JPH0461820B2 - - Google Patents

Info

Publication number
JPH0461820B2
JPH0461820B2 JP61294563A JP29456386A JPH0461820B2 JP H0461820 B2 JPH0461820 B2 JP H0461820B2 JP 61294563 A JP61294563 A JP 61294563A JP 29456386 A JP29456386 A JP 29456386A JP H0461820 B2 JPH0461820 B2 JP H0461820B2
Authority
JP
Japan
Prior art keywords
glass
weight
chemical durability
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61294563A
Other languages
Japanese (ja)
Other versions
JPS63147843A (en
Inventor
Kunio Nakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP29456386A priority Critical patent/JPS63147843A/en
Publication of JPS63147843A publication Critical patent/JPS63147843A/en
Publication of JPH0461820B2 publication Critical patent/JPH0461820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はガラス組成物、特に化学的耐久性にす
ぐれたフレイク用及び繊維用ガラス組成物に関す
る。 〔従来の技術〕 従来、化学的耐久性にすぐれたガラス繊維はC
ガラスとして知られており、その代表的組成は、
K.L.Loewenstein著 The Manufacturing
Technology of Continuous Glass Fibers
(ELSEVIER,1983年)の34頁の記載によれば、
重量%でSiO265、B2O35、Al2O34、Mgo3、
CaO14、Na2O8.5、Fe2O30.3である。このCガラ
スは原料費は安価であるが、作業温度(ガラスの
粘度が1000ポアズになる温度)と液相温度の温度
差が50℃以下であり、ガラス繊維は紡糸できる
が、ガラスフレイクは失透発生のため、製造が困
難である。ガラスフレイクは例えば鋼管内面の摩
耗や錆の防止のために、塗料に混入されて鋼管内
面へ塗布されるものであるから当然化学的耐久性
が要求される。従つて作業性の良いAガラス(前
記Loewensteinによれば重量%でSiO2 72.0、Al2O32.5、B2O30.5、MgO0.9、CaO9.0、
Na2O12.5、K2O1.5、Fe2O30.5)から製造された
ガラスフレイクは化学的耐久性に乏しく実用的で
ない。更に火炎延伸法でガラス短繊維を製造する
場合も前記Cガラスは失透が発生するので、これ
を用いることができない。 Cガラスのもつ作業性の悪さを改良した繊維用
ガラス組成物として米国特許第4312952号に開示
されたガラス組成物は、重量%でSiO2 58−62、Al2O31−2、CaO8−9.5、MgO2.5−
3.5、Na2O15−17、K2O0−1、B2O35−7、 Li2O0.1−0.4、ZnO1.5−3.5である。この組成は、
Na2Oを増加させて作業性を改善し、Li2OとZnO
を加えることによつて化学的耐久性を向上させて
いる。しかしLi2OとZnOは非常に高価である。 〔発明が解決しようとする問題点〕 以上述べたように安価なCガラスは作業性が劣
り、作業性の良いガラスは高価であつて、安価で
作業性が良く、化学的耐久性も充分なガラス組成
は従来存在しなかつたと云える。 本発明はこの矛盾を解決して、安価で作業性が
良く、化学的耐久性にすぐれたフレイク用及び繊
維用のガラス組成物を提案するものである。 〔問題点を解決しようとする手段〕 本発明の要旨は、重量%で表示して下記成分 SiO2 63.0〜67.0 B2O3 4.0〜4.8 Al2O3 4.0〜5.5 TiO2 0〜4.0 MgO 2.5〜3.6 CaO 4.7〜8.7 BaO 0〜5.0 Na2O 7.5〜13.9 K2O 0〜2.0 Na2O+K2O 8.0〜15.5 Fe2O3 0〜1.0 ZrO2 0〜5.0 TiO2+BaO+ZrO2 2.0〜5.0 を有し、かつこれらの成分の合計がすくなくとも
95重量%であることを特徴とするフレイク用およ
び繊維用ガラス組成物である。 良好な作業性を確保するために、該ガラス組成
物は、作業温度が液相温度より150℃以上高いこ
とが好ましい。更に好ましくは、高温での成形作
業をさけるために該ガラス組成物の液相温度は
1050℃以下である、又該ガラス組成物は化学的耐
久性が要求されるので、耐酸性、耐水性は重量減
で表示して1%以下である(試験法は実施例参
照)。 〔作用〕 本発明の組成限定理由は次の通りである。 SiO2はB2O3、Al2O3と共にガラスの骨格を形
成する。SiO2の量が67.0%をこえると、ガラスの
溶解性が低下するとともに、ガラスの作業温度、
液相温度が上昇して好ましくない、SiO2の量が
63.0%未満ではガラスの化学的耐久性が低下して
好ましくない。 B2O3は4.8%をこえると、ガラスの原料費の増
加をまねき、かつガラスの作業温度と液相温度の
温度差が小さくなり、好ましくない。B2O3が4.0
%未満では、ガラスの粘性が増加し、作業温度、
液相温度が上昇して好ましくない。 Al2O3はガラスの化学的耐久性、特に耐水性を
向上させるので必須成分であるが、5.5%をこえ
ても耐久性を向上させる効果がないので5.5%を
上限とし、4.0%未満では耐水性が低下するので
4.0%を下限とする。 TiO2は化学的耐久性を向上させる成分である
が、原料が高価であるので使用しない方が好まし
い。使用する場合でも4.0%をこえても化学的耐
久性向上の効果はないので4.0%を上限とする。 MgOとCaOはガラスの融剤である。同時にこ
れらはガラスの粘度曲線を適切に保つために組み
合わせて使用され、更に化学的耐久性を維持する
ためにも使用される。MgOは本発明においては
2.5〜3.6%の範囲で液相温度を下げるので、この
範囲に限定する。CaOは8.7%をこえると液相温
度を高めるので好ましくない。4.7%未満では化
学的耐久性を低下させるので好ましくない。 BaOは化学的耐久性を低下させることなく、
融剤として作用し、又液相温度を下げる成分であ
る。しかし原料が比較的高価であるので使用しな
いのが好ましい。BaOを使用する場合も5.0%を
こえると液相温度を下げる効果が小さくなるので
5.0%を上限とする。 Na2OとK2Oはガラスの融剤である。Na2Oに
くらべK2Oは原料が高価であるのでNa2Oを主成
分として用いるのが好ましい。 Na2Oが13.9%をこえるとガラスの化学的耐久
