JPH0467627B2 - - Google Patents

Info

Publication number
JPH0467627B2
JPH0467627B2 JP59119760A JP11976084A JPH0467627B2 JP H0467627 B2 JPH0467627 B2 JP H0467627B2 JP 59119760 A JP59119760 A JP 59119760A JP 11976084 A JP11976084 A JP 11976084A JP H0467627 B2 JPH0467627 B2 JP H0467627B2
Authority
JP
Japan
Prior art keywords
inspected
rotating body
roll
rotating
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59119760A
Other languages
Japanese (ja)
Other versions
JPS60263855A (en
Inventor
Yoshioki Komya
Tetsuo Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP59119760A priority Critical patent/JPS60263855A/en
Publication of JPS60263855A publication Critical patent/JPS60263855A/en
Publication of JPH0467627B2 publication Critical patent/JPH0467627B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、回転超音波探傷(以下、回転UST
と云う)の搬送装置のうちで、探触子が非接触式
の装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a rotary ultrasonic flaw detection system (hereinafter referred to as a rotary UST).
This is a type of transport device in which the probe is a non-contact type.

〔従来技術〕[Prior art]

回転USTとは、被検査材、例えば鋼管等を軸
方向に移動しながら、この軸を中心として上記被
検査材の外側に設けて回転する探触子から発する
超音波によつて、上記被検査材と探触子とのなす
相対運動の軌跡、すなわちスパイラル軌跡により
被検査材の傷を検出する装置である。このような
回転USTの従来の装置としては第3図に示すも
のがある。第3図イは接触式、同じくロは非接触
式のそれぞれの探触子の位置における上記の軸に
直角な断面図である。イ,ロ両図において、11
は被検査材、12は被検査材11と同軸の回転
体、13は探触子で回転体12に保持されて、図
示のない超音波(通常は0.5〜10MHz)発生装置
より伝播されてくる音束を被検査材11へ照射す
るようになつている。ロ図における14は上記の
超音波の音束を媒介する、例えば水等の接触媒質
である。
Rotating UST is a method of moving a material to be inspected, such as a steel pipe, in the axial direction and using ultrasonic waves emitted from a probe that is installed outside the material to be inspected and rotating around this axis. This is a device that detects flaws on a material to be inspected based on the trajectory of the relative movement between the material and the probe, that is, the spiral trajectory. A conventional device for such a rotating UST is shown in FIG. FIG. 3A is a contact-type probe, and FIG. 3B is a non-contact type probe at its position at a right angle to the above-mentioned axis. In both figures A and B, 11
is a material to be inspected, 12 is a rotating body coaxial with the material to be inspected 11, and 13 is a probe, which is held on the rotating body 12 and is propagated by an ultrasonic (usually 0.5 to 10 MHz) generator (not shown). The sound beam is irradiated onto the material 11 to be inspected. 14 in the figure is a couplant such as water, which mediates the above-mentioned ultrasonic sound beam.

通常は、上記イ図に示した接触式の場合、被検
査材に入射する超音波音束と、この音束の反射波
との音響結合上の理由で、探触子13の回転速度
(周速)に制限があるため、単位時間内に行なわ
れる被検査材11の傷等の検出能力が、上記音響
結合が優れている非接触式の場合と比較して劣る
とされている。
Normally, in the case of the contact type shown in Figure A above, the rotational speed (circumference) of the probe 13 is Because of the limited speed, the ability to detect flaws, etc. on the inspected material 11 within a unit time is said to be inferior to that of the non-contact type, which has excellent acoustic coupling.

一方、非接触式の回転USTは、上記のように
超音波の音響結合が優れているので、接触式と比
べると、探触子13の回転速度を大きくすること
ができる。このため、同一時間内で得られる上記
のスパイラル軌跡は当然多くなり、従つて探傷作
業の効率が高い利点はあるが、一方、ロ図におけ
る被検査材11と探触子13との相対位置の安定
性および被検査材11と探触子13との間に必ら
ず接触媒質14が十分に介在していることが、探
傷検出上の必須条件になつており、これらの2つ
の条件を満たすことができないと、不正確な、場
合によつては全く検出不可能な結果を招くなどの
欠点があつた。
On the other hand, since the non-contact type rotating UST has excellent acoustic coupling of ultrasonic waves as described above, the rotation speed of the probe 13 can be increased compared to the contact type. Therefore, the number of spiral trajectories described above that can be obtained within the same amount of time naturally increases, which has the advantage of high flaw detection efficiency. Stability and the presence of a sufficient amount of couplant 14 between the inspected material 11 and the probe 13 are essential conditions for flaw detection, and these two conditions must be met. Failure to do so has disadvantages, such as inaccurate and, in some cases, completely undetectable results.

