JPH046260A - Production of ultra-deep-drawable galvanized sheet - Google Patents

Production of ultra-deep-drawable galvanized sheet

Info

Publication number
JPH046260A
JPH046260A JP11124990A JP11124990A JPH046260A JP H046260 A JPH046260 A JP H046260A JP 11124990 A JP11124990 A JP 11124990A JP 11124990 A JP11124990 A JP 11124990A JP H046260 A JPH046260 A JP H046260A
Authority
JP
Japan
Prior art keywords
hot
steel
less
ultra
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11124990A
Other languages
Japanese (ja)
Inventor
Akitoshi Teraguchi
寺口 彰俊
Takashi Tanioku
谷奥 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11124990A priority Critical patent/JPH046260A/en
Publication of JPH046260A publication Critical patent/JPH046260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce the ultra-deep-drawable galvanized sheet having excellent surface characteristics and resistance to secondary operation cracking by hot rolling and cold rolling a steel having a specific compsn. specified in the contents of Ti, Nb and B, then subjecting this steel to recrystallization annealing and hot dip galvanizing under specific conditions then to an alloying treatment. CONSTITUTION:The steel which contains, by weight %, <=0.005% C, <=0.10% Si, <=1.50% Mn, <=0.10% P, <=0.010% S, 0.01 to 0.10% SolAl, and <=0.005% N, further contains Ti and Nb in combination so as to satisfy formula, contains 0.0005 to 0.015% B, and consists of the balance Fe and unavoidable impurities is finished to a sheet having a prescribed thickness by hot rolling, descaling and cold rolling. This sheet is subjected to the recstallization annealing by heating to a temp. region of 730 deg.C to A2 transformation point and cooling for 50 to 150 second required time at 1.5 to 150 deg.C/sec cooling rate in a 730 to 500 deg.C temp. range during the course of cooling. The sheet is then subjected to the alloying treatment by heating after the hot dip galvanizing.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、超深絞り性溶融亜鉛めっき鋼板の製造法に
関する。この超深絞り性溶融亜鉛めっき鋼板の製造法は
、Ti、 NbおよびBを含有する冷延鋼板を素材とす
るもので、自動車用外装材あるいは自動車用内装部品等
としての使用に適する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for producing ultra-deep drawable hot-dip galvanized steel sheets. This method of producing ultra-deep drawable hot-dip galvanized steel sheets uses cold-rolled steel sheets containing Ti, Nb, and B as raw materials, and is suitable for use as automobile exterior materials or automobile interior parts.

従来の技術 近年、自動車用外装材あるいは自動車用内装部品等とし
て、冷延鋼板を素材とする超深絞り性溶融亜鉛めっき鋼
板の需要が増加している。
BACKGROUND OF THE INVENTION In recent years, there has been an increase in demand for ultra-deep drawable hot-dip galvanized steel sheets made from cold-rolled steel sheets as exterior materials for automobiles, interior parts for automobiles, and the like.

従来の超深絞り性溶融亜鉛めっき鋼板としては、Tiを
含有する極低炭素鋼板が知られている。
As a conventional ultra-deep drawable hot-dip galvanized steel sheet, an ultra-low carbon steel sheet containing Ti is known.

また、鋼中にTiを添加すると、C,NはTic。Furthermore, when Ti is added to steel, C and N become TiC.

TiNとなり、固溶C1固溶Nの生成を制御することに
より、優れた超深絞り性が得られることも知られている
It is also known that by controlling the formation of solid solution C1 and solid solution N, excellent ultra-deep drawability can be obtained.

しかし、Ti含有鋼は、窒化物、炭化物あるいは硫化物
の形成傾向が強く、鋼の純化作用が強いため、二次加工
割れが発生する恐れがある。
However, Ti-containing steel has a strong tendency to form nitrides, carbides, or sulfides, and has a strong steel purifying effect, so there is a risk that secondary processing cracks may occur.