性が低下するのでNa2Oは13.9%を上限とする。
Na2Oが7.5%未満では、ガラスの溶解性が低下
し、同時に液相温度も上昇するので好ましくな
い。従つてNa2Oは7.5%を上限とする。K2Oはガ
ラス原料として特別に調合する必要はないが、珪
砂、長石などK2O以外の成分を導入するために用
いられる原料から混入する場合があるので、2.0
%を上限とする。Na2Oと置換してK2Oを導入し
ていけば、混合アルカリ効果により化学的耐久性
が向上することは公知であるが、本発明の主眼と
するところは、安価なガラス組成分を提案するこ
とにあるので、この点からもK2Oは2.0%が上限
である。尚Na2O+K2Oは、Na2Oの項で述べた
のとまつたく同じ理由から、上限を15.5%、下限
を8.0%とする。 Fe2O3は必須成分ではないが、ガラス原料中の
不純物として混入されているので1.0%を上限と
する。 ZrO2は化学的耐久性を高める成分であるが、
多量に用いると、ガラスの粘度を高め、溶解性を
低下させるので、5.0%を上限とする。 上述のように、TiO2、BaO、およびZrO2はい
ずれも化学的耐久性を高める成分であり、従つて
TiO2、BaO、およびZrO2の合計は2.0〜5.0重量
%の範囲内にあることが好ましい。 以上に、ガラス成分の作用を述べたが、特に化
学的耐久性に重視される場合は、TiO2、ZrO2
それぞれ4.0重量%および5.0重量%までの量用い
ることが好ましい。本発明の組成物は以上に述べ
た成分の合計をすくなくとも95重量%含有する。
すなわち他の成分としてZnOを多くとも1重量
%、SrOを多くとも1重量%、PbOを多くとも1
重量%など、微量成分としてAS2O3を多くとも
0.5重量%、Sb2O3を多くとも0.5重量%などが含
まれていてもよい。 〔実施例〕 次に本発明の実施例について説明する。第1表
の組成(重量%)を有する硝子を溶融して作業温
度、液相温度、耐水性、耐酸性を測定した。その
結果を第1表に示す。 液相温度は次のようにして測定した。 ガラスを粉砕して1680μmのフルイを通り
1190μmのフルイ上にとどまつたガラス粒を、ア
ルコールに浸漬して超音波をかけて洗滌し、恒温
槽を乾燥させた。このガラス粒を白金ボート上に
1列にあけた1mm径の多数の穴の上にボート長さ
方向に適当な温度勾配をもつように温度設定され
た炉中で4時間保持する。炉から取出した白金ボ
ート上のガラス粒を観察し、失透が発生している
最高温度をもつて液相温度とした。 耐水性の測定は次のようにした。ガラスを紡糸
用の白金ポツトに入れて直径9μmのガラス繊維
を紡糸する。ガラス繊維を約30mmの長さに切つた
ものを、約2gとり、デシケータ中で24時間保持
して乾燥する。この試料の重量を0.1mmgの単位
迄精秤する。次に試料をパイレツクスガラス製の
ビーカーに入れ、蒸留水を200ml入れる。このビ
ーカーを80℃に保持された恒温槽に入れて5時間
保持する。この間、適宜ビーカーを振とうする。
この液をガラスフイルターで濾過し、試料を蒸留
水で洗滌する。試料を十分乾燥した後その重量を
0.1mmg迄精秤する。最初の試料重量に対する、
試験後の試料の重量減を重量%で表示して耐水性
とする。 耐酸性の測定は、耐水性の測定に準じる。耐水
性試験で蒸留水を用いたかわりに比重1200の希硫
酸を200ml用いる。 〔発明の効果〕 上記実施例からわかるように、耐水性、耐酸性
にすぐれ、作業温度と液相温度の差が150℃以下
たとえば160〜300℃であつて、作業性にすぐれ
た。しかも比較的安価がガラス組成物を得ること
ができる。
[Industrial Application Field] The present invention relates to a glass composition, particularly a glass composition for flakes and fibers having excellent chemical durability. [Conventional technology] Conventionally, the glass fiber with excellent chemical durability was C.
It is known as glass, and its typical composition is:
The Manufacturing by KLLoewenstein
Technology of Continuous Glass Fibers
According to page 34 of (ELSEVIER, 1983),
SiO 2 65, B 2 O 3 5, Al 2 O 3 4, Mgo3, in weight%
CaO14, Na 2 O 8.5, Fe 2 O 3 0.3. The raw material cost of this C glass is low, but the temperature difference between the working temperature (the temperature at which the viscosity of the glass becomes 1000 poise) and the liquidus temperature is less than 50°C, so glass fibers can be spun, but glass flakes are lost. Difficult to manufacture due to permeability. Glass flakes are mixed with paint and applied to the inner surface of steel pipes, for example, to prevent wear and rust on the inner surfaces of steel pipes, so naturally they are required to have chemical durability. Therefore, A glass with good workability (according to Loewenstein, SiO 2 72.0, Al 2 O 3 2.5, B 2 O 3 0.5, MgO 0.9, CaO 9.0,
Glass flakes made from Na 2 O 12.5, K 2 O 1.5, Fe 2 O 3 0.5) have poor chemical durability and are not practical. Further, even when short glass fibers are produced by flame drawing, the C glass cannot be used because devitrification occurs. The glass composition disclosed in US Pat. No. 4,312,952 as a fiber glass composition that improves the poor workability of C glass contains SiO 2 58-62, Al 2 O 3 1-2, CaO 8- in weight percent. 9.5, MgO2.5−