上記の従来技術の問題を具体例を示して、さら
に詳しく説明する。第1に自重タワミ量の影響に
ついて、例えば回転体12の処理能力が2500mmの
回転USTの場合、回転体12とこれを支持する
ピンチロールとの間隔が約500mmあると、片持梁
のタワミの最大条件としてはスパンが3000mmとな
る。第4図は上記条件の装置の場合のスパンに対
するタワミ量の実測値を示した線図で、被検査材
の鋼管の外径88.9mm、肉厚10.3mm、スパン3000mm
の場合のタワミ量が約5mmになることを示してい
る。一般に非接触式のの場合の探触子13から被
検査材11へ投射する音束の入射角の精度を勘案
した検出能力の限度としては、いわゆる芯ずれ
量、すなわち上記のタワミ量が2mmとされている
ので、この場合はタワミ量が検出能力限度を超過
しており、回転USTは使用できない。
The above-mentioned problems of the prior art will be explained in more detail by showing specific examples. First, regarding the influence of the amount of deflection due to its own weight, for example, in the case of a rotating UST with a processing capacity of the rotating body 12 of 2500 mm, if the distance between the rotating body 12 and the pinch roll supporting it is approximately 500 mm, the deflection of the cantilever beam will be The maximum condition is a span of 3000mm. Figure 4 is a diagram showing the actual measured values of the amount of deflection with respect to the span in the case of the equipment under the above conditions.
This shows that the amount of deflection is approximately 5 mm in the case of . In general, in the case of a non-contact type, the detection capability limit, which takes into account the accuracy of the angle of incidence of the sound beam projected from the probe 13 to the inspected material 11, is that the so-called misalignment amount, that is, the above-mentioned deflection amount, is 2 mm. Therefore, in this case, the amount of deflection exceeds the detection capability limit, and rotating UST cannot be used.

第2に、軽量材の管端振動による影響について
みると、例えば被検査材が管肉厚3.5mm以下の軽
量材の場合、管端部に回転体12内の接触媒質1
4によつて振動が起り、水切れおよび芯ずれが発
生して検出値に疑指示の信号が生じ、回転UST
としての機能を失う事例があつた。
Second, regarding the influence of tube end vibration on lightweight materials, for example, when the material to be inspected is a lightweight material with a tube wall thickness of 3.5 mm or less, the couplant inside the rotating body 12 is attached to the tube end.
4 causes vibration, water shortage and misalignment occur, causing a suspicious indication signal in the detected value, and the rotating UST
There have been cases where the function of the device has been lost.

以上のように従来の回転UST装置は、回転体
が長くなると自重によるタワミ量が多くなつた
り、被検査材11が薄肉の軽量材であると、管端
部において接触媒質14の水切れあるいは管端の
振動による芯ずれによつて探傷機能を失うなどの
問題があつた。
As described above, in the conventional rotary UST device, the longer the rotating body is, the more the amount of deflection due to its own weight increases, and when the material 11 to be inspected is a thin and lightweight material, water leakage of the couplant 14 at the tube end or There were problems such as loss of flaw detection function due to misalignment due to vibration.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の問題点を解決するためになさ
れたもので、被検査材の自重によるタワミ量およ
び被検査材が軽量の場合の振動による影響を最小
限に抑制することのできる回転体UST装置を得
ることを目的としている。
The present invention has been made to solve the above problems, and is a rotating body UST that can minimize the amount of deflection due to the weight of the inspected material and the influence of vibration when the inspected material is lightweight. The purpose is to obtain equipment.

〔発明の概要〕[Summary of the invention]

本発明は、上記の目的を達成すべくなされたも
ので、所定距離離隔させて配置した2組のピンチ
ロールによつて案内される被検査材を軸方向に移
動しながら、上記2組のピンチロール間に配置さ
れかつ上記被検査材と同軸で回転する回転体に設
けられた探触子からの超音波音束によつて上記被
検査材をその先端から末端まで探傷する装置にお
いて、上記2組のピンチロール間における上記回
転体の被検査材進行方向の前後と該回転体内と
に、この回転体内に進入し通過する上記被検査材
を吸着保持する磁化された複数のローラを設けた
回転体UST装置を提供するものである。
The present invention has been made to achieve the above-mentioned object, and while moving in the axial direction a material to be inspected guided by two sets of pinch rolls arranged a predetermined distance apart, the two sets of pinch rolls are In the apparatus for detecting flaws in the material to be inspected from its tip to its end using an ultrasonic sound beam from a probe provided on a rotating body arranged between rolls and rotating coaxially with the material to be inspected, A rotating body in which a plurality of magnetized rollers are provided in front and back of the rotating body in the direction of movement of the inspected material between the pair of pinch rolls, and within the rotating body, for attracting and holding the inspected material that enters and passes through the rotating body. The present invention provides a body UST device.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図によつて説明す
る。第1図において、1は被検査材、2は入側ピ
ンチロール、3は回転体、4は出口ピンチロー
ル、5は入側ロール、6は回転体内ロール、7は
出口ロールで、これらの入側ロール5、回転体内
ロール6および出側ロール7は従来の回転UST
に対して、本発明によつて新らしく設けた部材
で、それぞれのロールは磁化されている。8は検
出部で従来例で説明した探触子等が設けられてい
る。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In Fig. 1, 1 is the material to be inspected, 2 is the input pinch roll, 3 is the rotating body, 4 is the outlet pinch roll, 5 is the input roll, 6 is the roll inside the rotating body, and 7 is the exit roll. The side roll 5, the rotating inner roll 6 and the exit roll 7 are conventional rotating USTs.
In contrast, each roll is magnetized in a new element according to the invention. Reference numeral 8 denotes a detection section, which is provided with the probe and the like described in the conventional example.