しかも、Ti含有量が多い鋼は、連続鋳造する際にTf
−AI−Ox系の非金属介在物が生成しやすく、鋼材の
内部欠陥の発生が増加する。そして、スラブ加熱時に難
剥離性のTi酸化物がスラブ表面に生成しやすく、溶融
亜鉛めっき後の合金化処理における合金層の発達に差を
生じ、めっきの表面欠陥。
Moreover, steel with a high Ti content has Tf during continuous casting.
-AI-Ox-based nonmetallic inclusions are likely to be generated, increasing the occurrence of internal defects in the steel material. When the slab is heated, difficult-to-peel Ti oxides tend to form on the slab surface, causing differences in the development of the alloy layer during the alloying treatment after hot-dip galvanizing, resulting in surface defects in the plating.

どなる。bawl.

また、他に知られているNb含有鋼は、熱延での高温巻
取りが必要であり、通常の巻取り温度では完全再結晶温
度が高くなり、連続焼鈍炉の可能範囲(850℃以下)
では、未結晶部分が残存することがある。さらに、高温
巻取りのためにスケールが厚くなり、酸洗能率が大きく
低下すると共に、コイルの長手方向での特性値に大きな
ばらつきが生じる。
In addition, other known Nb-containing steels require high-temperature coiling during hot rolling, and the complete recrystallization temperature is high at normal coiling temperatures, which is within the range possible for continuous annealing furnaces (850°C or less).
In this case, uncrystallized portions may remain. Furthermore, the scale becomes thick due to high-temperature winding, which greatly reduces pickling efficiency and causes large variations in characteristic values in the longitudinal direction of the coil.

さらに、Ti O,003〜0.20wt%とNb0.
003〜0、025wt%を含有する極低炭素鋼板が知
られている(特開昭59−74231号公報)。この鋼
板は、内部欠陥がなく、めっき表面性状が良好であるが
、機械試験の測定値にバラツキが見られる。
Furthermore, TiO,003~0.20wt% and Nb0.
An ultra-low carbon steel sheet containing 0.003 to 0.025 wt% is known (Japanese Unexamined Patent Publication No. 74231/1983). This steel plate has no internal defects and has good plating surface quality, but there are variations in the measured values of mechanical tests.

発明が解決しようとする課題 前記溶融亜鉛めっき鋼板は、自動車用外装材として適用
するには、前記したとおり介在物による内部欠陥や、め
っき層の発達差による表面欠陥が大きな問題となる。
Problems to be Solved by the Invention When the hot-dip galvanized steel sheet is applied as an exterior material for automobiles, as described above, internal defects due to inclusions and surface defects due to differences in the development of the plating layer pose major problems.

また、前記溶融亜鉛めっき鋼板は、超深絞りの自動車用
内装部品として使用すると、寒冷地において何らかの衝
撃によって二次加工脆性破壊が生じ、致命的欠陥となる
問題が発生している。
Further, when the hot-dip galvanized steel sheet is used as an ultra-deep drawn automobile interior part, secondary processing brittle fracture occurs due to some kind of impact in cold regions, resulting in a fatal defect.

この発明は、上記問題点を排除し、表面性状に優れ、か
つ低温における耐二次加工割れにも優れた超深絞り性溶
融亜鉛めっき鋼板の製造法を提供することを目的とする
ものである。
The purpose of the present invention is to eliminate the above-mentioned problems and provide a method for manufacturing an ultra-deep drawable hot-dip galvanized steel sheet that has excellent surface properties and excellent resistance to secondary work cracking at low temperatures. .

課題を解決するための手段 良好な機械試験値を得るには、Ti添加が有効であるが
、鋼中のTi含有量を低減し、Nb含有量を増加するこ
とにより機械試験値は低下する。しかしめっき表面性状
および鋼板の内部性状は、Ti含有量を低減し、Nb含
有量を増加することにより良好となる。
Means for Solving the Problems Addition of Ti is effective in obtaining good mechanical test values; however, by reducing the Ti content and increasing the Nb content in steel, the mechanical test values decrease. However, the plating surface properties and the internal properties of the steel sheet become better by reducing the Ti content and increasing the Nb content.