3.5 , Na2O15-17 , K2O0-1 , B2O35-7 , Li2O0.1-0.4 , ZnO1.5-3.5. This composition is
Improve workability by increasing Na 2 O, Li 2 O and ZnO
Chemical durability is improved by adding . However, Li 2 O and ZnO are very expensive. [Problems to be solved by the invention] As mentioned above, cheap C glass has poor workability, and glass with good workability is expensive. It can be said that this glass composition did not exist before. The present invention solves this contradiction and proposes a glass composition for flakes and fibers that is inexpensive, easy to work with, and has excellent chemical durability. [Means for solving the problem] The gist of the present invention is the following components expressed in weight %: SiO 2 63.0-67.0 B 2 O 3 4.0-4.8 Al 2 O 3 4.0-5.5 TiO 2 0-4.0 MgO 2.5 〜3.6 CaO 4.7〜8.7 BaO 0〜5.0 Na 2 O 7.5〜13.9 K 2 O 0〜2.0 Na 2 O+K 2 O 8.0〜15.5 Fe 2 O 3 0〜1.0 ZrO 2 0〜5.0 TiO 2 +BaO+ZrO 2 2.0〜5.0 and the sum of these components is at least
A glass composition for flakes and fibers, characterized in that the glass composition is 95% by weight. In order to ensure good workability, it is preferable that the working temperature of the glass composition is 150° C. or more higher than the liquidus temperature. More preferably, in order to avoid molding operations at high temperatures, the liquidus temperature of the glass composition is
Since the glass composition is required to have chemical durability, the acid resistance and water resistance are 1% or less expressed as weight loss (see Examples for test method). [Operation] The reason for limiting the composition of the present invention is as follows. SiO 2 forms a glass skeleton together with B 2 O 3 and Al 2 O 3 . When the amount of SiO 2 exceeds 67.0%, the solubility of the glass decreases, and the working temperature of the glass decreases.
The amount of SiO 2 increases, which is undesirable because the liquidus temperature increases.
If it is less than 63.0%, the chemical durability of the glass decreases, which is not preferable. When B 2 O 3 exceeds 4.8%, it is not preferable because it increases the raw material cost of the glass and reduces the temperature difference between the working temperature and the liquidus temperature of the glass. B2O3 is 4.0
%, the viscosity of the glass increases, the working temperature,
This is not preferable because the liquidus temperature increases. Al 2 O 3 is an essential component because it improves the chemical durability of glass, especially water resistance, but it has no effect on improving durability even if it exceeds 5.5%, so the upper limit is 5.5%, and if it is less than 4.0%, it is Water resistance decreases
The lower limit is 4.0%. Although TiO 2 is a component that improves chemical durability, it is preferable not to use it because the raw material is expensive. Even when used, the upper limit is set at 4.0% because there is no effect of improving chemical durability even if it exceeds 4.0%. MgO and CaO are fluxing agents for glass. At the same time, they are used in combination to keep the viscosity curve of the glass appropriate and also to maintain chemical durability. In the present invention, MgO is
