JPH046753A - Flat plate laminated solid electrolyte type fuel cell - Google Patents

Flat plate laminated solid electrolyte type fuel cell

Info

Publication number
JPH046753A
JPH046753A JP2106905A JP10690590A JPH046753A JP H046753 A JPH046753 A JP H046753A JP 2106905 A JP2106905 A JP 2106905A JP 10690590 A JP10690590 A JP 10690590A JP H046753 A JPH046753 A JP H046753A
Authority
JP
Japan
Prior art keywords
fuel
electrode
small
solid electrolyte
single cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2106905A
Other languages
Japanese (ja)
Inventor
Masateru Shimozu
下津 正輝
Masaaki Izumi
政明 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HAKUYO KIKI KAIHATSU KYOKAI, Mitsui Engineering and Shipbuilding Co Ltd filed Critical NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Priority to JP2106905A priority Critical patent/JPH046753A/en
Publication of JPH046753A publication Critical patent/JPH046753A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent the breakage of unit cells and the peeling of electrode films by forming fuel cells with small electrode films arranged with oxygen electrode films and fuel electrode films at a preset interval respectively, providing many unit cells using a solid electrode film in common, and connecting them in parallel and serially. CONSTITUTION:Oxygen ion conducting YSZ is used for a solid electrolyte film 3, electron conducting La1-xSrxMnO3 is used for an oxygen electrode film 2, and electron conducting thermite of NiO and YSZ is used for a fuel electrode film 4. The small square oxygen electrode film 2 and the small fuel electrode film 4 with the same size are arranged and laminated at symmetrical positions respectively on both faces of the solid electrode 3, and they are regularly arranged at a fine interval into a tile shape. Unit cell groups are connected in parallel and serially via current collecting porous plates 5. The current value flowing in the unit cell groups in made constant, the occurrence of thermal stress is suppressed, and the peeling of electrode films and the breakage of unit cells can be prevented. Nonconducting YSZ 7 is filled between the small electrode films, and the mechanical strength of unit cells is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、平板積層固体電解質型燃料電池に係り、特に
出力電力を低下させることなく、燃料電池を構成する単
セルの熱応力に対する強度を向上させた平板積層固体電
解質型燃料電池に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a flat plate stacked solid oxide fuel cell, and in particular, to improving the strength against thermal stress of a single cell constituting the fuel cell without reducing the output power. This invention relates to an improved flat plate stacked solid electrolyte fuel cell.

〔従来の技術〕[Conventional technology]

クリーンなエネルギー源として知られている燃料電池の
中で、固体電解質型燃料電池は、電解質の漏洩のおそれ
がなく、反応速度が大きいとして注目されている。この
種の燃料電池においては、出力電圧を高めるために基本
単位である単セルの積層数を増加させたり、出力電流を
高めるために、単セルの面積を大きくする工夫がなされ
ている。
Among fuel cells known as a clean energy source, solid oxide fuel cells are attracting attention because they have no fear of electrolyte leakage and have a high reaction rate. In this type of fuel cell, efforts have been made to increase the number of layers of single cells, which are basic units, in order to increase the output voltage, and to increase the area of the single cells in order to increase the output current.

しかしながら、平板状の単セルを積層した平板積層固体
電解質型燃料電池において、単セル面積を大きくするこ
とは、単セル相互間に形成される燃料流路および空気流
路を長くすることになり、ガス流路を流れるガス濃度は
下流になるほど低くなるので、場所によって電流密度に
差が生じる。
However, in a flat stacked solid oxide fuel cell in which flat unit cells are stacked, increasing the unit cell area means lengthening the fuel flow path and air flow path formed between the unit cells. Since the concentration of gas flowing through the gas flow path decreases as it goes downstream, the current density varies depending on the location.

このために同−単セル内においてさえも大きな温度差が
生じ、単セルが熱応力により破損するという問題が発生
している。また、単セルの面積を大きくするのに伴って
熱処理時に発生する熱応力が大きくなり、電極膜が剥離
し易くなるという問題も生じている。
For this reason, a large temperature difference occurs even within the same single cell, resulting in the problem that the single cell is damaged due to thermal stress. Furthermore, as the area of a single cell increases, thermal stress generated during heat treatment increases, causing the problem that electrode films tend to peel off.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記従来の平板積層固体電解質型燃料
電池の問題点を解決し、出力電力を低下させることなく
、単セルに発生する熱応力を極力小さくして単セルの破
損および電極膜の剥離を防止する平板積層固体電解質型
燃料電池を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems of the conventional flat plate stacked solid electrolyte fuel cell, and to reduce the thermal stress generated in the single cell as much as possible without reducing the output power, thereby preventing damage to the single cell and preventing electrode membrane damage. It is an object of the present invention to provide a flat plate stacked solid electrolyte fuel cell that prevents peeling.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明は、固体電解質膜と、該
固体電解質膜の両面にそれぞれ積層された酸素極膜およ
び燃料極膜とからなる単セルを多数積層した平板積層固
体電解質型燃料電池であって、前記酸素極膜および燃料
極膜をそれぞれ所定間隔で配列された、複数の小型酸素
極膜および小型燃料極膜で構成し、単セル内に固体電解
質膜を共有する単セル単位を多数形成し、該単セル単位
を並列および直列に接続したことを特徴とする。
In order to achieve the above object, the present invention provides a flat stacked solid oxide fuel cell in which a large number of single cells each consisting of a solid electrolyte membrane and an oxygen electrode membrane and a fuel electrode membrane laminated on both sides of the solid electrolyte membrane are laminated. The oxygen electrode membrane and the fuel electrode membrane are each composed of a plurality of small oxygen electrode membranes and a plurality of small fuel electrode membranes arranged at predetermined intervals, and a single cell has a large number of single cell units that share a solid electrolyte membrane. The single cell units are connected in parallel and in series.

〔作用〕 酸素極膜および燃料極膜(以下、単に電極膜と総称する
ことがある)をそれぞれ複数の小型酸素極膜および小型
燃料極膜で構成して単セル内に同一固体電解質膜を共有
する小型の単セル(以下、単セル単位という)を多数構
成し、これを並列および直列に接続することにより、直
列に接続された並列接続単セル単位群を流れる電流値が
一定となり、供給ガス濃度の低下に起因する単セル内に
おける電流の偏流が修正されるので、熱応力の発生が抑
制され電極膜の剥離および単セルの破損が防止される。
[Operation] The oxygen electrode membrane and fuel electrode membrane (hereinafter sometimes simply referred to as electrode membranes) are each composed of multiple small oxygen electrode membranes and small fuel electrode membranes, and the same solid electrolyte membrane is shared within a single cell. By configuring a large number of small single cells (hereinafter referred to as single cell units) and connecting them in parallel and series, the current value flowing through the parallel connected single cell units connected in series becomes constant, and the supplied gas Since the current drift within the single cell due to the decrease in concentration is corrected, the generation of thermal stress is suppressed, and peeling of the electrode film and damage to the single cell are prevented.

またこの場合、単セルとしての出力電流は従来の単セル
に較べて小さくなるが、出力電圧がその分だけ大きくな
り、全体としての出力電力は同程度に維持される。
Further, in this case, although the output current as a single cell is smaller than that of a conventional single cell, the output voltage is increased accordingly, and the overall output power is maintained at the same level.

本発明において固体電解質膜としては、例えば酸素イオ
ン導伝性のYSZが、酸素極膜としては、例えば電子導
電性のLa1−、XSrxMn03が、また燃料極膜と
しては、例えば電子導電性のNiOとYSZとのサーメ
ットが用いられる。
In the present invention, the solid electrolyte membrane is, for example, oxygen ion conductive YSZ, the oxygen electrode membrane is, for example, electronically conductive La1-, XSrxMn03, and the fuel electrode membrane is, for example, electronically conductive NiO. A cermet with YSZ is used.

本発明において小型電極膜の形状としては、正方形が好
ましく、固体電解質膜の所定面に、例えばタイル状に配
置、積層される。また小型電極膜相互間には、単セルの
機械的強度を向上させるために、非電子導電性のYSZ
等を充堪することが好ましい。
In the present invention, the shape of the small electrode membrane is preferably square, and is arranged and laminated, for example, in the form of tiles, on a predetermined surface of the solid electrolyte membrane. In addition, non-electronic conductive YSZ is placed between the small electrode films to improve the mechanical strength of the single cell.
It is preferable to satisfy the following.

〔実施例〕〔Example〕

つぎに本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

第1図は、本発明の一実施例である平板積層固体電解質
型燃料電池を構成する単セルの一部切欠斜視図である。
FIG. 1 is a partially cutaway perspective view of a single cell constituting a flat plate stacked solid oxide fuel cell according to an embodiment of the present invention.

この単セルは、固体電解質膜3と、該固体電解質3の両
面にそれぞれ基盤目状に複数積層された小型酸素極膜2
および小型燃料極膜4とから主として構成されており、
小型酸素極膜2と固体電解質膜3と小型燃料極膜4とで
一つの単セル単位が構成される。すなわち、前記小型酸
素極膜2は、固体電解質膜4の当該面を一様にカバーす
るものでなく、小型の正方形状のもので、これが微小間
隔を隔ててタイル状に規則正しく配列されている。また
、固体電解質膜3の他方面に積層される小型燃料極膜4
は前記小型酸素極膜2と同じ大きさの正方形をしており
、小型酸素極膜2とは固体電解質Pi13を介してそれ
ぞれが対称の位置に配置、積層されている。
This single cell consists of a solid electrolyte membrane 3 and a plurality of small oxygen electrode membranes 2 laminated on both sides of the solid electrolyte 3 in a matrix pattern.
and a small fuel electrode membrane 4,
The small oxygen electrode membrane 2, the solid electrolyte membrane 3, and the small fuel electrode membrane 4 constitute one single cell unit. That is, the small oxygen electrode membrane 2 does not uniformly cover the surface of the solid electrolyte membrane 4, but has a small square shape, and these are regularly arranged in a tile shape with minute intervals. In addition, a small fuel electrode membrane 4 is laminated on the other side of the solid electrolyte membrane 3.
has a square shape with the same size as the small oxygen electrode membrane 2, and are arranged and stacked at symmetrical positions with the small oxygen electrode membrane 2 via the solid electrolyte Pi13.

単セル単位の小型酸素極膜2および小型燃料極膜4の表
面上には所定個数(この場合、基盤目状に配列された一
列5個)の電極膜に共通な集電用多孔板5が配置されて
いる。この集電用多孔板5は、短冊型をしており、前記
単セル単位の一部を電気的に並列に接続して電極として
はたらく。この並列接続された小型単セル群はリード線
(図示省略)によって電気的に直列に接続されている。
On the surface of the small oxygen electrode membrane 2 and the small fuel electrode membrane 4 of each single cell, there is a current collecting porous plate 5 common to a predetermined number (in this case, five electrode membranes in a row arranged in a matrix pattern). It is located. This current collecting porous plate 5 has a rectangular shape, and serves as an electrode by electrically connecting some of the single cell units in parallel. The parallel-connected small single cell groups are electrically connected in series by lead wires (not shown).

すなわち一つの単セルが並列および直列に接続された複
数の単セル単位で構成されている。
That is, one single cell is composed of a plurality of single cell units connected in parallel and series.

このような構成の単セルを連結部材、例えばガス通路用
多孔体を介して多数積層して燃料電池スタックが形成さ
れる。
A fuel cell stack is formed by stacking a large number of single cells having such a configuration via a connecting member, for example, a porous body for gas passage.

第3図は、単セル1を多数積層した燃料電池スタックの
斜視図である。この燃料電池スタックは、単セルlをガ
ス通路用多孔体6を介して多数積層して直列に接続した
もので、各単セル1の電極面には複数の短冊型の集電用
多孔板5が配置されている。
FIG. 3 is a perspective view of a fuel cell stack in which a large number of single cells 1 are stacked. This fuel cell stack is constructed by stacking a large number of single cells 1 and connecting them in series through a gas passage porous body 6, and each single cell 1 has a plurality of rectangular current collecting porous plates 5 on its electrode surface. is located.

単セルを積層する際に、単セル相互間に配置されてガス
(燃料または空気)流路となるガス通路用多孔体は、例
えば矩形のガス透過性の多孔部と、該多孔部の対向する
2辺に形成されたガスを透過させない緻密部とからなる
もので、ガスは緻密部に沿って多孔部を流れる。またガ
ス通路用多孔体6を介して隣接する二つの単セルにおけ
る上側の単セルと下側の単セルとではそれぞれ電極面が
上下逆向きになるように配置されており、ガス通路用多
孔体6を介して隣接する単セルの対向面どうしが必ず同
種の電極面となっている。単セルの燃料極面に挟まれた
ガス通路用多孔体が燃料流路、酸素極面に挟まれたガス
通路用多孔体が空気流路となる。またガス通路用多孔体
6は一つ置きに、平面上で90度回転させた状態で積層
されており、一つ置きに燃料流路または空気流路となる
。燃料と空気とは互いに異なる流路を流れ、燃料流路と
空気流路とのガス流れ方向は互いに直交する位置関係に
ある。
When stacking unit cells, a gas passage porous body that is placed between the unit cells and serves as a gas (fuel or air) flow path has, for example, a rectangular gas-permeable porous section and an opposing section of the porous section. It consists of a dense part formed on two sides that does not allow gas to pass through, and the gas flows through the porous part along the dense part. Furthermore, in the two adjacent unit cells with the gas passage porous body 6 in between, the upper unit cell and the lower unit cell are arranged so that their electrode surfaces are upside down, and the gas passage porous body Opposing surfaces of adjacent single cells with 6 in between are always the same type of electrode surfaces. The porous body for gas passage sandwiched between the fuel electrode surfaces of the single cell becomes the fuel flow path, and the porous body for gas passage sandwiched between the oxygen electrode surfaces serves as the air flow path. Moreover, every other porous body 6 for gas passage is stacked in a state rotated by 90 degrees on a plane, and every other one becomes a fuel flow path or an air flow path. The fuel and air flow through different flow paths, and the gas flow directions of the fuel flow path and the air flow path are orthogonal to each other.

第4図は、燃料電池スタック8を運転する際に用いられ
る箱体に該燃料電池スタック8を収納する概念図である
。図において、箱体9の内側は断熱材で裏張りされてお
り、四隅には収納される燃料電池スタック8と密着して
ガスをシールするためのガスシール部材10が配置され
ている。また箱体9の外側面には上記燃料電池スタック
8に燃料を供給するための燃料供給管11が設けられて
おり、該燃料供給管11が設けられた面と直角に接する
一方の面には空気を供給する空気供給管12が設けられ
ている。さらにこれら再供給管IIおよび12が設けら
れた面に対向する外側面にはそれぞれ燃料ガスまたは空
気の抜き出し管(図示省略)が設けられている。このよ
うな構成の箱体9に前記燃料電池スタフク8が、その燃
料流路が箱体9の燃料供給管11と連通ずるように、ま
た空気流路が箱体9の空気供給管工2と連通ずるように
収納されて平板積層固体電解質型燃料電池が構成される
FIG. 4 is a conceptual diagram of housing the fuel cell stack 8 in a box used when operating the fuel cell stack 8. In the figure, the inside of the box body 9 is lined with a heat insulating material, and gas seal members 10 are arranged at the four corners to tightly seal the fuel cell stack 8 housed therein. Further, a fuel supply pipe 11 for supplying fuel to the fuel cell stack 8 is provided on the outer surface of the box body 9, and one surface in contact with the surface at right angles to the surface on which the fuel supply pipe 11 is provided is provided with a fuel supply pipe 11 for supplying fuel to the fuel cell stack 8. An air supply pipe 12 for supplying air is provided. Further, a fuel gas or air extraction pipe (not shown) is provided on the outer surface opposite to the surface where the resupply pipes II and 12 are provided. The fuel cell stack 8 is installed in the box 9 having such a structure, so that its fuel flow path communicates with the fuel supply pipe 11 of the box 9, and the air flow path communicates with the air supply pipe 2 of the box 9. They are housed so as to communicate with each other to form a flat stacked solid electrolyte fuel cell.

このような構成の平板積層固体電解質型燃料電池におい
て、燃料供給管11から燃料ガスとして例えば水素Fが
、空気供給管から空気Aがそれぞれ供給される。水素F
は燃料電池スタック8の燃料流路であるガス通路用多孔
体6を流通して各単セル内の単セル単位の小型燃料極膜
4に供給され、余剰の水素Fは燃料電池スタック8から
流出し、箱体9の燃料抜き出し管を経て外部に取り出さ
れる。一方、空気供給管12から供給された空気Aは、
燃料電池スタック8の空気流路であるガス通路用多孔体
6を通り、各単セル単位の小型酸素極膜2に酸素を供給
し、空気抜き出し管を経て燃料電池外に排出される。こ
のようにして燃料と酸素が供給された各車セルの単セル
単位の電極間で電極反応が起こる。すなわち、単セル単
位の小型酸素極膜2に供給された酸素は、該小型酸素極
膜2で外部回路からの電子を受は取って酸素イオンとな
り、その後、固体電解質膜3に入って荷電単位となる。
In the flat plate stacked solid oxide fuel cell having such a configuration, hydrogen F, for example, is supplied as a fuel gas from the fuel supply pipe 11, and air A is supplied from the air supply pipe. Hydrogen F
The hydrogen F flows through the gas passage porous body 6, which is the fuel flow path of the fuel cell stack 8, and is supplied to the small fuel electrode membrane 4 of each single cell in each single cell, and the excess hydrogen F flows out from the fuel cell stack 8. The fuel is then taken out to the outside through the fuel extraction pipe of the box body 9. On the other hand, the air A supplied from the air supply pipe 12 is
Oxygen is supplied to the small oxygen electrode membrane 2 of each single cell through the gas passage porous body 6, which is an air flow path of the fuel cell stack 8, and is discharged to the outside of the fuel cell through an air extraction pipe. Electrode reactions occur between the electrodes of each single cell in each vehicle cell to which fuel and oxygen are supplied in this manner. In other words, oxygen supplied to the small oxygen electrode membrane 2 in a unit of a single cell receives and receives electrons from an external circuit in the small oxygen electrode membrane 2 and becomes oxygen ions, and then enters the solid electrolyte membrane 3 and becomes a charged unit. becomes.

一方、小型燃料極膜4に供給された水素Fは、該小型燃
料極膜4で固体電解質1ii3中の酸素イオンと反応し
て水を形成し、電子を外部回路に放出する。全ての単セ
ル単位で同様の電極反応が生じて電気エネルギーが発生
し、発生した電気エネルギーは集電されてより強力な電
気エネルギーとして外部に取り出される。
On the other hand, the hydrogen F supplied to the small fuel electrode membrane 4 reacts with oxygen ions in the solid electrolyte 1ii3 in the small fuel electrode membrane 4 to form water and release electrons to an external circuit. Similar electrode reactions occur in all single cell units to generate electrical energy, and the generated electrical energy is collected and extracted to the outside as more powerful electrical energy.

本実施例によれば、電極面積を小さくした、複数の単セ
ル単位で単セルを構成し、各車セル単位を所定数づつ並
列に接続し、この並列接続した単セル単位群をさらに直
列に連結したことにより、同一セル内における並列接続
された各車セル単位群ごとの電流値は同一になり、従来
の単セルに較べて電流の偏流が修正されたことになり発
生する熱応力を極めて小さくすることができるので、単
セルの破損および電極膜の剥離を防止できる。また本実
施例によれば、単セルごとの出力電流は従来のものに較
べて小さくなるが、出力電圧が数倍と大きくなるので、
出力電力全体としては従来のものと較べて決して小さく
なることはない。さらに本実施例によれば単セル単位の
電極膜面積を非常に小さくしたので、同一電極面におけ
る熱応力が大きくなりにり<、熱応力による電極面の剥
離が防止できる。
According to this embodiment, a single cell is constructed from a plurality of single cell units with a small electrode area, a predetermined number of each car cell unit is connected in parallel, and the group of parallel connected single cell units is further connected in series. By connecting them, the current value for each parallel-connected car cell unit group within the same cell becomes the same, and compared to conventional single cells, the current drift is corrected and the thermal stress that occurs is minimized. Since it can be made small, damage to the single cell and peeling of the electrode film can be prevented. Furthermore, according to this embodiment, the output current for each single cell is smaller than that of the conventional one, but the output voltage is several times larger.
The overall output power is never smaller than that of the conventional one. Furthermore, according to this embodiment, since the electrode film area of each single cell is made very small, the thermal stress on the same electrode surface becomes large, and peeling of the electrode surface due to thermal stress can be prevented.

本実施例において短冊型の集電用多孔板5の幅は特に限
定されないが、各車セル単位の電極膜の一辺の整数倍、
典型的には1または2倍とする。
In this embodiment, the width of the rectangular current collecting porous plate 5 is not particularly limited, but may be an integral multiple of one side of the electrode film of each vehicle cell,
Typically 1 or 2 times.

また長さは、典型的には単セル単位の集合体である単セ
ルの一辺の長さと同一とするが必ずしも一致させる必要
はなく、単セル単位の配列数によっては分割が可能であ
る。この場合でも結線の都合を考慮すると二分割程度が
限度となる。
Further, the length is typically the same as the length of one side of a single cell which is an aggregate of single cells, but it does not necessarily have to be the same, and division is possible depending on the number of arrays of single cells. Even in this case, considering the convenience of wiring, the limit is about two divisions.

本実施例において、単セルを連結する連結部材としてガ
ス通路用多孔体の代りにガスセパレータ兼インタコネク
タ等を用いてもよい。
In this embodiment, a gas separator/interconnector or the like may be used instead of the gas passage porous body as the connecting member for connecting the single cells.

第2図は、本発明の他の実施例である平板積層固体電解
質型燃料電池を構成する単セルの一部切欠斜視図である
。図において、固体電解質膜3に積層された小型電極膜
相互間に非電子導電性の充填材7、例えばYSZまたは
C8Zが充填されている。この単セルも前記実施例と同
様に積層、接続されて燃料電池スタックとなり、同様に
運転される。
FIG. 2 is a partially cutaway perspective view of a single cell constituting a flat plate stacked solid oxide fuel cell according to another embodiment of the present invention. In the figure, a non-electronically conductive filler 7, for example YSZ or C8Z, is filled between small electrode films laminated on a solid electrolyte membrane 3. These single cells are also stacked and connected to form a fuel cell stack in the same manner as in the previous embodiment, and are operated in the same manner.

本実施例によれば、単セルを複数の単セル単位で構成す
るとともに、該単セル単位の小型電極膜相互間に充填材
を充填したことにより、熱応力による単セルの破損およ
び剥離を防止できるうえに、単セル全体としての機械的
強度を向上させることができる。
According to this example, the single cell is composed of a plurality of single cell units, and a filler is filled between the small electrode films of the single cell units, thereby preventing damage and peeling of the single cell due to thermal stress. In addition, the mechanical strength of the single cell as a whole can be improved.

〔発明の効果〕 単セルを並列および直列に接続した複数の単セル単位で
構成したことにより、出力電力を低減することなく、単
セルの熱応力による破損および剥離を防止することがで
きる。
[Effects of the Invention] By configuring the single cell as a unit of a plurality of single cells connected in parallel and series, it is possible to prevent damage and peeling of the single cell due to thermal stress without reducing output power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例である平板積層固体電解質
型燃料電池を構成する単セルの一部切欠斜視図、第2図
は、本発明の他の実施例に用いる単セルの一部切欠斜視
図、第3図は、燃料電池スタックの斜視図、第4図は、
燃料電池スタックを箱体に収納する概念図である。 1・・・単セル、2・・・小型酸素極膜、3・・・固体
電解質膜、4・・・小型燃料極膜、5・・・集電用多孔
体、6・・・ガス通路用多孔体、7・・・充填材、8・
・・燃料電池スタック、9・・・箱体、10・・・ガス
シール用部材、11・・・燃料供給管、12・・・空気
供給管。
FIG. 1 is a partially cutaway perspective view of a single cell constituting a flat plate stacked solid oxide fuel cell according to an embodiment of the present invention, and FIG. 2 is a partially cutaway perspective view of a single cell used in another embodiment of the present invention. FIG. 3 is a perspective view of a fuel cell stack, and FIG. 4 is a perspective view of a fuel cell stack.
FIG. 3 is a conceptual diagram illustrating how a fuel cell stack is housed in a box. 1...Single cell, 2...Small oxygen electrode membrane, 3...Solid electrolyte membrane, 4...Small fuel electrode membrane, 5...Porous body for current collection, 6...For gas passage porous body, 7... filler, 8.
... Fuel cell stack, 9... Box body, 10... Gas sealing member, 11... Fuel supply pipe, 12... Air supply pipe.

Claims (1)

【特許請求の範囲】[Claims] (1)固体電解質膜と、その両面にそれぞれ積層された
酸素極膜および燃料極膜とからなる単セルを多数積層し
た平板積層固体電解質型燃料電池であって、前記酸素極
膜および燃料極膜をそれぞれ所定間隔で配列された、複
数の小型酸素極膜および小型燃料極膜で構成し、前記固
体電解質膜を共有する単セル単位を多数形成し、該単セ
ル単位を並列および直列に接続したことを特徴とする平
板積層固体電解質型燃料電池。
(1) A flat laminated solid electrolyte fuel cell in which a large number of single cells each consisting of a solid electrolyte membrane and an oxygen electrode membrane and a fuel electrode membrane laminated on both sides of the solid electrolyte membrane are laminated, wherein the oxygen electrode membrane and the fuel electrode membrane are laminated. is composed of a plurality of small oxygen electrode membranes and a plurality of small fuel electrode membranes, each arranged at a predetermined interval, a large number of single cell units sharing the solid electrolyte membrane are formed, and the single cell units are connected in parallel and in series. A flat plate stacked solid electrolyte fuel cell characterized by:
JP2106905A 1990-04-23 1990-04-23 Flat plate laminated solid electrolyte type fuel cell Pending JPH046753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2106905A JPH046753A (en) 1990-04-23 1990-04-23 Flat plate laminated solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2106905A JPH046753A (en) 1990-04-23 1990-04-23 Flat plate laminated solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH046753A true JPH046753A (en) 1992-01-10

Family

ID=14445471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2106905A Pending JPH046753A (en) 1990-04-23 1990-04-23 Flat plate laminated solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH046753A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196197A (en) * 1992-08-20 1994-07-15 Ceramatec Inc Module of ionic conduction device and multistage module apparatus of ionic-conduction-element laminated body in ionic conduction device
KR100387244B1 (en) * 2001-03-16 2003-06-12 삼성전자주식회사 Monopolar cell pack of direct methanol fuel cell
KR20040003654A (en) * 2002-07-03 2004-01-13 엘지전자 주식회사 Generator of fuel cell
KR100446609B1 (en) * 2000-03-17 2004-09-04 삼성전자주식회사 Proton exchange membrane fuel cell and monopolar cell pack of direct methanol fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196197A (en) * 1992-08-20 1994-07-15 Ceramatec Inc Module of ionic conduction device and multistage module apparatus of ionic-conduction-element laminated body in ionic conduction device
KR100446609B1 (en) * 2000-03-17 2004-09-04 삼성전자주식회사 Proton exchange membrane fuel cell and monopolar cell pack of direct methanol fuel cell
KR100387244B1 (en) * 2001-03-16 2003-06-12 삼성전자주식회사 Monopolar cell pack of direct methanol fuel cell
KR20040003654A (en) * 2002-07-03 2004-01-13 엘지전자 주식회사 Generator of fuel cell

Similar Documents

Publication Publication Date Title
EP0505186B1 (en) Solid electrolyte type fuel cell
EP0442743B1 (en) Solid oxide fuel cells
US4510212A (en) Solid oxide fuel cell having compound cross flow gas patterns
US5049458A (en) Fuel cell
US9356307B2 (en) Multiple stack fuel cell system
US9112219B2 (en) Multiple stack fuel cell system with shared plenum
JPH08273696A (en) Fuel cell stack structure
EP1439592A2 (en) Methods and apparatus for assembling solid oxide fuel cells
JPH0652881A (en) Solid electrolyte fuel cell of internal manifold type
JPH05159790A (en) Solid electrolyte fuel cell
US20090004531A1 (en) Fuel cell stack having multiple parallel fuel cells
JP4494409B2 (en) Multi-cell fuel cell layer and system
JPH0541239A (en) High temperature type fuel cell module
JPH046753A (en) Flat plate laminated solid electrolyte type fuel cell
JP3791702B2 (en) Flat solid electrolyte fuel cell
JPH0613099A (en) Fuel cell
JP2528986B2 (en) Solid oxide fuel cell
JPS61121265A (en) Fuel cell
JP4282109B2 (en) Stack structure of solid oxide fuel cell
JPH0395865A (en) Solid electrolyte fuel cell
JPH06196196A (en) Solid electrolyte type fuel cell
JP2002280052A (en) Structure to uniformly apply load on each power generating cell of fuel cell
JP2018181405A (en) Fuel cell power generation module
JPH03102779A (en) Power generation device with fuel cell
JPH05307968A (en) Inside manifold type solid electrolyte fuel cell