そこで、機械試験値が良好で、めっき表面性状および鋼
板の内部性状の優れた溶融亜鉛めっき鋼板を製造するに
は、Ti、 Nbの複合含有量の最適範囲が存在するこ
とが判明した。
Therefore, it has been found that there is an optimal range for the combined content of Ti and Nb in order to produce hot-dip galvanized steel sheets with good mechanical test values and excellent coating surface properties and internal steel sheet properties.

また、鋼中にBを所定量添加すると、深絞り成形後の衝
撃力による二次加工割れに対して、脆性破壊発生温度の
低下をもたらすことが判明した。
It has also been found that adding a predetermined amount of B to steel lowers the temperature at which brittle fracture occurs with respect to secondary processing cracking due to impact force after deep drawing.

すなわちこの発明は、重量比で、 C:0.005%以下、  Si : 0.10%以下
、Mn : 1.50%以下、   P:0.10%以
下、S : 0.010%以下、 sol Al : 0.01〜0.10%、N:0.0
05%以下、 およびTiとNbを下記式を満足して複合金有し、48
/14N (Z) + 48/32S(X) + 48
/12 (C(z) −0,001%}≦Ti≦0.0
35% 2C(Z)≦Nb≦0.015% かつ、B : 0.0005〜0.015%を含有し、
残部がFeと不可避的不純物よりなる鋼を、通常の熱間
圧延を施し、脱スケール処理し、さらに冷間圧延して所
定板厚の薄板に仕上げたのち、730℃〜Aj変態点の
温度に加熱し冷却途中の730〜500℃の温度範囲を
、冷却速度1.5〜b結晶焼鈍し、引続き溶融亜鉛めっ
きしたのち加熱して合金化処理を施すのである。
That is, this invention provides the following in terms of weight ratio: C: 0.005% or less, Si: 0.10% or less, Mn: 1.50% or less, P: 0.10% or less, S: 0.010% or less, sol Al: 0.01-0.10%, N: 0.0
05% or less, and has a composite metal containing Ti and Nb satisfying the following formula, 48
/14N (Z) + 48/32S(X) + 48
/12 (C(z) -0,001%}≦Ti≦0.0
35% 2C(Z)≦Nb≦0.015% and contains B: 0.0005 to 0.015%,
The steel, the balance of which is Fe and unavoidable impurities, is subjected to normal hot rolling, descaling treatment, and cold rolling to finish it into a thin plate of a predetermined thickness, and then heated to a temperature of 730°C to the Aj transformation point. During heating and cooling, crystal annealing is carried out in the temperature range of 730 to 500° C. at a cooling rate of 1.5 to b, followed by hot-dip galvanizing, followed by heating and alloying treatment.

作    用 上記のとおりこの発明は、Ti、 NbおよびBの含有
量を限定して複合金有せしめた鋼材を、熱間圧延、冷間
圧延して鋼板に仕上げ、その冷延鋼板に再結晶焼鈍を施
したのち、溶融亜鉛めっきして合金化処理することによ
って、表面欠陥がなく、かつ鋼板内部に非金属介在物に
よる欠陥を有しない優れた溶融亜鉛めっき鋼板が得られ
る。
Function As described above, the present invention involves hot-rolling and cold-rolling a steel material with a composite metal by limiting the content of Ti, Nb, and B into a steel plate, and then recrystallizing and annealing the cold-rolled steel plate. After that, by hot-dip galvanizing and alloying, an excellent hot-dip galvanized steel sheet with no surface defects and no defects due to non-metallic inclusions inside the steel sheet can be obtained.

この発明による溶融亜鉛めっき鋼板は、優れためっき表
面性状を有し、かつ内部欠陥を有していない。これはT
iとNbを特定した含有量で複合金有せしめたからであ
る。
The hot-dip galvanized steel sheet according to the present invention has excellent plating surface properties and has no internal defects. This is T
This is because the composite gold was made with a specified content of i and Nb.