Since the liquidus temperature is lowered within the range of 2.5 to 3.6%, it is limited to this range. If CaO exceeds 8.7%, it is not preferable because it increases the liquidus temperature. If it is less than 4.7%, it is not preferable because it reduces chemical durability. BaO does not reduce chemical durability,
It is a component that acts as a fluxing agent and lowers the liquidus temperature. However, since the raw materials are relatively expensive, it is preferable not to use it. Even when using BaO, if it exceeds 5.0%, the effect of lowering the liquidus temperature will be reduced.
The upper limit is 5.0%. Na 2 O and K 2 O are fluxing agents for glass. Since K 2 O is a more expensive raw material than Na 2 O, it is preferable to use Na 2 O as the main component. If Na 2 O exceeds 13.9%, the chemical durability of the glass will decrease, so the upper limit for Na 2 O is 13.9%.
If Na 2 O is less than 7.5%, the solubility of the glass decreases and at the same time the liquidus temperature increases, which is not preferable. Therefore, the upper limit for Na 2 O is 7.5%. K 2 O does not need to be specially prepared as a glass raw material, but it may be mixed in from raw materials used to introduce components other than K 2 O, such as silica sand and feldspar, so 2.0
The upper limit is %. It is known that if K 2 O is introduced in place of Na 2 O, chemical durability can be improved due to the mixed alkali effect. From this point of view, the upper limit for K 2 O is 2.0%. For Na 2 O + K 2 O, the upper limit is 15.5% and the lower limit is 8.0% for exactly the same reason as stated in the section of Na 2 O. Although Fe 2 O 3 is not an essential component, it is mixed as an impurity in the glass raw material, so the upper limit is set at 1.0%. ZrO 2 is a component that increases chemical durability, but
If used in large amounts, the viscosity of the glass will increase and the solubility will decrease, so the upper limit is set at 5.0%. As mentioned above, TiO 2 , BaO, and ZrO 2 are all components that increase chemical durability and therefore
Preferably, the sum of TiO2 , BaO, and ZrO2 is in the range of 2.0 to 5.0% by weight. The effects of the glass components have been described above, but when chemical durability is particularly important, it is preferable to use TiO 2 and ZrO 2 in amounts of up to 4.0% by weight and 5.0% by weight, respectively. The compositions of the invention contain at least 95% by weight of the sum of the components mentioned above.
That is, as other components, ZnO is at most 1% by weight, SrO is at most 1% by weight, PbO is at most 1% by weight.
AS 2 O 3 as a trace component, such as wt%
0.5% by weight, Sb 2 O 3 at most 0.5% by weight, etc. [Example] Next, an example of the present invention will be described. Glass having the composition (wt%) shown in Table 1 was melted and its working temperature, liquidus temperature, water resistance, and acid resistance were measured. The results are shown in Table 1. The liquidus temperature was measured as follows. Crush the glass and pass it through a 1680μm sieve.
