JPH0463203A - Manufacture of super fine particle suspension - Google Patents

Manufacture of super fine particle suspension

Info

Publication number
JPH0463203A
JPH0463203A JP17298590A JP17298590A JPH0463203A JP H0463203 A JPH0463203 A JP H0463203A JP 17298590 A JP17298590 A JP 17298590A JP 17298590 A JP17298590 A JP 17298590A JP H0463203 A JPH0463203 A JP H0463203A
Authority
JP
Japan
Prior art keywords
solid material
super fine
solvent
suspension
particle suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17298590A
Other languages
Japanese (ja)
Other versions
JPH086128B2 (en
Inventor
Yasuo Iida
康夫 飯田
Yoshinori Uemino
上蓑 義則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2172985A priority Critical patent/JPH086128B2/en
Publication of JPH0463203A publication Critical patent/JPH0463203A/en
Publication of JPH086128B2 publication Critical patent/JPH086128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily prepare various kinds of suspensions by making plasma of solid material with irradiation of laser beam in solvent, rapidly cooling and solidifying generated gas and molten body with the solvent and collecting super fine particles. CONSTITUTION:The solid material 1 of metal material, ceramic sintered body, etc., is held into various kinds of solvents (water, alcohol, etc.) 3 in glass vessel 2. The laser beam 4 having high density and high output is radiated on surface of this solid material 1 by using a rectangular prism 6 and a lens 5. By this method, the solid material 1 is vaporized and made to plasma. The generated high temp. gas and molten body are rapidly cooled and solidified with the circumferential solvent 3 and collected as the super fine particles to obtain the suspension. By this method, under condition of scarcely involving mixed impurity, the super fine particle suspension can be obtained.

Description

【発明の詳細な説明】 ○産業上の利用分野 粒径の極めて小さな(1μm以下)超微粒子は、磁性体
、触媒、センサーなどの機能性材料として利用されてい
る。本発明はこのような超微粒子の懸濁液を作成する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application Ultrafine particles with extremely small particle sizes (1 μm or less) are used as functional materials such as magnetic materials, catalysts, and sensors. The present invention relates to a method for producing a suspension of such ultrafine particles.

○従来の技術 超微粒子の作成方法としては、化学的な反応を利用する
方法と物理的方法の二種類に大きく分けることかできる
。化学的方法には液相からの超微粒子製造法として共沈
法、アルコキシド加水分解法等が知られているが、共存
塩が不純物として混入すること、沈殿形成時に特定成分
が分離あるいは溶解するなどの問題点がある。気相折呂
法をはじめとする物理的生成法、あるいは気相での化学
反応を用いる気相化学析出法は、生成物が高純度である
こと、あるいは雰囲気による反応条件の制御ができるこ
となど多くの特徴を有するが、生成した粒子の補集方法
の問題を解決する必要がある。
○ Conventional techniques Methods for producing ultrafine particles can be roughly divided into two types: methods that utilize chemical reactions and physical methods. Co-precipitation method, alkoxide hydrolysis method, etc. are known chemical methods for producing ultrafine particles from the liquid phase, but these methods have problems such as contamination of coexisting salts as impurities and separation or dissolution of specific components during precipitate formation. There is a problem with this. Physical production methods such as the vapor-phase Oro method, or vapor-phase chemical precipitation methods that use chemical reactions in the gas phase, have many advantages such as the high purity of the product and the ability to control reaction conditions using the atmosphere. However, it is necessary to solve the problem of how to collect the generated particles.

すなわち粒子の融合や粗大化が起とシやすく、度集めた
微粒子を再び個々の粒子にまで完全に分散させることは
困難である。超微粒子の工業的応用においては、粉体自
体としてではなく、懸濁液として、たとえば薄膜形成等
に使用されるが、超微粒子の表面エネルギーが大きいた
めに、懸濁液の作成に困難をともなうことが多い。
That is, particles tend to coalesce and become coarse, and it is difficult to completely disperse the collected fine particles into individual particles again. In industrial applications of ultrafine particles, they are used not as powders themselves, but as suspensions, such as in forming thin films, but because the surface energy of ultrafine particles is large, it is difficult to create suspensions. There are many things.

○発明が解決しようとする問題点 本発明は、真空装置、あるいは気相反応装置のような複
雑な装置を用いることなく簡便に、しかも混入不純物の
少ない、また多様な展開が可能な超微粒子懸濁液の作成
方法を提供することを目的とするものである。
○Problems to be Solved by the Invention The present invention provides an ultrafine particle suspension that can be easily developed without using complicated equipment such as a vacuum device or a gas-phase reaction device, has fewer impurities, and can be developed in a variety of ways. The purpose of this invention is to provide a method for producing a suspension.