鋼中にT1、Nbを添加すると、鋼中のC,NはTiN
、 TjC,NbCとして析出固定され、良好な鋼材が
得られる。
When T1 and Nb are added to steel, C and N in the steel become TiN.
, TjC, and NbC are precipitated and fixed, resulting in a good steel material.

また、鋼中にBを所定量含有せしめることによって、絞
り成形後の衝撃力による二次加工割れに対して脆性破壊
発生温度を低下せしめることができる。
Furthermore, by containing a predetermined amount of B in the steel, the temperature at which brittle fracture occurs can be lowered with respect to secondary processing cracks caused by impact force after drawing.

つぎにこの発明において鋼組成ならびに製造工程を限定
した理由を詳述する。なお、以降の%はすべで重量%を
示す。
Next, the reason for limiting the steel composition and manufacturing process in this invention will be explained in detail. Note that all percentages hereinafter indicate weight percentages.

この発明におけるTi、 Nbの複合含有量は、前記知
見に基づいて決定した。すなわち、Ti含有量は、機械
試験値の安定化対策より固溶C≦10ppmの条件から
下限値が規定され、 48/14 N (Z)+48/32 S (z)+4
8/12(%)−o、 ooioχ) となる。また、上限値は、めっき表面性状、鋼板の内部
性状から 0.035%となる。
The combined content of Ti and Nb in this invention was determined based on the above findings. In other words, the lower limit of the Ti content is specified based on the condition of solid solute C≦10 ppm in order to stabilize mechanical test values, and is 48/14 N (Z) + 48/32 S (z) + 4
8/12(%)-o, ooioχ). Furthermore, the upper limit is 0.035% based on the plating surface properties and the internal properties of the steel sheet.

Nb含有量は、複合析出物を形成させるため2C(%)
以上が必要であり、機械試験値の安定からは0.015
%以下とする。
The Nb content is 2C (%) to form composite precipitates.
The above is necessary, and from the stability of the mechanical test value, 0.015
% or less.

次に、鋼板の他の成分元素の含有量を限定した理由を説
明する。
Next, the reason for limiting the content of other component elements of the steel sheet will be explained.

B含有量は、深絞り成形後の衝撃力による二次加工割れ
に対して脆性破壊発生温度の低下をもたらす。その効果
はB含有量0.0005%以上で発生するが0.001
5%を超えて含有すると、伸び及びr値の低下が顕著と
なり深絞り用材料としては不適切のため、上限を0.0
015%と限定した。
The B content lowers the temperature at which brittle fracture occurs with respect to secondary processing cracking due to impact force after deep drawing. The effect occurs when the B content is 0.0005% or more, but 0.001
If the content exceeds 5%, the elongation and r value will drop significantly, making it unsuitable as a material for deep drawing, so the upper limit should be set at 0.0.
It was limited to 0.015%.

C含有量は、多くなればCを固定するのに必要なTi、
 Nbの添加量が増加し、製造コストが高くなると共に
、TiC,NbCの析出により超深絞り性に悪影響を及
ぼす。このため0.005%以下とした。
The higher the C content, the more Ti is needed to fix C.
As the amount of Nb added increases, manufacturing costs increase, and precipitation of TiC and NbC adversely affects ultra-deep drawability. For this reason, the content was set at 0.005% or less.

Siは、亜鉛めっき層の安定した密着性を得るため0.
10%以下とする。
Si is 0.0% to obtain stable adhesion of the galvanized layer.
10% or less.

Mnは、鋼に強度を与えるのに必要な元素であるが、プ
レス成形性を考慮して1.50%以下とする。
Mn is an element necessary to give strength to steel, but it is set to 1.50% or less in consideration of press formability.

Pは、最も強化能の大きな元素で強度を増大するには有
効であるが、0.10%を超えて多く含有すると粒界偏
析を起こし二次加工割れの原因となるから、0.10%
以下とする。
P is an element with the highest strengthening ability and is effective in increasing strength, but if it is contained in a large amount exceeding 0.10%, it causes grain boundary segregation and causes secondary processing cracks, so 0.10%
The following shall apply.