The glass particles that remained on the 1190 μm sieve were immersed in alcohol, washed with ultrasonic waves, and dried in a constant temperature bath. The glass particles are placed over a number of holes of 1 mm diameter drilled in a row on a platinum boat and held for 4 hours in a furnace whose temperature is set to have an appropriate temperature gradient in the length direction of the boat. The glass particles on the platinum boat taken out from the furnace were observed, and the highest temperature at which devitrification occurred was defined as the liquidus temperature. Water resistance was measured as follows. Glass is placed in a spinning platinum pot and glass fibers with a diameter of 9 μm are spun. Take about 2 g of glass fiber cut into a length of about 30 mm and keep it in a desiccator for 24 hours to dry. Weigh the sample to the nearest 0.1 mmg. Next, place the sample in a Pyrex glass beaker and add 200 ml of distilled water. This beaker is placed in a constant temperature bath maintained at 80°C for 5 hours. During this time, shake the beaker appropriately.
This liquid is filtered through a glass filter, and the sample is washed with distilled water. After thoroughly drying the sample, calculate its weight.
Weigh accurately to the nearest 0.1 mmg. For the initial sample weight,
The weight loss of the sample after the test is expressed in weight% to indicate water resistance. Measurement of acid resistance follows the measurement of water resistance. Instead of using distilled water in the water resistance test, 200ml of dilute sulfuric acid with a specific gravity of 1200 is used. [Effects of the Invention] As can be seen from the above examples, it had excellent water resistance and acid resistance, and the difference between the working temperature and the liquid phase temperature was 150°C or less, for example, 160 to 300°C, and it had excellent workability. Furthermore, a glass composition can be obtained at a relatively low cost.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%で表示して下記成分 SiO2 63.0〜67.0 B2O3 4.0〜4.8 Al2O3 4.0〜5.5 TiO2 0〜4.0 MgO 2.5〜3.6 CaO 4.7〜8.7 BaO 0〜5.0 Na2O 7.5〜13.9 K2O 0〜2.0 Na2O+K2O 8.0〜15.5 Fe2O3 0〜1.0 ZrO2 0〜5.0 TiO2+BaO+ZrO2 2.0〜5.0 を有し、かつこれらの成分の合計がすくなくと
も95重量%であることを特徴とするフレイク用お
よび繊維用ガラス組成物。
[Claims] 1 The following components expressed in weight%: SiO 2 63.0-67.0 B 2 O 3 4.0-4.8 Al 2 O 3 4.0-5.5 TiO 2 0-4.0 MgO 2.5-3.6 CaO 4.7-8.7 BaO 0- 5.0 Na 2 O 7.5-13.9 K 2 O 0-2.0 Na 2 O + K 2 O 8.0-15.5 Fe 2 O 3 0-1.0 ZrO 2 0-5.0 TiO 2 +BaO+ZrO 2 2.0-5.0, and the sum of these components Glass composition for flakes and fibers, characterized in that the glass composition is at least 95% by weight.
JP29456386A 1986-12-10 1986-12-10 Glass composition Granted JPS63147843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29456386A JPS63147843A (en) 1986-12-10 1986-12-10 Glass composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29456386A JPS63147843A (en) 1986-12-10 1986-12-10 Glass composition

Publications (2)

Publication Number Publication Date
JPS63147843A JPS63147843A (en) 1988-06-20
JPH0461820B2 true JPH0461820B2 (en) 1992-10-02

Family

ID=17809406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29456386A Granted JPS63147843A (en) 1986-12-10 1986-12-10 Glass composition

Country Status (1)

Country Link
JP (1) JPS63147843A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864438B2 (en) * 1995-10-25 2006-12-27 日本板硝子株式会社 Alkali-resistant flaky glass and thermoplastic resin composition and thermosetting resin composition reinforced with the flaky glass
JP4897994B2 (en) * 2000-09-28 2012-03-14 日本板硝子株式会社 Sealed separator for sealed lead-acid battery
JP2003267753A (en) * 2000-10-11 2003-09-25 Paramount Glass Kogyo Kk Glass composition for manufacturing inorganic fiber and its molding
JP2008255002A (en) * 2007-03-15 2008-10-23 Nippon Electric Glass Co Ltd Glass composition for glass fiber, glass fiber, method for producing glass fiber and composite material
WO2008117088A1 (en) 2007-03-28 2008-10-02 Pilkington Group Limited Glass composition
FR2922885B1 (en) * 2007-10-31 2010-10-29 Saint Gobain Technical Fabrics GLASS YARNS WITH A LOW ALUMINUM CONTENT FOR STRENGTHENING ORGANIC AND / OR INORGANIC MATERIALS.
EP2325147B1 (en) * 2008-08-27 2016-06-08 Nippon Sheet Glass Company, Limited Glass flake and coated glass flake
GB201505091D0 (en) * 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
GB201505097D0 (en) * 2015-03-26 2015-05-06 Pilkington Group Ltd Glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145411A (en) * 1974-05-14 1975-11-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145411A (en) * 1974-05-14 1975-11-21

Also Published As

Publication number Publication date
JPS63147843A (en) 1988-06-20

Similar Documents

Publication Publication Date Title
US4312952A (en) Fibre glass composition
US2877124A (en) Glass composition
CA2747993C (en) Composition for high performance glass fibers and fibers formed therewith
JP2565813B2 (en) Optical glass
JPS6054248B2 (en) Alkali-resistant glass composition
GB2237017A (en) Alkali-resistant glass for forming glass fibres.
CA1106413A (en) Glass composition for fiberization
NO144921B (en) ALKALIR RESISTANT GLASS FIBERS.
US2882173A (en) Glass composition
US3044888A (en) Glass fiber
JPS5846459B2 (en) Low density flint optical glass
JPS5812213B2 (en) Highly weather resistant multi-component glass fiber for optical communications
AU741801B2 (en) Artificial mineral wool composition
JPH0461820B2 (en)
JP3132234B2 (en) Glass long fiber
JPH0427180B2 (en)
US4381347A (en) Fibre glass composition
JPS63274638A (en) Composition for high refractive index low melting point glass
US4142906A (en) Glass composition for alkali-resistant glass fiber
US4066465A (en) Alkali-resistant glass composition
US3970466A (en) Chemically stable optical glass
JPS6287432A (en) Optical glass
JPH0444612B2 (en)
JPS6278128A (en) Water-resistant and low-temperature softening glass composition
JPS62162649A (en) Glass composition for fiber