○問題点を解決するための手段 本発明者は、高密度のレーザー光を液相中で試料に照射
することにより、超微粒子懸濁液を作成することが可能
であることを見出し、この知見に基づいて本発明を成す
に至った。
○Means for solving the problem The inventor discovered that it is possible to create an ultrafine particle suspension by irradiating a sample with high-density laser light in a liquid phase, and based on this knowledge. The present invention has been accomplished based on this.

すなわち、本発明は、金属材料、セラミックヌ焼結体を
はじめとする固体試料を、液相中に保持し、高密度のレ
ーザー光を照射することにより、固体試料を蒸発、プラ
ズマ化し、液相中で急激に冷却することにより、超微粒
子の懸濁液を作成する方法を提供するものである。この
方法によれば、溶媒および試料以外の不純物、あるいは
汚染源を導入することなく懸濁液を作成することが可能
となる。また、化学的沈殿法で必要な特殊な化合物、あ
るいは気相法で必要となる真空装置や気相反応装置を用
いることなく、直接的に液相で懸濁液を作成可能となシ
、多くの固体材料と溶媒の組み合わせによる超微粒子の
懸濁液作成方法となる。
That is, in the present invention, a solid sample such as a metal material or a ceramic sintered body is held in a liquid phase, and by irradiating it with high-density laser light, the solid sample is evaporated and turned into plasma, and the liquid phase is removed. The present invention provides a method for creating a suspension of ultrafine particles by rapidly cooling the particles in a container. According to this method, it is possible to create a suspension without introducing impurities or contamination sources other than the solvent and sample. In addition, it is possible to create suspensions directly in the liquid phase without using special compounds required in chemical precipitation methods, or vacuum equipment or gas phase reactors required in gas phase methods. This is a method for creating a suspension of ultrafine particles by combining a solid material and a solvent.

○実施例 次に添付図面に従って本発明の詳細な説明する。第1図
は本発明の実施方法の1例の要部を足体試料に照射され
る。固体試料は特定位置のみが蒸発することをさけるた
めにモーターニアで回転運動を行う様にする。
○Example Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a main part of one example of the method of implementing the present invention, in which a foot sample is irradiated. The solid sample is rotated by a motor to avoid evaporating only a specific position.

から本発明により作成した、超微粒子懸濁液を、スライ
ドガラス上で乾燥し、走査型電子顕微鏡(SEM)で観
測して得た粒子構造を示す。数百ナノメートルの球状粒
子が観測できる。従来法における気相析出法では、しん
ちゅうの構成元素である銅と亜鉛の高温における蒸気圧
が大きく異なるために、特殊な手法(小田正明、表面科
学、8.837(1987))が必要とされるが、本性
では蒸発が瞬時に起こるため、分別蒸発等による影響は
少ない。
The particle structure obtained by drying an ultrafine particle suspension prepared according to the present invention on a slide glass and observing it with a scanning electron microscope (SEM) is shown. Spherical particles of several hundred nanometers can be observed. The conventional vapor phase deposition method requires a special method (Masaaki Oda, Surface Science, 8.837 (1987)) because the vapor pressures of copper and zinc, which are the constituent elements of brass, differ greatly at high temperatures. However, since evaporation occurs instantaneously, the effect of fractional evaporation is small.

第3図は、エタノール中に保持したジルコニア焼結体か
ら作成した、懸濁液を第2図と同様の方法で観測した粒
子構造である。球状の粒子とともに不定形粒子が多く見
出される。この結果においては、従来法では、冷却時間
が比較的長いため、結晶性の粒子が形成されやすいこと
と比較して、急激な冷却に基づくアモルファヌな粒子の
形式がかなりsることか特徴として示される。
FIG. 3 shows the particle structure of a suspension prepared from a zirconia sintered body held in ethanol, observed in the same manner as in FIG. 2. Many irregularly shaped particles are found along with spherical particles. This result shows that compared to the conventional method, which tends to form crystalline particles due to the relatively long cooling time, amorphous particles are formed considerably due to rapid cooling. It will be done.

0発明の効果 本発明は、前記したように特殊な化合物や真空装置、あ
るいは気相反応装置等を用いることなく固体試料から直
接的に超微粒子懸濁液を作成する方法であシ、各種の固
体試料と溶媒の組み合わせによシ多様な懸濁液を簡便に
、しかも混入不純物がほとんど入シこまない条件で作成
できる方法である。また、本性によシ生成する超微粒子
は従来法とは異なった、アモルファス形状のものも多く
含まれており、特異な化学的、物理的特性を示すことが
期待できる。超微粒子の工業的応用は大きな広がりをみ
せているが、本発明による懸濁液作成法は、このような
応用において、生成可能な系の多様化、あるいは製造法
の簡便化に大きな効果をもたらす。
0 Effects of the Invention As described above, the present invention is a method for directly creating an ultrafine particle suspension from a solid sample without using special compounds, vacuum equipment, or gas phase reaction equipment, and it can be used in various ways. This is a method that allows various suspensions to be easily created by combining solid samples and solvents, and under conditions where almost no impurities are introduced. Furthermore, many of the ultrafine particles produced by this method are amorphous, which is different from conventional methods, and are expected to exhibit unique chemical and physical properties. The industrial application of ultrafine particles is expanding greatly, and the suspension preparation method of the present invention has a great effect in diversifying the systems that can be produced and simplifying the manufacturing method in such applications. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施方法の一例を示す説明図、第2
図及び第3図は第1図の装置を用いて作成した超微粒子
の粒子構造のSEM観察例を示す。 1・・・固体試料、2・・・ガラス容器、3・・・溶媒
、4・・・レーサー光、5・・・レンズ、6・・・直角
プリズム、7・・・モータを示す。 指定代理人 工業技術院名古屋工業技術試験所長 冨 山 朔太部 第1図 6.直角プリズム 第2図 1ノlil
FIG. 1 is an explanatory diagram showing an example of the method of implementing the present invention, and FIG.
The figure and FIG. 3 show examples of SEM observation of the particle structure of ultrafine particles produced using the apparatus shown in FIG. DESCRIPTION OF SYMBOLS 1...Solid sample, 2...Glass container, 3...Solvent, 4...Racer light, 5...Lens, 6...Right angle prism, 7...Motor. Designated Agent Sakuta Tomiyama, Director, Nagoya Industrial Technology Testing Institute, Agency of Industrial Science and Technology Figure 1, 6. Right angle prism Figure 2 1 nolil

Claims (1)

【特許請求の範囲】[Claims] 金属材料、セラミックス焼結体等の固体材料を各種溶媒
(水、アルコール等)中に保持し、この固体材料表面に
高密度、高出力のレーザー光を照射することにより、固
体材料を蒸発、プラズマ化する。生成した高温のガス、
熔融体を周囲の溶媒によって急激に冷却、固化すること
により超微粒子として補集し、懸濁液を作成する方法。
Solid materials such as metal materials and ceramic sintered bodies are held in various solvents (water, alcohol, etc.), and the surface of this solid material is irradiated with high-density, high-power laser light to evaporate the solid material and create plasma. become The high temperature gas produced
A method of creating a suspension by rapidly cooling and solidifying a molten material with a surrounding solvent, collecting it as ultrafine particles.
JP2172985A 1990-06-29 1990-06-29 How to make an ultrafine particle suspension Expired - Lifetime JPH086128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172985A JPH086128B2 (en) 1990-06-29 1990-06-29 How to make an ultrafine particle suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172985A JPH086128B2 (en) 1990-06-29 1990-06-29 How to make an ultrafine particle suspension

Publications (2)

Publication Number Publication Date
JPH0463203A true JPH0463203A (en) 1992-02-28
JPH086128B2 JPH086128B2 (en) 1996-01-24

Family

ID=15952038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172985A Expired - Lifetime JPH086128B2 (en) 1990-06-29 1990-06-29 How to make an ultrafine particle suspension

Country Status (1)

Country Link
JP (1) JPH086128B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002651A (en) * 2001-06-13 2003-01-08 Toyota Motor Corp Method for producing manganese material and manganese material
KR100441886B1 (en) * 2002-04-19 2004-07-27 학교법인 포항공과대학교 Method and apparatus for generating nanoparticles
WO2004080586A1 (en) * 2003-03-07 2004-09-23 Hamamatsu Photonics K.K. Fine particles, method and device for preparation thereof, and agent for parenteral injection and method for production thereof
JP2005270971A (en) * 2004-02-27 2005-10-06 Tokyo Univ Of Science Method for producing microcrystal grain, method for producing solid with microcrystal grain dispersed therein, transparent luminescent liquid for biosensing, and transparent luminescent solid
WO2006030605A1 (en) * 2004-09-15 2006-03-23 Kyoto University Metal microparticle and process for producing the same
KR100759286B1 (en) * 2005-04-06 2007-09-17 한국지질자원연구원 Producing method for zirconium-iron-vanadium nanopowder using laser ablation
CN100457335C (en) * 2006-12-19 2009-02-04 浙江工业大学 Device of preparing metal nanometer particle colloid by liquid phase medium pulse laser ablation
JP2009530816A (en) * 2006-03-13 2009-08-27 ザ ユーエイビー リサーチ ファンデーション Electrically pumped (pumped) widely tunable mid-infrared laser based on quantum confined transition metal doped semiconductor
JP2012516391A (en) * 2009-01-30 2012-07-19 イムラ アメリカ インコーポレイテッド Nanoparticle production by high repetition rate ultrashort pulse laser ablation in liquids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136606A (en) * 1984-12-06 1986-06-24 Toyobo Co Ltd Production of ultrafine powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136606A (en) * 1984-12-06 1986-06-24 Toyobo Co Ltd Production of ultrafine powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002651A (en) * 2001-06-13 2003-01-08 Toyota Motor Corp Method for producing manganese material and manganese material
KR100441886B1 (en) * 2002-04-19 2004-07-27 학교법인 포항공과대학교 Method and apparatus for generating nanoparticles
WO2004080586A1 (en) * 2003-03-07 2004-09-23 Hamamatsu Photonics K.K. Fine particles, method and device for preparation thereof, and agent for parenteral injection and method for production thereof
JP2005270971A (en) * 2004-02-27 2005-10-06 Tokyo Univ Of Science Method for producing microcrystal grain, method for producing solid with microcrystal grain dispersed therein, transparent luminescent liquid for biosensing, and transparent luminescent solid
JPWO2006030605A1 (en) * 2004-09-15 2008-05-08 国立大学法人京都大学 Metal fine particles and method for producing the same
WO2006030605A1 (en) * 2004-09-15 2006-03-23 Kyoto University Metal microparticle and process for producing the same
US8512436B2 (en) 2004-09-15 2013-08-20 Kyoto University Metal fine particles and manufacturing method therefor
KR100759286B1 (en) * 2005-04-06 2007-09-17 한국지질자원연구원 Producing method for zirconium-iron-vanadium nanopowder using laser ablation
JP2009530816A (en) * 2006-03-13 2009-08-27 ザ ユーエイビー リサーチ ファンデーション Electrically pumped (pumped) widely tunable mid-infrared laser based on quantum confined transition metal doped semiconductor
CN100457335C (en) * 2006-12-19 2009-02-04 浙江工业大学 Device of preparing metal nanometer particle colloid by liquid phase medium pulse laser ablation
JP2012516391A (en) * 2009-01-30 2012-07-19 イムラ アメリカ インコーポレイテッド Nanoparticle production by high repetition rate ultrashort pulse laser ablation in liquids
JP2014129608A (en) * 2009-01-30 2014-07-10 Imra America Inc Production of nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquid
JP2016188428A (en) * 2009-01-30 2016-11-04 イムラ アメリカ インコーポレイテッド Production of nanoparticles with high repetition rate ultrashort pulse laser ablation in liquids

Also Published As

Publication number Publication date
JPH086128B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
Uyeda et al. Ultra-fine particles: exploratory science and technology
US5770126A (en) High producing rate of nano particles by laser liquid interaction
US7527824B2 (en) Methods for producing coated nanoparticles from microparticles
WO1997009454A9 (en) High production rate of nano particles by laser liquid interaction
JPH0463203A (en) Manufacture of super fine particle suspension
US11525760B2 (en) Gas phase sample preparation for cryo-electron microscopy
Ukoba et al. Thin films, atomic layer deposition, and 3D Printing: demystifying the concepts and their relevance in industry 4.0
WO2002022918A1 (en) Nanocrystalline intermetallic powders made by laser evaporation
US4584078A (en) Method of producing fine particles
Camata et al. Observation of aerosol formation during laser ablation using a low-pressure differential mobility analyzer
WO2009005484A1 (en) Method for producing nanoparticles for ferrofluids by electron-beam evaporation and condensation in vacuum, a ferrofluid producing method and a ferrofluid produced according to said method
JPH03166360A (en) Amorphous metallic film and its production
Madkour et al. Processing of nanomaterials (NMs)
JPS6339631A (en) Production of fine particles of organic substance
RU2808903C1 (en) Method for producing molybdenum trioxide moo3 nanopowder in reactor
RU2465983C2 (en) Method of producing nanopowder and device to this end
Dawson Techniques for the electron microscopy of crystals
Boeije et al. Nanoparticle production by spark ablation: principle, configurations, and basic steps toward application
Fuchs et al. High-resolution study of supported bismuth clusters
Saito et al. Growth and Characterization of Quasicrystals: I. Thin Films and II. Fine Particles
Kask et al. Fractal structures in a laser plume
JPS6245306B2 (en)
KR100441886B1 (en) Method and apparatus for generating nanoparticles
Schubert et al. Individual material and process development in laser based additive manufacturing
Nagata et al. Combinatorial Thin-Film Synthesis for New Nanoelectronics Materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term