroughly mixed in a ball mill, mortar, or other suitable mixer. Then, as shown in FIG. 1, the sufficiently mixed raw material mixed powder 4 is placed in a suitable metal or fireproof container 3, and the container 3 and the container 3 are inserted into the electric furnace 2 in the high vacuum pressure container 1. This high vacuum pressure vessel 1 is sealed by a sealing mechanism 7, and is sealed against vacuum.
Withstands internal pressure less than 10Kg/ cm2 . Further, the temperature inside the electric furnace 2 is accurately adjusted to a desired temperature by controlling the supply of electricity to the heater 10. Next, a resistance heating wire 5 for ignition, such as a tungsten wire or a nichrome wire, is brought into contact with one end of this raw material mixed powder 4. Also,
The heater 10 of the electric furnace 2, the resistance heating wire 5 for ignition, the thermocouple 9 for temperature control, and other necessary electrodes 8, etc. all penetrate the wall of the high vacuum pressure container 1 while maintaining airtightness and communicate to the outside. This allows necessary operations to be performed from the outside. Next, the inside of this high-vacuum pressure-resistant container 1 is evacuated by the vacuum evacuation and nitrogen gas supply system 6 to create a high vacuum of 5×10 −2 Torr or less. At this time, the temperature inside electric furnace 2 is set to 100℃.
The temperature is raised to ~200°C, and the raw material mixed powder 4 is dehydrated and degassed. That is, moisture adhering to the surface of the raw material mixed powder 4 is removed, and light elements such as oxygen and chlorine that are easily released from the raw material mixed powder 4 are removed. Next, the degree of vacuum in the high vacuum pressure vessel 1 is increased to 5 by the vacuum evacuation system 6.
Evacuation is continued to achieve a vacuum degree of ×10 -3 Torr to 5 ×10 -7 Torr, and at the same time, the electric furnace 2 is adjusted to maintain the environmental temperature of the raw material mixed powder 4 at room temperature to 200°C.
Then, several A to several hundred A are applied to the resistance heating wire 5 for ignition.
A current is applied to ignite one end of the raw material mixed powder 4 that is in contact with it, thereby starting a synthesis reaction.

この合成反応の過程を第2図により説明する
と、点火用の抵抗加熱線5によつて一端部の点火
点で強熱された原料混合粉末4は、合成反応する
ことにより符号4aに示す窒化物となると同時
に、符号4bに示す反応帯で大量の反応生成熱を
発生して、符号4cに示す隣接した部分を加熱し
て加熱帯とし、合成反応させる。この自己伝播高
温合成法による反応過程が原料の一端の点火点か
ら他端まで第2図太矢印方向に伝播して、符号4
dに示す未反応部分をすべて符号4a示す窒化物
に変換して、原料混合粉末4の全体が合成されて
窒化物とされる。この合成が終了したら、更に排
気を続け、窒化物が所定の温度まで冷却した時点
で、リークバルブ(図示せず)を開いて、第1図
の高真空耐圧容器1内を大気圧に戻して開き、合
成された窒化物を容器3と一緒に取り出す。次い
で、必要ならば次回の製造のために、新たな原料
混合粉末4を高真空耐圧容器1内に充填する。
The process of this synthesis reaction will be explained with reference to FIG. 2. The raw material mixed powder 4 ignited at the ignition point at one end by the resistance heating wire 5 for ignition undergoes a synthesis reaction to produce nitrides as shown by reference numeral 4a. At the same time, a large amount of reaction generated heat is generated in the reaction zone 4b, and the adjacent portion 4c is heated to form a heating zone to cause a synthesis reaction. The reaction process by this self-propagating high-temperature synthesis method propagates from the ignition point of one end of the raw material to the other end in the direction of the bold arrow in Figure 2.
All unreacted portions shown in d are converted into nitrides shown by reference numeral 4a, and the entire raw material mixed powder 4 is synthesized into nitrides. When this synthesis is completed, evacuation is continued, and when the nitride has cooled to a predetermined temperature, a leak valve (not shown) is opened to return the inside of the high vacuum pressure vessel 1 shown in Fig. 1 to atmospheric pressure. Open it and take out the synthesized nitride together with the container 3. Next, if necessary, a new raw material mixed powder 4 is filled into the high vacuum pressure container 1 for the next production.