次に、動作について説明する。第1図よりみ
て、左より右方へ進入する被検査材1は、まず入
側ピンチロール2によつて挾持され、さらに被検
査材1が右方へ移動して行くと、次の入側ロール
5に磁力によつて吸着、保持されながら移動し、
回転体3と共に回転している検出部8で超音波探
傷される。
Next, the operation will be explained. As seen from Fig. 1, the inspected material 1 entering from the left to the right is first pinched by the entry side pinch rolls 2, and as the inspected material 1 further moves to the right, it moves to the next entry side. It moves while being attracted and held by the roll 5 by magnetic force,
Ultrasonic flaw detection is performed by the detection unit 8 rotating together with the rotating body 3.

2個の回転体内ロール6は、上記動作で探傷さ
れ右方へ移動してきた被検査材1を磁力により吸
着、保持し、さらには、同様にして出口ロール7
によつても被検査材1が吸着、保持されるので、
被検査材1のタワミ、振動を最小限に抑制するこ
とが可能となる。
The two rotary inner rolls 6 attract and hold the inspected material 1 which has been detected by the above operation and moved to the right by magnetic force, and are further moved to the exit roll 7 in the same manner.
The material to be inspected 1 is also attracted and held by the
It becomes possible to suppress the deflection and vibration of the inspected material 1 to a minimum.

第2図は上記の2個の回転体内ロール6のロー
ルホルダ9に保持された回転体内の構成を示す一
部断面図である。
FIG. 2 is a partial sectional view showing the internal structure of the rotary body held by the roll holder 9 of the two rolls 6 in the rotary body.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、所定距離離隔さ
せて配置した2組のピンチロールによつて案内さ
れる被検査材を軸方向に移動しながら、上記2組
のピンチロール間に配置されかつ上記被検査材と
同軸で回転する回転体に設けられた探触子からの
超音波音束によつて上記被検査材をその先端から
末端まで探傷する装置において、上記2組のピン
チロール間における上記回転体の被検査材進行方
向の前後と該回転体内とに、この回転体内に進入
し通過する上記被検査材を吸着保持する磁化され
た複数のローラを設けたので、被検査材の自重に
よる該被検査材の回転体内部でのタワミや振動を
防止でき、これにより、被検査材の先端から末端
まで品質保証が可能で、かつ工程渋滞、生産停止
を減少させることができるという効果がある。
As described above, according to the present invention, while moving in the axial direction the inspected material guided by the two sets of pinch rolls arranged a predetermined distance apart, the In the apparatus for detecting flaws in the material to be inspected from its tip to its end using an ultrasonic sound beam from a probe provided on a rotary body that rotates coaxially with the material to be inspected, the A plurality of magnetized rollers are provided before and after the rotating body in the direction of movement of the inspected material, and within the rotating body, to attract and hold the inspected material that enters and passes through the rotating body. It is possible to prevent the deflection and vibration of the inspected material inside the rotating body, which makes it possible to guarantee quality from the tip to the end of the inspected material, and to reduce process congestion and production stoppages. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す回転UST
の構成図、第2図は第1図における回転体内部ロ
ーラの構成の詳細を示す一部断面図、第3図は接
触式と非接触式との場合における被検査材と探触
子との相対位置を示す断面図、第4図は被検査材
とタワミ量との関係を示す線図である。 図において、1は被検査材、2は入側ピンチロ
ール、3は回転体、4は出口ピンチロール、5は
入側ロール、6は回転体内ロール、7は出口ロー
ル、8は検出部。
FIG. 1 shows a rotating UST showing an embodiment of this invention.
Fig. 2 is a partial cross-sectional view showing details of the structure of the internal roller of the rotating body in Fig. 1, and Fig. 3 shows the relationship between the inspected material and the probe in the contact type and non-contact type. A cross-sectional view showing the relative position, and FIG. 4 is a diagram showing the relationship between the inspected material and the amount of deflection. In the figure, 1 is a material to be inspected, 2 is an entrance pinch roll, 3 is a rotating body, 4 is an exit pinch roll, 5 is an entrance roll, 6 is a roll inside the rotating body, 7 is an exit roll, and 8 is a detection unit.

Claims (1)

【特許請求の範囲】[Claims] 1 所定距離離隔させて配置した2組のピンチロ
ールによつて案内される被検査材を軸方向に移動
しながら、上記2組のピンチロール間に配置され
かつ上記被検査材と同軸で回転する回転体に設け
られた探触子からの超音波音束によつて上記被検
査材をその先端から未端まで探傷する装置におい
て、上記2組のピンチロール間における上記回転
体の被検査材進行方向の前後と該回転体内とに、
この回転体内に進入し通過する上記被検査材を吸
着保持する磁化された複数のローラを設けたこと
を特徴とする回転超音波探傷装置。
1. While moving in the axial direction the inspected material guided by two sets of pinch rolls arranged a predetermined distance apart, the inspection object is arranged between the two sets of pinch rolls and rotates coaxially with the inspected material. In an apparatus for flaw-detecting the above-mentioned object to be inspected from its tip to its end using an ultrasonic sound beam from a probe provided on a rotating body, the object to be inspected progresses between the two sets of pinch rolls. Before and after the direction and inside the rotating body,
A rotary ultrasonic flaw detection apparatus characterized by being provided with a plurality of magnetized rollers that attract and hold the inspected material that enters and passes through the rotating body.
JP59119760A 1984-06-13 1984-06-13 Rotary ultrasonic wave flaw detecting device Granted JPS60263855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119760A JPS60263855A (en) 1984-06-13 1984-06-13 Rotary ultrasonic wave flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119760A JPS60263855A (en) 1984-06-13 1984-06-13 Rotary ultrasonic wave flaw detecting device

Publications (2)

Publication Number Publication Date
JPS60263855A JPS60263855A (en) 1985-12-27
JPH0467627B2 true JPH0467627B2 (en) 1992-10-28

Family

ID=14769491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119760A Granted JPS60263855A (en) 1984-06-13 1984-06-13 Rotary ultrasonic wave flaw detecting device

Country Status (1)

Country Link
JP (1) JPS60263855A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090263B2 (en) * 2014-08-27 2017-03-08 Jfeスチール株式会社 Inspected material position adjustment mechanism in non-destructive inspection equipment for long materials
CN113624844A (en) * 2021-08-06 2021-11-09 临沂利信铝业有限公司 Equipment for aluminum part quality inspection and using method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046186A (en) * 1973-08-28 1975-04-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879261U (en) * 1981-11-24 1983-05-28 日本クラウトクレ−マ−株式会社 Centering mechanism in rotating ultrasonic flaw detection equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046186A (en) * 1973-08-28 1975-04-24

Also Published As

Publication number Publication date
JPS60263855A (en) 1985-12-27

Similar Documents

Publication Publication Date Title
JP2503000Y2 (en) Rotating probe ultrasonic flaw detector
JP4345734B2 (en) Quality inspection method for welded steel pipe welds
JPH0254165A (en) Vortex flaw detection method of pipe and bar material
JPH0467627B2 (en)
JP2985740B2 (en) Pipe end detector for automatic flaw detector
US3543566A (en) Method of testing metallic article by means of ultrasonic beams
JPH11326290A (en) Method and apparatus for ultrasonic flaw detection of cylindrical body
JPS5933226B2 (en) Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves
CN110887896A (en) Stainless steel argon arc welding circular welding pipe weld defect eddy current on-line tracking detection device
JP3752807B2 (en) Surface defect detector
JPH04276547A (en) Ultrasonic testing method for surface layer part of cylindrical body
JP3800133B2 (en) Ultrasonic flaw detection method and apparatus for welded steel pipe welds
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JPS6255100B2 (en)
JP2013124919A (en) Surface flaw inspection device and surface flaw inspection method
JPH0545974Y2 (en)
JPS60250251A (en) Flaw detection for wire rod
JPS58172507A (en) Detecting device for extraordinary form of outer surface of pipe
JPH04500723A (en) Ultrasonic flaw detection equipment for elongated, rotationally symmetric specimens using the 1-probe pulse reflection method
JP2000046805A (en) Method and apparatus for non-destructive inspection of steel desired to be rolled and yet good in deformation processability
JPH0425761A (en) Probe rotation type ultrasonic flaw detection device
JPH0257973A (en) Angle beam flaw detecting head for pipe and angle beam flaw detecting apparatus using said head
JPS6326864B2 (en)
JPH0612531Y2 (en) Tire type ultrasonic sensor holding mechanism
JPS5770455A (en) Detection of end face corrosion of pipe