Sは、T1との親和力が強く、あまり多すぎるとTiS
となり、C,Nを固定する有効Ti量が減少するため0
.010%以下におさえる必要がある。
S has a strong affinity with T1, and too much S causes TiS.
0 because the effective amount of Ti that fixes C and N decreases.
.. It is necessary to keep it below 0.010%.

AIは、Nb、 Ti添加前の溶鋼脱酸剤として加える
がTi、 Nbの歩留を良くするためには0.01%以
上の添加が必要である。また、あまり加えすぎるとコス
トが増大するため、その上限値を0.1%とした。
AI is added as a deoxidizing agent for molten steel before adding Nb and Ti, but in order to improve the yield of Ti and Nb, it is necessary to add 0.01% or more. Furthermore, since adding too much increases the cost, the upper limit was set at 0.1%.

Nは、良好な加工性を得るには少ないことが望ましいが
、鋼中に存在するNの大部分はTiによりTiNとして
固定される。しかし、N量が多いとTi量も多くを必要
どするため0.005%以下とした。
Although a small amount of N is desirable in order to obtain good workability, most of the N present in steel is fixed as TiN by Ti. However, if the amount of N is large, the amount of Ti also needs to be large, so it is set to 0.005% or less.

冷間圧延後の再結晶焼鈍は、再結晶に必要な730℃〜
A3変態点の温度範囲に加熱する。なお、焼鈍温度から
500℃までの冷却速度は、表面濃化を起させ十分な密
着性のあるめっき層を形成するには1.5℃/秒以上が
必要であるが、150℃/秒を超えて速くすると板形状
が不安定となるため好ましくない。また、冷却の所要時
間は十分な表面濃化を起させるためには50秒以上が必
要であるが、150秒を超えても表面濃化の効果は変ら
ず、作業能率が低下するので、50〜150秒とした。
Recrystallization annealing after cold rolling is performed at a temperature of 730°C or higher, which is necessary for recrystallization.
Heat to a temperature range of A3 transformation point. Note that the cooling rate from the annealing temperature to 500°C needs to be 1.5°C/second or more to cause surface concentration and form a plating layer with sufficient adhesion, but 150°C/second is required. If the speed is exceeded, the plate shape becomes unstable, which is not preferable. In addition, the time required for cooling is 50 seconds or more in order to cause sufficient surface concentration, but even if it exceeds 150 seconds, the effect of surface concentration will not change and the work efficiency will decrease. ~150 seconds.

実施例 この発明の実施例について説明する。Example Examples of this invention will be described.

第1表に示す組成のこの発明の実施による鋼および比較
のための鋼を転炉にて溶製し、真空脱ガス処理したのち
連続鋳造してスラブとした。
Steel according to the present invention and steel for comparison having the compositions shown in Table 1 were melted in a converter, subjected to vacuum degassing treatment, and then continuously cast into slabs.

これらの各種のスラブに通常の熱間圧延と冷間圧延を施
して板厚0.8mmの冷延鋼板を得た。そして、溶融亜
鉛めっきラインにおいて780℃に加熱して30秒保持
して焼鈍した。冷却時の730℃から500℃までの所
要時間は55秒で、平均冷却速度は4.2℃/secで
あった。溶融亜鉛めっき槽を通して両面に45 g /
m”の亜鉛めっきを施し、さらに600℃に加熱して合
金化処理を行ったのち、スキンパス伸び率を 0.8%
かけて仕上げた。
These various slabs were subjected to conventional hot rolling and cold rolling to obtain cold rolled steel plates having a thickness of 0.8 mm. Then, it was annealed by heating it to 780° C. and holding it for 30 seconds in a hot-dip galvanizing line. The time required for cooling from 730°C to 500°C was 55 seconds, and the average cooling rate was 4.2°C/sec. 45 g/dip on both sides through hot dip galvanizing bath
After applying zinc plating and further heating to 600℃ to perform alloying treatment, the skin pass elongation rate was reduced to 0.8%.
I finished it.