本発明の第2の発明に基づいて窒化物を10Kg/
cm2未満の窒素ガス中で合成する場合は、第3図に
示すように、原料混合粉末4の上部に数g/数10
gの窒素以外の原料の純元素粉末11を置き、前
記の真空下での窒化物の製造の際と同一の工程を
経て、真空中での脱水および脱ガスを行なつた
後、高真空耐圧容器1内を10Kg/cm2未満の窒素ガ
スで置換する。次いで、電気炉2を調整して原料
混合粉末4の環境温度を室温〜200℃に保持する。
そして、点火用の抵抗加熱線5に数A〜数100A
の電流を流して、接触している原料混合粉末4の
上部に置かれている窒素以外の純元素粉末11を
強熱して、周囲の窒素ガスと反応させて発熱さ
せ、合成反応を開始させる。以後の工程は、前記
の真空下での窒化物の製造の際と同一である。
Based on the second invention of the present invention, 10 kg of nitride/
When synthesizing in nitrogen gas of less than cm 2 , as shown in Figure 3, several g/several 10
g of pure elemental powder 11 of raw material other than nitrogen is placed, and after dehydration and degassing in vacuum through the same process as in the production of nitride under vacuum, high vacuum withstand pressure The inside of the container 1 is replaced with nitrogen gas of less than 10 kg/cm 2 . Next, the electric furnace 2 is adjusted to maintain the environmental temperature of the raw material mixed powder 4 at room temperature to 200°C.
Then, several A to several hundred A are applied to the resistance heating wire 5 for ignition.
A current is applied to ignite the pure element powder 11 other than nitrogen placed on top of the raw material mixed powder 4 that is in contact with it, causing it to react with the surrounding nitrogen gas to generate heat and start the synthesis reaction. The subsequent steps are the same as those for producing the nitride under vacuum.

なお、本発明によつて窒素化物を製造する場合
には、発生する高熱のためアジ化物の残滓はすべ
て蒸発し、最終的な窒化物製品中には残らないこ
とを見出した。即ち、アジ化ソーダを原料とし
て、本発明による製造を行なつた場合の化学反応
式を数例以下に示すと、 3Ti+NaN3→3TiN+
Na↑(蒸発)+990KJ/mol 3Zr+NaN3→3ZiN+Na↑(蒸発)+1134KJ/
mol 3Nb+NaN3→3NbN+Na↑(蒸発)+
723KJ/mol 9Si+4NaN3→3Si3N4+4Na↑(蒸発)+
2344KJ/mol などとなり、本反応で発生する多量の熱量のため
に反応が伝播すると共に、アジ化物の残滓のNa
が蒸発するものである。
It has been found that when producing a nitride according to the present invention, all azide residue evaporates due to the high heat generated and does not remain in the final nitride product. That is, several examples of chemical reaction formulas when manufacturing according to the present invention using soda azide as a raw material are as follows: 3Ti+NaN 3 →3TiN+
Na↑(evaporation) +990KJ/mol 3Zr+NaN 3 →3ZiN+Na↑(evaporation)+1134KJ/
mol 3Nb+NaN 3 →3NbN+Na↑(evaporation)+
723KJ/mol 9Si+4NaN 3 →3Si 3 N 4 +4Na↑(evaporation)+
2344KJ/mol, etc., and the reaction propagates due to the large amount of heat generated in this reaction, and the Na of the azide residue increases.
is what evaporates.

本製造法によつて製造した多くの窒化物の中か
ら幾つかの好適な実施例を以下に詳しく説明す
る。
Among the many nitrides produced by this production method, some preferred embodiments will be described in detail below.

実施例 1 平均酸素含有量0.1重量%で平均粒径20μmの
Ti,Zr,Hf,V,Nb,Ta,Cr,B,Al,Si,
Sc,Nb,Y,Pr,Feの各粉末と、酸素含有量
0.5重量%で平均粒径15μmのアジ化ソーダ粉末を
目的とする窒化物のモル比となるように秤量し、
混合した。この原料混合粉末1Kgを黒鉛製の容器
に入れ、第1図に示す自己伝播高温合成装置に取
付けて、温度150℃、真空度5×10-5Torrの条件
下で第1図の点火用の抵抗加熱線5の一例である
タングテテンヒータに電圧35Vで40Aの電流を3
秒間流して点火した。点火後は第2図に示す反応
帯4bは5mm/secの速度で伝播し、原料混合粉末
4の全体の合成が終了した。合成された窒化物を
化学分析したところ最終的な製品の窒化物中の酸
素含有量は、0.08重量%であつた。また、Naの
残留物は認められなかつた。製造した窒化物をそ
れぞれX線回折によつて調べたところ、窒化物は
それぞれTiN,ZrN,VN,NbN,TaN,CrN,
BN,AIN,Si3N4,ScN,NbN,YN,PrN,
Fe3N,Fe4N,Fe8Nの組成に正確に合成されて
いた。
Example 1 With an average oxygen content of 0.1% by weight and an average particle size of 20 μm
Ti, Zr, Hf, V, Nb, Ta, Cr, B, Al, Si,
Sc, Nb, Y, Pr, Fe powder and oxygen content
Sodium azide powder with an average particle size of 15 μm at 0.5% by weight was weighed to achieve the desired molar ratio of nitride,
Mixed. 1 kg of this raw material mixed powder was placed in a graphite container, which was installed in the self-propagating high temperature synthesis apparatus shown in Fig. 1. A current of 40 A at a voltage of 35 V is applied to a tungsten heater, which is an example of the resistance heating wire 5.
I let it flow for a second and ignited it. After ignition, the reaction zone 4b shown in FIG. 2 propagated at a speed of 5 mm/sec, and the entire synthesis of the raw material mixed powder 4 was completed. Chemical analysis of the synthesized nitride revealed that the oxygen content in the final product was 0.08% by weight. Moreover, no Na residue was observed. When the produced nitrides were examined by X-ray diffraction, they were found to be TiN, ZrN, VN, NbN, TaN, CrN,
BN, AIN, Si 3 N 4 , ScN, NbN, YN, PrN,
It was synthesized with the exact composition of Fe 3 N, Fe 4 N, and Fe 8 N.

実施例 2 実施例1とまつたく同一の原料粉を使用して、
6Kg/cm2の窒素ガス中で、実施例1と同一の条件
で窒化物の合成を行なつた。合成した窒化物を化
学分析したところ最終的な製品の窒化物中の酸素
含有量は、0.1重量%であつた。また、Naの残留
物は認められなかつた。製造した窒化物をそれぞ
れX線回折によつて調べたところ、窒化物はそれ
ぞれTiN,ZrN,HfN,VN,NbN,TaN,
CrN,BN,AIN,Si3N4、ScN,NdN,YN、
PrN、Fe3N、Fe4N、Fe8Nの組成に正確に合成
されていた。
Example 2 Using the same raw material powder as in Example 1,
Nitride was synthesized under the same conditions as in Example 1 in 6 kg/cm 2 of nitrogen gas. Chemical analysis of the synthesized nitride revealed that the oxygen content in the final product was 0.1% by weight. Moreover, no Na residue was observed. When the produced nitrides were examined by X-ray diffraction, they were found to be TiN, ZrN, HfN, VN, NbN, TaN,
CrN, BN , AIN, Si3N4 , ScN, NdN, YN,
It was synthesized with the correct composition of PrN, Fe 3 N, Fe 4 N, and Fe 8 N.

なお、本発明は前記実施例における成分以外の
窒化物を製造する場合にも同様にして適用するこ
とができる。
It should be noted that the present invention can be similarly applied to the case of manufacturing nitrides other than the components in the above embodiments.

〔発明の効果〕〔Effect of the invention〕

このように本発明の窒化物の製造方法は構成さ
れ作用するものであるから、含有酸素量が少な
く、窒素と窒素以外の元素の組成比が正確であ
り、また製造も従来に比べて容易なものとなり、
コストも低廉となる等の効果を奏する。
Since the method for producing nitrides of the present invention is constructed and operates in this way, the amount of oxygen contained is small, the composition ratio of nitrogen and elements other than nitrogen is accurate, and production is easier than in the past. Become a thing,
There are also effects such as lower costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は窒化物製造用自己伝播高温合成装置の
概略図、第2図および第3図はそれぞれ本発明の
第1の発明および第2の発明に基づく原料混合粉
末における合成反応の熱伝播状態を示す説明図で
ある。 1……高真空耐圧容器、2……電気炉、3……
金属制または耐火性容器、4……原料混合粉末、
4a……窒化物、4b……反応帯、4c……加熱
帯、4d……未反応部分、5……点火用の抵抗加
熱線、6……真空排気および窒素ガス供給系、7
……シーリング機構、8……電極、9……温度制
御用熱電対、10……ヒータ、11……点火用の
窒素以外の原料の純元素粉末(窒素ガス中で反応
させる場合に用いる)。
FIG. 1 is a schematic diagram of a self-propagating high-temperature synthesis apparatus for producing nitrides, and FIGS. 2 and 3 are heat propagation states of the synthesis reaction in the raw material mixed powder based on the first invention and the second invention of the present invention, respectively. FIG. 1...High vacuum pressure vessel, 2...Electric furnace, 3...
Metallic or fireproof container, 4...raw material mixed powder,
4a...Nitride, 4b...Reaction zone, 4c...Heating zone, 4d...Unreacted portion, 5...Resistance heating wire for ignition, 6...Evacuation and nitrogen gas supply system, 7
... Sealing mechanism, 8 ... Electrode, 9 ... Thermocouple for temperature control, 10 ... Heater, 11 ... Pure elemental powder of raw material other than nitrogen for ignition (used when reacting in nitrogen gas).

Claims (1)

【特許請求の範囲】 1 合成反応により窒化物を製する窒化物の製造
方法において、窒素原料としてのアジ化物粉末
と、窒素以外の原料粉末とを混合して原料混合粉
末とし、この原料混合粉末を真空下で、かつ、温
度が前記合成反応時に生じる反応生成熱により前
記原料混合粉末が合成反応の伝播を起こすことの
できる値である条件下に置き、前記原料混合粉末
の一部に入熱して点火することにより合成反応を
開始させ、その合成反応を原料混合粉末全体に渡
つて伝播進行させる自己伝播高温合成法により合
成して、窒化物を製造することを特徴とする窒化
物の製造方法。 2 窒素原料としてのアジ化物粉末として、アジ
化ソーダ(NaN3)、アジ化カリ(KN3)、アジ化
バリウム(Ba3N2)の粉末を用いることを特徴と
する特許請求の範囲第1項記載の窒化物の製造方
法。 3 製造する窒化物は窒化チタン(TiN)、窒化
ジルコニウム(ZrN)、窒化ハフニウム(HfN)、
窒化バナジウム(VN)、窒化ニオブ(NbN)、
窒化タンタル(TaN)、窒化クロム(CrN)、窒
化ホウ素(BN)、窒化アルミニウム(AIN)、窒
化ケイ素(Si3N4)、窒化スカンジウム(ScN)、
窒化ネオジム(NdN)、窒化イツトリウム
(YN)、窒化プラセオジム(PrN)、窒化鉄(Fe3
N,Fe4N,Fe8N)であることを特徴とする特
許請求の範囲第1項記載の窒化物の製造方法。 4 合成反応により窒化物を製する窒化物の製造
方法において、窒素原料としてのアジ化物粉末
と、窒素以外の原料粉末とを混合して原料混合粉
末とし、この原料混合粉末を10Kg/cm2未満の窒素
ガス中で、かつ、温度が前記合成反応時に生じる
反応生成熱により前記原料混合粉末が合成反応の
伝播を起こすことのできる値である条件下に置
き、更に前記原料混合粉末の一端部に接して前記
アジ化物と混合していない窒素以外の原料の純元
素粉末を置き、この純元素粉末を強熱し、雰囲気
の前記窒素ガスと反応させて発熱させ、ここを起
点して前記原料混合粉末に合成反応を開始させ、
その合成反応を原料混合粉末全体に渡つて伝播進
行させる自己伝播高温合成法により合成して、窒
化物を製造することを特徴とする窒化物の製造方
法。 5 窒素原料としてのアジ化物粉末として、アジ
化ソーダ(NaN3)、アジ化カリ(KN3)、アジ化
バリウム(Ba3N2)の粉末を用いることを特徴と
する特許請求の範囲第4項記載の窒化物の製造方
法。 6 製造する窒化物は窒化チタン(TiN)、窒化
ジルコニウム(ZrN)、窒化ハフニウム(HfN)、
窒化バナジウム(VN)、窒化ニオブ(NbN)、
窒化タンタル(TaN)、窒化クロム(CrN)、窒
化ホウ素(BN)、窒化アルミニウム(AIN)、窒
化ケイ素(Si3N4)、窒化スカンジウム(ScN)、
窒化ネオジム(NdN)、窒化イツトリウム
(YN)、窒化プラセオジム(PrN)、窒化鉄(Fe3
N,Fe4N,Fe8N)であることを特徴とする特
許請求の範囲第4項記載の窒化物の製造方法。
[Claims] 1. In a method for producing nitride in which nitride is produced by a synthesis reaction, an azide powder as a nitrogen raw material and a raw material powder other than nitrogen are mixed to form a raw material mixed powder, and this raw material mixed powder is is placed under vacuum and under conditions where the temperature is such that the raw material mixed powder can propagate the synthetic reaction due to the reaction generated heat generated during the synthesis reaction, and heat is input to a part of the raw material mixed powder. A method for producing nitrides, characterized in that the nitrides are synthesized by a self-propagating high-temperature synthesis method in which a synthesis reaction is started by igniting the powder, and the synthesis reaction is propagated throughout the entire raw material mixed powder. . 2. Claim 1 characterized in that powders of soda azide (NaN 3 ), potassium azide (KN 3 ), and barium azide (Ba 3 N 2 ) are used as azide powders as nitrogen raw materials. A method for producing a nitride as described in Section 1. 3 The nitrides produced are titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN),
Vanadium nitride (VN), niobium nitride (NbN),
Tantalum nitride (TaN), chromium nitride (CrN), boron nitride (BN), aluminum nitride (AIN), silicon nitride (Si 3 N 4 ), scandium nitride (ScN),
Neodymium nitride (NdN), yttrium nitride (YN), praseodymium nitride (PrN), iron nitride ( Fe3
2. The method for producing a nitride according to claim 1, wherein the nitride is N, Fe 4 N, Fe 8 N). 4 In a nitride production method in which nitride is produced by a synthetic reaction, azide powder as a nitrogen raw material and raw material powder other than nitrogen are mixed to form a raw material mixed powder, and this raw material mixed powder is less than 10 kg/cm 2 in nitrogen gas and at a temperature that allows the raw material mixed powder to propagate the synthetic reaction due to the reaction generated heat generated during the synthesis reaction, and further at one end of the raw material mixed powder. A pure elemental powder of a raw material other than nitrogen that has not been mixed with the azide is placed in contact with the azide, and this pure elemental powder is ignited to react with the nitrogen gas in the atmosphere to generate heat, and starting from this point, the raw material mixed powder is start the synthesis reaction,
A method for producing nitrides, characterized in that nitrides are synthesized by a self-propagating high temperature synthesis method in which the synthesis reaction is propagated throughout the raw material mixed powder. 5. Claim 4, characterized in that powders of soda azide (NaN 3 ), potassium azide (KN 3 ), and barium azide (Ba 3 N 2 ) are used as the azide powder as the nitrogen raw material. A method for producing a nitride as described in Section 1. 6 The nitrides produced are titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN),
Vanadium nitride (VN), niobium nitride (NbN),
Tantalum nitride (TaN), chromium nitride (CrN), boron nitride (BN), aluminum nitride (AIN), silicon nitride (Si 3 N 4 ), scandium nitride (ScN),
Neodymium nitride (NdN), yttrium nitride (YN), praseodymium nitride (PrN), iron nitride ( Fe3
5. The method for producing a nitride according to claim 4, wherein the nitride is N, Fe 4 N, Fe 8 N).
JP23241987A 1987-09-18 1987-09-18 Production of nitride Granted JPS6476905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23241987A JPS6476905A (en) 1987-09-18 1987-09-18 Production of nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23241987A JPS6476905A (en) 1987-09-18 1987-09-18 Production of nitride

Publications (2)

Publication Number Publication Date
JPS6476905A JPS6476905A (en) 1989-03-23
JPH0468241B2 true JPH0468241B2 (en) 1992-10-30

Family

ID=16938959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23241987A Granted JPS6476905A (en) 1987-09-18 1987-09-18 Production of nitride

Country Status (1)

Country Link
JP (1) JPS6476905A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200523209A (en) * 2004-12-01 2005-07-16 Taiyen Biotech Co Ltd Method for synthesizing aluminum nitride
TWI391471B (en) * 2008-11-21 2013-04-01 Univ Nat Cheng Kung Preparation method of nitride fluorescent powder
US8733942B2 (en) * 2010-08-09 2014-05-27 Delta Electronics, Inc. Illumination system and projector using the same
CN114105110B (en) * 2021-10-26 2022-12-30 江苏悟晴电子新材料有限公司 Preparation method of high-purity aluminum nitride

Also Published As

Publication number Publication date
JPS6476905A (en) 1989-03-23

Similar Documents

Publication Publication Date Title
US3726643A (en) Method of producing refractory carbides,borides,silicides,sulfides,and nitrides of metals of groups iv,v,and vi of the periodic system
Arunajatesan et al. Synthesis of titanium silicon carbide
JPH0527454B2 (en)
KR100969116B1 (en) Method for the production of metal powders or metal hydride powders of the elements ti, zr, hf, v, nb, ta and cr
Yoshimura et al. Oxidation of SiC powder by high-temperature, high-pressure H2O
JP4045239B2 (en) Method for producing metal-containing single phase composition
Garcia et al. New combustion synthesis technique for the production of (InxGa1− x) 2O3 powders: Hydrazine/metal nitrate method
Shin et al. Self‐Propagating High‐Temperature Synthesis of Aluminum Nitride under Lower Nitrogen Pressures
JPS6112844B2 (en)
US4944930A (en) Synthesis of fine-grained α-silicon nitride by a combustion process
US2937939A (en) Method of producing niobium metal
JPH0468241B2 (en)
JPH01119568A (en) Self-combustion sintering method under pressure
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US5453407A (en) Method for producing nitride ceramic powders
Dolukhanyan et al. Specifics of the formation of alloys and their hydrides in Ti-Zr-H system
US5460794A (en) Method of manufacturing a powdery AlN
Yu et al. Slag corrosion resistance of Al4SiC4
Karppinen et al. Synthesis of various LaCuO3− y phases by a high-pressure technique and subsequent post-annealing treatments
JPS58181707A (en) Manufacture of boron nitride
JPH0513884B2 (en)
CN112110731A (en) Sc2SC (metal-ceramic) laminated material and preparation method thereof
Tomaszkiewicz et al. Thermodynamic properties of silicides: IV. Determination of the standard molar enthalpies of formation at the temperature 298.15 K of pentatungsten trisilicides of composition W5Si3and W5Si3. 115by fluorine-combustion calorimetry
JPH04124007A (en) Combustion synthesis of high-purity tin
JPS59162110A (en) Preparation of fine powder of silicon nitride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees