JPH0395865A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH0395865A
JPH0395865A JP1232235A JP23223589A JPH0395865A JP H0395865 A JPH0395865 A JP H0395865A JP 1232235 A JP1232235 A JP 1232235A JP 23223589 A JP23223589 A JP 23223589A JP H0395865 A JPH0395865 A JP H0395865A
Authority
JP
Japan
Prior art keywords
current collecting
solid electrolyte
single cell
fuel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232235A
Other languages
Japanese (ja)
Inventor
Masateru Shimozu
下津 正輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HAKUYO KIKI KAIHATSU KYOKAI, Mitsui Engineering and Shipbuilding Co Ltd filed Critical NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Priority to JP1232235A priority Critical patent/JPH0395865A/en
Publication of JPH0395865A publication Critical patent/JPH0395865A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the mechanical strength of a solid electrolyte fuel cell and enhance the current efficiency thereof by disposing gas separator/ interconnectors of predetermined shape and current collecting corrugated plates between single cells and laminating a stack of cells thereby. CONSTITUTION:A plurality of single cells 1 have gas separator/interconnectors (abb. I/C)6 interposed between them and have terminal assemblies 7 disposed at upper and lower ends thereof and laminated to form a stack of cells. Each single cell 1 is square and a solid electrolyte film 2 has a pair of opposite sides which project by predetermined amount from the side of an oxygen electrode 3 and that of a fuel electrode 4, and make sealing contact with the bank face 10 of I/C6 to form a gas sealing surface. Each I/C6 has a current collecting face 9 which is caused to abut on the mountain or valley portion of the current collecting corrugated plate 5. The current collecting corrugated plate 5 has through-holes 8 which smooth circulation of actuating gas to assist in enhancing current efficiency of the stack. Each single cell is held by the I/C to increase the strength of the stack.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、固体電解質型燃料電池に係り、特にエネルギ
ー効率がよく、かつ機械的強度の高い固体電解質型燃料
電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid oxide fuel cell, and particularly to a solid oxide fuel cell that is energy efficient and has high mechanical strength.

〔従来技術〕[Prior art]

最近、低公害のエネルギー源として注目を集めている燃
料電池の中で、特に電解譬の漏洩のおそれがなく、反応
速度が大きいとして注目されているのが固体電解質型燃
料電池である。
Among fuel cells that have recently attracted attention as a low-pollution energy source, solid oxide fuel cells are attracting particular attention because they have no fear of electrolyte leakage and have a high reaction rate.

固体電解質型燃料電池を構成する燃料電池スタックの構
造に関するものとして、例えば米国特許4,476.1
96号等があげられる。
Regarding the structure of a fuel cell stack constituting a solid oxide fuel cell, for example, US Pat. No. 4,476.1
Examples include No. 96.

第8図は、従来の代表的な固体電解質型燃料電池の構造
を示す説明図である。
FIG. 8 is an explanatory diagram showing the structure of a typical conventional solid oxide fuel cell.

図においてこの固体電解質型燃料電池は、絶縁体38が
内張リされたハウジング25と、該ハウジング25内に
積層された、燃料流路26を有する燃料側電極40と、
空気流路27を有する酸素側電極42と、これら燃料側
電極40と酸素側電極42との間に積層された固体電解
¥t44とからなる単セルと、最上段に配置された単セ
ルの燃料側電極40にリード線53で接続された電極端
子5lおよび最下段に配置された単セルの酸素側電極4
2にリード線52で接続された電極端子50と、マニホ
ールド28を経て前記燃料側電極40の燃料流路26に
投入される燃料ガスの人口30と、マニホールド29を
経て排出される余剰燃料ガスの出口32とから主として
構戒されている。
In the figure, this solid oxide fuel cell includes a housing 25 lined with an insulator 38, a fuel-side electrode 40 laminated inside the housing 25, and having a fuel flow path 26.
A single cell consisting of an oxygen side electrode 42 having an air flow path 27, a solid electrolyte 44 stacked between these fuel side electrodes 40 and the oxygen side electrode 42, and the fuel in the single cell placed at the top stage. An electrode terminal 5l connected to the side electrode 40 with a lead wire 53 and the oxygen side electrode 4 of the single cell arranged at the bottom stage.
2 connected to the electrode terminal 50 with a lead wire 52, the population 30 of the fuel gas introduced into the fuel flow path 26 of the fuel side electrode 40 via the manifold 28, and the excess fuel gas discharged via the manifold 29. It is mainly guarded from exit 32.

このような構或の固体電解賞型燃料電池に、燃料ガス入
口30から例えば水素が、空気入口(図示省略)から空
気がそれぞれ導入され、水素は燃料流路26を流通して
燃料側電極40に流入し、空気は空気流路27を流通し
て酸素側電極42へ流入する。空気と燃料が供給された
単セルの各電極間で電極反応が生じ、電気エネルギーが
発生する。発生した電気エネルギーは電極端子50およ
び51を経て外部に取り出される。
For example, hydrogen is introduced into the solid electrolyte fuel cell having such a structure through the fuel gas inlet 30 and air is introduced through the air inlet (not shown), and the hydrogen flows through the fuel flow path 26 and reaches the fuel side electrode 40. The air flows through the air flow path 27 and flows into the oxygen side electrode 42 . Electrode reactions occur between the electrodes of a single cell supplied with air and fuel, generating electrical energy. The generated electrical energy is extracted to the outside via electrode terminals 50 and 51.

〔発明が解決しようとする課題〕 上記従来技術は、燃料側電極に燃料流路を、また酸素側
電極に空気流路をそれぞれ直接穿ったものであり、製造
工程が煩雑となり、かつ両電極の物理的強度が低下し易
いという問題がある。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, a fuel flow channel is directly formed in the fuel side electrode, and an air flow channel is directly formed in the oxygen side electrode, which makes the manufacturing process complicated, and There is a problem that physical strength tends to decrease.

本発明の目的は、上記従来技術の問題点を解決し、機械
的強度が高く、電流効率がよい固体電解質型燃料電池を
提供することにある。
An object of the present invention is to solve the problems of the prior art described above and to provide a solid oxide fuel cell with high mechanical strength and good current efficiency.

〔課題を解決するための手段] 上記目的を達戒するため本発明は、固体電解質膜と、該
固体電解質膜の両面にそれぞれ積層された酸素側電極膜
および燃料側電極膜からなる単セルを多数積層し、活物
質を供給して電極反応を起こし、発生した電気エネルギ
ーを集電して外部に取り出す固体電解質型燃料電池であ
って、前記単セルを該単セルの固体電解質膜と接してガ
スシール面を形或する土堤面を有するガスセパレータ兼
インターコネクタを介して積層し、前記単セルとガスセ
パレータ兼インターコネクタの間に当該単セルの電極面
とガスセパレー夕兼インターコネクタの集電面にそれぞ
れ山部または谷部を当接する集電用波板を配置したこと
を特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a single cell consisting of a solid electrolyte membrane, an oxygen side electrode membrane and a fuel side electrode membrane laminated on both sides of the solid electrolyte membrane, respectively. A solid electrolyte fuel cell in which a large number of layers are stacked, an active material is supplied to cause an electrode reaction, and the generated electrical energy is collected and taken out to the outside, wherein the single cell is in contact with the solid electrolyte membrane of the single cell. A gas separator/interconnector having an earthen surface forming a gas sealing surface is stacked, and a current collector between the single cell and the gas separator/interconnector is placed between the electrode surface of the single cell and the gas separator/interconnector. It is characterized in that a current collecting corrugated plate is arranged on each surface, the peaks or valleys of which are in contact with each other.

〔作用] 単セルを該単セルの固体電解質膜と接する土堤面を有す
るガスセパレー夕兼インターコネクタを介して積層した
ことにより、活物質ガスがシールされるとともに、単セ
ルが確実に支持されるので機械的強度が増大する。また
単セルとガスセパレー夕兼インターコネクタの間に集電
用波板を配置したことにより、活物質ガスの流動抵抗を
高めることなく、電流効率を向上させることができる。
[Function] By stacking the single cells via a gas separator/interconnector having an earthen surface in contact with the solid electrolyte membrane of the single cell, the active material gas is sealed and the single cell is reliably supported. Therefore, mechanical strength increases. Furthermore, by arranging the current collecting corrugated plate between the single cell and the gas separator/interconnector, the current efficiency can be improved without increasing the flow resistance of the active material gas.

本発明において単セルを構戒する固体電解質膜としては
、例えばYSZが、酸素側電極III(以下、酸素極と
もいう)としては、例えばLa+−xsrXMnO,が
、また燃料側電極膜(以下、燃料極ともいう)としては
、例えばNiOとYSZのサーメットが用いられる。
In the present invention, the solid electrolyte membrane used in a single cell is, for example, YSZ, the oxygen side electrode III (hereinafter also referred to as an oxygen electrode) is, for example, La+-xsrXMnO, and the fuel side electrode membrane (hereinafter also referred to as a fuel For example, NiO and YSZ cermets are used as the poles.

本発明において、ガスセパレー夕兼インターコネクタ(
以下、I/Oと略称することがある)は、単セルを積層
する際に単セル相互間に配置される構戒部材であり、表
裏両面に集電面を有し、かつ端部に前記画集電面側にそ
れぞれ突出する土場面を有するものである。このI/O
は、通常、耐熱金属または単セルの電極材料で作威され
る。耐熱金属を使用する場合は、酸素極側を耐酸化被膜
でコーティングすることが好ましい。また電極材料を使
用するときは、例えば燃料極側が燃料極材料を焼戒して
作威され、酸素極側が酸素極材料を焼威して作成され、
両者が背面で接合される。
In the present invention, a gas separator/interconnector (
(Hereinafter, it may be abbreviated as I/O) is a control member placed between the single cells when stacking the single cells, and has a current collecting surface on both the front and back sides, and the Each has a protruding soil surface on the image collecting surface side. This I/O
are typically made of refractory metal or single-cell electrode materials. When using a heat-resistant metal, it is preferable to coat the oxygen electrode side with an oxidation-resistant film. When using electrode materials, for example, the fuel electrode side is made by burning the fuel electrode material, the oxygen electrode side is made by burning the oxygen electrode material,
Both are joined at the back.

本発明において、集電用波板は単セルとI/Oの間に配
置されて電流の通路となる部材であり、この集電用波板
は、典型的には耐熱金属にLaCrot等をコーティン
グしたもの、または電極材料で製造される。電極材料を
使用する場合は、多孔性のものが好ましい。集電用波板
の形状は必ずしもサインカーブの波型である必要はなく
、山部および谷部を有し、単セルの電極面とI/Cの集
電面の両方に接触して電流の流路となるものであればよ
い。
In the present invention, the current collecting corrugated plate is a member that is placed between the single cell and the I/O and serves as a current path, and this current collecting corrugated plate is typically made of a heat-resistant metal coated with LaCrot or the like. manufactured using electrode materials. If an electrode material is used, it is preferably porous. The shape of the current collecting corrugated plate does not necessarily have to be a sine curve waveform, but it has peaks and troughs, and it contacts both the electrode surface of the single cell and the current collecting surface of the I/C to conduct the current. Any material may be used as long as it serves as a flow path.

本発明において、単セルを積層して形戒した燃料電池ス
タックの最上部および最下部には、発生した電気エネル
ギーを取り出す、片側に集電面を、端部に前記集電面倒
に突出した土場面を有する端子板が配置されるが、この
端子板は、通常、耐熱金属にL a C r O.等を
コーティングするかまたは電極材料を緻密に焼威して作
威される。
In the present invention, at the top and bottom of a fuel cell stack formed by stacking single cells, a current collecting surface is provided on one side for taking out the generated electrical energy, and a soil protruding from the current collecting surface is provided at the end. A terminal board is provided having an L a C r O. It is made by coating the electrode material or by densely burning the electrode material.

本発明において活物質とは、電極反応を起こすために単
セルの酸素側電極および燃料側電極に供給されるガス体
をいい、典型的には空気と水素が用いられる。
In the present invention, the active material refers to a gas that is supplied to the oxygen side electrode and fuel side electrode of a single cell in order to cause an electrode reaction, and typically air and hydrogen are used.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する. 第I図は、本発明の固体電解質型燃料電池を横或する燃
料電池スタックの斜視図である。この燃料電池スタック
は、上下両面に集電面9を有するI/C6と、該I/C
6を介して多数積層される単セル1と、前記!/C6と
単セル1の間に配置される集電用波板5と、これらの積
層物の最上段および最下段に前記集電用波板5を介して
配置される端子板7とから構威されている。
Next, the present invention will be explained in more detail using examples. FIG. I is a perspective view of a fuel cell stack including a solid oxide fuel cell according to the present invention. This fuel cell stack includes an I/C 6 having current collecting surfaces 9 on both upper and lower surfaces, and the I/C
A large number of single cells 1 are laminated via 6, and the above! /C6 and a current collecting corrugated plate 5 arranged between the single cell 1, and a terminal plate 7 arranged at the top and bottom stages of the laminate with the current collecting corrugated plate 5 interposed therebetween. being intimidated.

第2図は、第1図の燃料電池スタックを構成する単セル
lの斜視図である.この単セル1は、固体電解質膜2と
、該固体電解質膜2の両面にそれぞれ積層された酸素側
電極膜3および燃料側電極膜4とから構威され、電池部
を形成している。図において固体電解質膜2は当該単セ
ル1を積層する際に用いられるI/C6または端子板7
の土場面と密接して活物質ガスをシールするために、四
角形の対向する一対の2辺が酸素側電極膜3よりも所定
量だけ突出しており、また他の一対の対向する2辺は燃
料側電極4から所定量だけ突出している。
FIG. 2 is a perspective view of a single cell l that constitutes the fuel cell stack of FIG. 1. This single cell 1 is composed of a solid electrolyte membrane 2, and an oxygen-side electrode membrane 3 and a fuel-side electrode membrane 4 laminated on both surfaces of the solid electrolyte membrane 2, forming a battery section. In the figure, the solid electrolyte membrane 2 is an I/C 6 or a terminal board 7 used when stacking the single cells 1.
In order to seal the active material gas in close contact with the soil surface, a pair of opposing sides of the square protrude by a predetermined amount beyond the oxygen side electrode film 3, and the other pair of opposing sides protrude from the oxygen side electrode film 3. It protrudes from the side electrode 4 by a predetermined amount.

第3図は、単セル1を積層する際に用いられるガスセパ
レータ兼インターコネクタ6の斜視図である。このI/
C6は上下両面が集電面9、対向する2組の2辺がそれ
ぞれ一方の集電面方向に突出した土堤面10となってい
る。単セルを積層した燃料電池スタックにおいて、I/
C6の集電面9は、当81/C6の下側に配置された集
電用波Fi5の山部、または上側に配置された集電用波
板5の谷部と接して電流の通路を形或する。また、土堤
面lOは当該I/C6の上側または下側に配置された単
セル1の固体電解質膜2と接してガスシール面16を形
或する。I/C6には各単セル1に活物質を供給するガ
ス流路を形或する役割もあり、I/C6の上側が例えば
燃料流路22に、下側が例えば空気流路23になる。
FIG. 3 is a perspective view of the gas separator/interconnector 6 used when stacking the unit cells 1. This I/
C6 has current collecting surfaces 9 on both upper and lower surfaces, and earth embankment surfaces 10 on two sets of opposing sides, each protruding toward one of the current collecting surfaces. In a fuel cell stack consisting of stacked single cells, I/
The current collecting surface 9 of C6 is in contact with the peaks of the current collecting wave Fi5 placed on the lower side of this 81/C6 or the troughs of the current collecting corrugated plate 5 placed on the upper side to form a current path. take shape Further, the earth embankment surface 1O contacts the solid electrolyte membrane 2 of the single cell 1 disposed above or below the I/C 6 to form a gas seal surface 16. The I/C 6 also has the role of forming a gas flow path for supplying active material to each unit cell 1, and the upper side of the I/C 6 becomes, for example, a fuel flow path 22, and the lower side becomes, for example, an air flow path 23.

第4図は、第2図の単セル1を第3図のI/C6を介し
て積層する際に単セルlとI/C6の間、すなわち活物
質の流路内に、両活物質の流通方向に沿って配置される
集電用波板5の斜視図である。
FIG. 4 shows that when the single cell 1 in FIG. 2 is stacked via the I/C 6 in FIG. It is a perspective view of the current collection corrugated plate 5 arranged along the flow direction.

この集電用波板5の各山部または谷部を形或する傾斜面
にはそれぞれ適当な大きさの貫通孔8が設けられており
、該集電用波板5の上下両側を流れる活物質の混合流路
となっている。単セルを積層した燃料電池スタックにお
いて、単セル1の上側に配置される集電用波板5の谷部
は当該単セルlの例えば酸素側電極膜3と接し、山部は
当該集電用波板5の上側のI/C6の下側集電面9と接
して酸素側電極膜3とI/C6との間の電流通路となる
。また単セルlの下側に配置される集電用波板5の山部
は当該単セル1の例えば、燃料側電極膜4と接し、谷部
は当該集電用波板5の下側のI/C6の上側集電面9と
接して燃料側電極膜4と1/C6との間の電流通路とな
る。
A through hole 8 of an appropriate size is provided in each of the slopes forming the peaks or valleys of the current collecting corrugated plate 5, so that the current flowing on both the upper and lower sides of the current collecting corrugated plate 5 can be It serves as a mixing flow path for substances. In a fuel cell stack in which single cells are stacked, the troughs of the current collecting corrugated plate 5 arranged above the single cell 1 are in contact with, for example, the oxygen side electrode film 3 of the single cell 1, and the peaks are in contact with the current collecting corrugated plate 5 arranged above the single cell 1. It contacts the lower current collecting surface 9 of the I/C 6 on the upper side of the corrugated plate 5 and becomes a current path between the oxygen side electrode film 3 and the I/C 6. In addition, the peaks of the current collecting corrugated plate 5 arranged below the single cell l are in contact with, for example, the fuel side electrode membrane 4 of the single cell 1, and the troughs are in contact with the current collecting corrugated plate 5 below. It contacts the upper current collecting surface 9 of the I/C 6 and becomes a current path between the fuel side electrode membrane 4 and the 1/C 6.

第5図は、単セル1を積層する際に、当該積層物の最上
部および最下部に配置される端子板の斜視図である。こ
の端子板7は一方面が集電面9、対向する一対の2辺が
前記集電面9側へ突出した土堤面10となっており、集
電面9は最上段の集電用波板5の山部または最下段の集
電用波板5の谷部と接して電流の通路となる.また土場
面IOは最上段または最下段の単セル1の固体電解譬膜
2と接してガスシール面l6を形或する。
FIG. 5 is a perspective view of terminal boards placed at the top and bottom of the stack when unit cells 1 are stacked. This terminal plate 7 has a current collecting surface 9 on one side and an earth embankment surface 10 protruding toward the current collecting surface 9 on a pair of opposing sides, and the current collecting surface 9 is a current collecting wave on the top stage. It contacts the peaks of the plate 5 or the valleys of the lowest current collecting corrugated plate 5, forming a current path. In addition, the soil surface IO contacts the solid electrolytic membrane 2 of the uppermost or lowermost single cell 1 to form a gas sealing surface l6.

第6図は、第1図の燃料電池スタックの一部切欠断面図
である。図において上下両面に集電用波板5が当接され
た、酸素側電極3、固体電解譬膜2および燃料側電極l
II4からなる単セルlが■/C6を介して多数積層さ
れており、最上部には片面だけに集電面9を有する端子
+tが配置されている。
FIG. 6 is a partially cutaway sectional view of the fuel cell stack of FIG. 1. In the figure, an oxygen side electrode 3, a solid electrolytic membrane 2, and a fuel side electrode 1 have current collecting corrugated plates 5 abutted on both upper and lower surfaces.
A large number of single cells 1 consisting of II4 are stacked with .beta./C6 interposed therebetween, and a terminal +t having a current collecting surface 9 on only one side is arranged at the top.

第7図は、単セル1を積層して作戒された燃料電池スタ
ックを稼働させる場合の要領図である。
FIG. 7 is a diagram illustrating the procedure for operating a fuel cell stack in which the single cells 1 are stacked and the fuel cell stack is operated in a controlled manner.

最上部および最下部の端子板からリード線により取り出
された電極端子20を有する燃料電池スタック11は、
対向する二側面に燃料ガスの供給孔12および排出孔1
3(図示省略)を、また他の対向する二側面に空気の供
給孔l4および排出孔15(図示省略)を有する断熱材
で作戒されたボックス17に収納される。ボックス17
と燃料電池スタック1lとの間には、所定の空隙があり
、ボックス17の四角にはガスシール材21が詰められ
ている。ボックス17のiJ18も断熱材で構成されて
おり、この蓋l8には電極端子20を取り出すための端
子貫通孔19が設けられている。
The fuel cell stack 11 has electrode terminals 20 taken out by lead wires from the uppermost and lowermost terminal plates.
Fuel gas supply hole 12 and discharge hole 1 on two opposing sides
3 (not shown) is housed in a box 17 made of heat insulating material and having an air supply hole 14 and an air discharge hole 15 (not shown) on the other two opposing sides. box 17
There is a predetermined gap between the box 17 and the fuel cell stack 1l, and the square of the box 17 is filled with a gas sealing material 21. The iJ18 of the box 17 is also made of a heat insulating material, and the lid l8 is provided with a terminal through hole 19 for taking out the electrode terminal 20.

燃料電池スタックl1をボックスl7に収納し、蓋18
を閉じて電極端子20を端子貫通孔19から突出させた
後、前記端子貫通孔19は、活物質および熱の漏洩を防
ぐために、充填材でシールされる。
The fuel cell stack l1 is stored in the box l7, and the lid 18 is closed.
After the terminal through-hole 19 is closed and the electrode terminal 20 is made to protrude from the terminal through-hole 19, the terminal through-hole 19 is sealed with a filling material to prevent leakage of active material and heat.

このような構或の固体電解質型燃料電池において、燃料
ガス供給孔l2から供給された燃料、例えば水素Fは単
セル1の燃料側電極膜4とI/O6の上側集電面9とで
構成される燃料流路22を通り、集電用波板5に設けら
れた貫通孔8を上下に通過して混合されながら流通して
前記燃料側電極4に入り、余剰の水素Fは燃料ガス排出
孔13(図示省略)を経て系外に排出される。一方、空
気供給孔工4から供給される空気Aは、単セル1の酸素
側電極3とI/C6の下側集電面9とで構戒される空気
流路23を通り、集電用波板5の貫通孔8を上下に通過
して混合されながら流通し、前記酸素側電極3と接触し
て空気中の酸素が酸素側電極3に入り、余剰の空気は空
気排出孔l5(図示省略)から系外に徘出される。
In a solid oxide fuel cell having such a structure, the fuel, for example hydrogen F, supplied from the fuel gas supply hole l2 is composed of the fuel-side electrode membrane 4 of the single cell 1 and the upper current collecting surface 9 of the I/O 6. The fuel passes through the fuel flow path 22 provided in the current collecting corrugated plate 5, passes vertically through the through hole 8 provided in the current collecting corrugated plate 5, flows while being mixed, and enters the fuel side electrode 4, and excess hydrogen F is discharged as fuel gas. It is discharged to the outside of the system through the hole 13 (not shown). On the other hand, air A supplied from the air supply hole 4 passes through an air flow path 23 defined by the oxygen side electrode 3 of the single cell 1 and the lower current collection surface 9 of the I/C 6, and passes through the air flow path 23 for current collection. It passes vertically through the through-holes 8 of the corrugated plate 5 and circulates while being mixed. Oxygen in the air enters the oxygen-side electrode 3 when it comes into contact with the oxygen-side electrode 3, and excess air is discharged through the air exhaust hole l5 (not shown). (omitted) and wanders out of the system.

このようにして活物質である水素と酸素が供給された各
単セルの電極間では電極反応が生じる。
An electrode reaction occurs between the electrodes of each single cell to which hydrogen and oxygen, which are active materials, are supplied in this way.

すなわち、酸素側電極3に入った酸素はここで外部回路
からの電子を受け取って酸素イオンとなり、次に固体電
解質2に入って荷電単位となる。一方、燃料側電極4へ
入った、例えば水素Fはここで前記固体電解質2中の酸
素イオンと反応して水を生威し、電子を外部に放出する
。全ての単セル1において同様の電極反応が起こり、電
気エネルギーが発生する。発生した電気エネルギーは集
電されて電極端子20を経て系外に取り出される。
That is, the oxygen that has entered the oxygen side electrode 3 receives electrons from an external circuit and becomes oxygen ions, and then enters the solid electrolyte 2 and becomes a charged unit. On the other hand, for example, hydrogen F that has entered the fuel-side electrode 4 reacts with oxygen ions in the solid electrolyte 2 to generate water and emit electrons to the outside. Similar electrode reactions occur in all single cells 1, and electrical energy is generated. The generated electrical energy is collected and taken out of the system via the electrode terminal 20.

本実施例によれば、単セルlをガスセパレータ兼インタ
ーコネクタ6を介して積層したことにより、ガスセパレ
ー夕兼インターコネクタ6の土堤面10と単セル1の固
体電解質膜2とのガスシール面16が完全にシールされ
るので、ガスの漏洩が生じることがない。また、前記単
セルlは隣接するガスセパレータ兼インターコネクタの
土堤面で支持されるので、燃料電池スタック11全体と
して充分な機械的強度が得られる。
According to this embodiment, by stacking the single cells 1 through the gas separator/interconnector 6, the gas sealing surface between the earth embankment surface 10 of the gas separator/interconnector 6 and the solid electrolyte membrane 2 of the single cell 1 16 is completely sealed, so no gas leakage occurs. Furthermore, since the single cell 1 is supported by the earthen surface of the adjacent gas separator/interconnector, sufficient mechanical strength can be obtained for the fuel cell stack 11 as a whole.

本実施例において単セル1とガスセパレータ兼インター
コネクタ6との間、すなわちガス流路に集電用波板5を
配置したことにより、内部抵抗が小さくなるので、発生
した電気エネルギーは高効率で集電され、全体のエネル
ギー効率が向上する。
In this embodiment, by arranging the current collecting corrugated plate 5 between the single cell 1 and the gas separator/interconnector 6, that is, in the gas flow path, the internal resistance is reduced, so the generated electrical energy is highly efficient. Current is collected, improving overall energy efficiency.

また、前記集電用波板5に貫通孔8を設けたことにより
、ガス流路を流通するガスが混合されることになり、例
えば酸素側電極面3に接して流れる空気中の酸素濃度が
減少しても空気が攪拌されるので、酸素移動率が低下す
るのを防止できる。
Further, by providing the through holes 8 in the current collecting corrugated plate 5, the gases flowing through the gas flow path are mixed, and for example, the oxygen concentration in the air flowing in contact with the oxygen side electrode surface 3 is reduced. Even if the oxygen transfer rate decreases, since the air is stirred, it is possible to prevent the oxygen transfer rate from decreasing.

さらに前記集電用波板5の波型は活物質の流通方向に沿
っているので、活物質の流動抵抗となることはない。
Furthermore, since the waveform of the current collecting corrugated plate 5 is along the flow direction of the active material, it does not become a flow resistance of the active material.

本発明においては、積層する単セルlの段数を任意に多
くすることにより、容易に発電出力密度を高くすること
ができる。
In the present invention, the power generation output density can be easily increased by arbitrarily increasing the number of stacked single cells I.

(発明の効果) 本発明によれば、ガスセパレー夕兼インターコネクタと
集電用波板を用いて、単セルを積層したことにより、活
物質の流動抵抗が小さく、発電および電流効率が高く、
かつ機械的強度に優れた固体電解質型燃料電池が得られ
る。
(Effects of the Invention) According to the present invention, by stacking single cells using a gas separator/interconnector and a current collecting corrugated plate, the flow resistance of the active material is low, and power generation and current efficiency are high.
In addition, a solid electrolyte fuel cell with excellent mechanical strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は、本発明の一実施例である固体電解質型燃料電
池の燃料電池スタックを示す斜視図、第2図は、本発明
に用いられる単セルの斜視図、第3図は、本発明に用い
られるガスセパレータ兼インターコネクタの斜視図、第
4図は、本発明に用いられる集電用波板の斜視図、第5
図は、本発明に用いられる端子板の斜視図、第6図は、
第l図の燃料電池スタックの一部切欠断面図、第7図は
、本発明の燃料電池スタックを稼働させる場合の要領図
、第8図は、従来の燃料電池スタックの構成を示す説明
図である。 1・・・単セル、2・・・固体電解質膜、3・・・酸素
{!!1電極膜、4・・・燃料側電極膜、5・・・集電
用波板、6・・・ガスセパレータ兼インターコネクタ、
7・・・端子板、8・・・貫通孔、9・・・集電面、1
0・・・土堤面、17ボックス、19・・・端子貫通孔
、20・・・電極端子。
FIG. 1 is a perspective view showing a fuel cell stack of a solid oxide fuel cell that is an embodiment of the present invention, FIG. 2 is a perspective view of a single cell used in the present invention, and FIG. FIG. 4 is a perspective view of a gas separator/interconnector used in the present invention, and FIG. 5 is a perspective view of a current collecting corrugated plate used in the present invention.
The figure is a perspective view of the terminal board used in the present invention, and FIG.
FIG. 1 is a partially cutaway sectional view of a fuel cell stack, FIG. 7 is a diagram showing the procedure for operating the fuel cell stack of the present invention, and FIG. 8 is an explanatory diagram showing the configuration of a conventional fuel cell stack. be. 1...Single cell, 2...Solid electrolyte membrane, 3...Oxygen {! ! 1 electrode membrane, 4... fuel side electrode membrane, 5... corrugated plate for current collection, 6... gas separator/interconnector,
7... Terminal board, 8... Through hole, 9... Current collecting surface, 1
0... Earth embankment surface, 17 box, 19... terminal through hole, 20... electrode terminal.

Claims (1)

【特許請求の範囲】[Claims] (1)固体電解質膜と、該固体電解質膜の両面にそれぞ
れ積層された酸素側電極膜および燃料側電極膜からなる
単セルを多数積層し、活物質を供給して電極反応を起こ
し、発生した電気エネルギーを集電して外部に取り出す
固体電解質型燃料電池であって、前記単セルを該単セル
の固体電解質膜と接してガスシール面を形成する土堤面
を有するガスセパレータ兼インターコネクタを介して積
層し、前記単セルとガスセパレータ兼インターコネクタ
の間に当該単セルの電極面とガスセパレータ兼インター
コネクタの集電面にそれぞれ山部または谷部を当接する
集電用波板を配置したことを特徴とする固体電解質型燃
料電池。
(1) A large number of single cells consisting of a solid electrolyte membrane, an oxygen side electrode membrane and a fuel side electrode membrane laminated on both sides of the solid electrolyte membrane are laminated, and an active material is supplied to cause an electrode reaction. A solid electrolyte fuel cell that collects electrical energy and extracts it to the outside, comprising a gas separator and interconnector having an earth embankment surface that brings the single cell into contact with the solid electrolyte membrane of the single cell to form a gas sealing surface. A current collecting corrugated plate is arranged between the single cell and the gas separator/interconnector, the peaks or valleys of which are in contact with the electrode surface of the single cell and the current collecting surface of the gas separator/interconnector, respectively. A solid electrolyte fuel cell characterized by:
JP1232235A 1989-09-07 1989-09-07 Solid electrolyte fuel cell Pending JPH0395865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232235A JPH0395865A (en) 1989-09-07 1989-09-07 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232235A JPH0395865A (en) 1989-09-07 1989-09-07 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0395865A true JPH0395865A (en) 1991-04-22

Family

ID=16936093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232235A Pending JPH0395865A (en) 1989-09-07 1989-09-07 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0395865A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627778A1 (en) * 1993-03-15 1994-12-07 Osaka Gas Co., Ltd. Fuel cell system and fuel cells therefor
KR100341402B1 (en) * 1999-03-09 2002-06-21 이종훈 Single Cell and Stack Structure of Solid Oxide Fuel Cell
JP2006324084A (en) * 2005-05-18 2006-11-30 Hitachi Ltd Fuel cell
JP2016072054A (en) * 2014-09-30 2016-05-09 アイシン精機株式会社 Fuel cell module and fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627778A1 (en) * 1993-03-15 1994-12-07 Osaka Gas Co., Ltd. Fuel cell system and fuel cells therefor
US5508128A (en) * 1993-03-15 1996-04-16 Osaka Gas Co., Ltd. Fuel cell system and fuel cells therefor
KR100341402B1 (en) * 1999-03-09 2002-06-21 이종훈 Single Cell and Stack Structure of Solid Oxide Fuel Cell
JP2006324084A (en) * 2005-05-18 2006-11-30 Hitachi Ltd Fuel cell
JP2016072054A (en) * 2014-09-30 2016-05-09 アイシン精機株式会社 Fuel cell module and fuel cell system

Similar Documents

Publication Publication Date Title
EP0800709B1 (en) Electrolytic and fuel cell arrangements
JP3424223B2 (en) Fuel cell stack structure
US7329471B2 (en) Methods and apparatus for assembling solid oxide fuel cells
JP2002280016A (en) Single electrode type cell pack for direct methanol fuel cell
JPS60100377A (en) Fuel battery
JPH0652881A (en) Solid electrolyte fuel cell of internal manifold type
JPH05159790A (en) Solid electrolyte fuel cell
JPH11297344A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
US20080199751A1 (en) Bipolar plate for an air breathing fuel cell stack
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JPH0395865A (en) Solid electrolyte fuel cell
JP3346784B2 (en) Vertical stripe cylindrical solid electrolyte fuel cell
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JPS63119166A (en) Fuel battery
JPS62200666A (en) Fuel cell
KR100387244B1 (en) Monopolar cell pack of direct methanol fuel cell
JPH0227670A (en) Fuel cell
JPH0982346A (en) Plate-like solid electrolyte fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JP7237043B2 (en) Electrochemical reaction cell stack
JP3301558B2 (en) Flat solid electrolyte fuel cell
JPH046753A (en) Flat plate laminated solid electrolyte type fuel cell
Brown Solid oxide fuel cells
JPH0412468A (en) High-temperature fuel cell
JP2000306590A (en) Solid electrolyte fuel cell