そして、各種の溶融亜鉛めっき鋼板から試料を採取して
機械的性質の試験を行った。なお、引張り試験片はJI
S 5号で引張方向は圧延方向とした。
Then, samples were taken from various hot-dip galvanized steel sheets and tested for mechanical properties. In addition, the tensile test piece is JI
In No. S5, the tensile direction was the rolling direction.

また、耐二次加工脆性の調査は、コニカルカップ試験機
により絞り比2.4まで加工後、落電エネルギー50k
gm (50kgX 1m)の落電試験を行ない、その
破面観察により脆性割れ長さ率が50%となる脆性遷移
温度を測定した。
In addition, the investigation of secondary processing brittleness was carried out using a conical cup testing machine with an electric shock energy of 50 k after processing to a drawing ratio of 2.4.
gm (50 kg x 1 m) was conducted, and the brittle transition temperature at which the brittle crack length ratio was 50% was measured by observing the fracture surface.

さらに、内部品質は、超音波探傷法により評価し、めっ
き表面性状は目視による表面傷の発生の程度により評価
した。その結果を第2表に示す。
Furthermore, the internal quality was evaluated by ultrasonic flaw detection, and the plating surface quality was evaluated by the degree of surface flaws visually observed. The results are shown in Table 2.

第2表に示すとおり、この発明の実施によるNo、 1
0〜15の溶融亜鉛めっき鋼板は、比較例のNo、 1
〜9の鋼板に比較し、いずれも伸び、r値をはじめとし
て各機械試験値が高く、さらに絞り成形後の落電試験に
おける脆性遷移温度も低い。
As shown in Table 2, No. 1 according to the implementation of this invention
Hot-dip galvanized steel sheets numbered 0 to 15 are Comparative Example No. 1
Compared to the steel plates No. 9 to 9, each mechanical test value including elongation and r value is higher, and the brittle transition temperature in the electric drop test after drawing is also lower.

また、めっき表面性状が良好で内部欠陥がなく、全体的
に品質が優れていることがわかる。
It can also be seen that the plating surface properties are good, there are no internal defects, and the quality is excellent overall.

以下余白 発明の効果 この発明によれば、内部欠陥がなく機械的性質および耐
二次加工脆性に優れ、しかも、めっき表面性状の良好な
溶融亜鉛めっき鋼板を、溶融亜鉛めっきライン上で効率
よく製造することができる。
Effects of the Invention According to the invention, hot-dip galvanized steel sheets that are free from internal defects, have excellent mechanical properties and resistance to secondary work brittleness, and have good coating surface properties can be efficiently manufactured on a hot-dip galvanizing line. can do.

Claims (1)

【特許請求の範囲】 1 重量比で、 C:0.005%以下、Si:0.10%以下、Mn:
1.50%以下、P:0.10%以下、S:0.010
%以下、 sol.Al:0.01〜0.10%、 N:0.005%以下、 およびTiとNbを下記式を満足して複合含有し、48
/14N(%)+48/32S(%)+48/12{C
(%)−0.001%}≦Ti≦0.035% 2C(%)≦Nb≦0.015% かつ、B:0.0005〜0.015% を含有し、残部がFeと不可避的不純物よりなる鋼を、
通常の熱間圧延を施し、脱スケール処理し、さらに冷間
圧延して所定板厚の薄板に仕上げたのち、730℃〜A
_3変態点の温度に加熱し冷却途中の730〜500℃
の温度範囲を、冷却速度1.5〜150℃/秒で、かつ
所要時間50〜150秒で冷却して再結晶焼鈍し、引続
き溶融亜鉛めっきしたのち、加熱して合金化処理を施す
ことを特徴とする超深絞り性溶融亜鉛めっき鋼板の製造
法。
[Claims] 1. In weight ratio: C: 0.005% or less, Si: 0.10% or less, Mn:
1.50% or less, P: 0.10% or less, S: 0.010
% or less, sol. Al: 0.01 to 0.10%, N: 0.005% or less, and complex containing Ti and Nb satisfying the following formula, 48
/14N(%)+48/32S(%)+48/12{C
(%) -0.001%}≦Ti≦0.035% 2C (%)≦Nb≦0.015% and B: 0.0005 to 0.015%, the balance being Fe and unavoidable impurities. More steel,
After applying normal hot rolling, descaling treatment, and further cold rolling to finish a thin plate with a specified thickness, 730℃~A
_3 730-500℃ during cooling after heating to transformation point temperature
Recrystallization annealing is carried out by cooling within a temperature range of 1.5 to 150°C/sec for a required time of 50 to 150 seconds, followed by hot-dip galvanizing, followed by heating and alloying treatment. A manufacturing method for ultra-deep drawable hot-dip galvanized steel sheets.
JP11124990A 1990-04-25 1990-04-25 Production of ultra-deep-drawable galvanized sheet Pending JPH046260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11124990A JPH046260A (en) 1990-04-25 1990-04-25 Production of ultra-deep-drawable galvanized sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11124990A JPH046260A (en) 1990-04-25 1990-04-25 Production of ultra-deep-drawable galvanized sheet

Publications (1)

Publication Number Publication Date
JPH046260A true JPH046260A (en) 1992-01-10

Family

ID=14556385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11124990A Pending JPH046260A (en) 1990-04-25 1990-04-25 Production of ultra-deep-drawable galvanized sheet

Country Status (1)

Country Link
JP (1) JPH046260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613961A1 (en) * 1993-03-04 1994-09-07 Kawasaki Steel Corporation Alloyed hot dip galvanized steel sheet
CN102660710A (en) * 2012-05-09 2012-09-12 河北钢铁股份有限公司邯郸分公司 Nb/Ti composite extra-deep drawing galvanized sheet and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613961A1 (en) * 1993-03-04 1994-09-07 Kawasaki Steel Corporation Alloyed hot dip galvanized steel sheet
CN102660710A (en) * 2012-05-09 2012-09-12 河北钢铁股份有限公司邯郸分公司 Nb/Ti composite extra-deep drawing galvanized sheet and production method thereof

Similar Documents

Publication Publication Date Title
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4797807B2 (en) High-rigidity low-density steel plate and manufacturing method thereof
WO1984001585A1 (en) Process for manufacturing cold-rolled steel for deep drawing
JPS59140333A (en) Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
JPS5942742B2 (en) High strength cold rolled steel plate for deep drawing with low yield ratio
JPH024657B2 (en)
JP4177478B2 (en) Cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in formability, panel shape, and dent resistance, and methods for producing them
JPH03257124A (en) Production of cold rolled steel sheet for deep drawing having baking hardenability
JPH08176735A (en) Steel sheet for can and production thereof
JPH03294463A (en) Production of alloyed hot-galvanized steel sheet
JPH046260A (en) Production of ultra-deep-drawable galvanized sheet
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JPH05331593A (en) Hot rolled steel plate for porcelain enameling increasing strength after firing of porcelain enameling and its production
JPS6237341A (en) Hot-rolled steel plate for superdrawing having superior resistance to secondary operation brittleness
JP2003041342A (en) Cold rolled steel sheet superior in stamping property
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JPH03180429A (en) Production of hot dip galvanized steel sheet for extra deep drawing
JPH0321611B2 (en)
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
JP2718369B2 (en) Steel sheet for galvanizing and method for producing the same
JP3309396B2 (en) High-strength cold-rolled steel sheet for deep drawing having age hardening property excellent in secondary work brittleness resistance and method for producing the same
JP2790369B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH05230542A (en) Production of high tensile strength hot dip plated steel sheet excellent in workability
JP3260057B2 (en) Method for producing steel with excellent sour resistance and hot workability
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability