JPH0461788B2 - - Google Patents

Info

Publication number
JPH0461788B2
JPH0461788B2 JP58201775A JP20177583A JPH0461788B2 JP H0461788 B2 JPH0461788 B2 JP H0461788B2 JP 58201775 A JP58201775 A JP 58201775A JP 20177583 A JP20177583 A JP 20177583A JP H0461788 B2 JPH0461788 B2 JP H0461788B2
Authority
JP
Japan
Prior art keywords
current
layer
resistance
carrying
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58201775A
Other languages
Japanese (ja)
Other versions
JPS6092892A (en
Inventor
Seiichi Hayashi
Katsumori Takei
Yoshitaka Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP58201775A priority Critical patent/JPS6092892A/en
Publication of JPS6092892A publication Critical patent/JPS6092892A/en
Publication of JPH0461788B2 publication Critical patent/JPH0461788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/3825Electric current carrying heat transfer sheets

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、通電転写記録用シートの改良に係わ
るものであり、その目的は、通電抵抗層に特定の
固形成分を用いることにより、(1)抵抗値の低減、
(2)耐熱性の向上、(3)支持体層への密着性の向上を
計り、以つて、通電ヘツド印加電圧の低減、通電
ヘツドの汚れ減少、画質の向上を計ることにあ
る。 近年、熱転写記録は、ノンインパクトで無騒
音、メンテナンスフリー、低コスト、小型軽量化
可能、カラー化可能等の特長を有するために、フ
アクシミリ、コンピユーター端末、レコーダー等
の多くの分野で注目されてきた。その内でも、特
に、通電ヘツドにより通電熱転写する方法は、中
間階調を有するフルカラー記録に適しており、将
来の有力なハードコピーとして最も注目されてい
る方式である。通電熱転写記録については、詳し
くは、例えば、「日経エレクトロニクス」64〜68
頁、6月25日号、1979年を参照されたい。 第1図は、通電転写記録用シート1に通電記録
電極5と、帰路電極6を有する通電ヘツドにより
通電している原理図を示すものであり、通電ヘツ
ドを、記録シートの通電抵抗層2に押圧接触させ
て、通電し、抵抗層を発熱させて昇温加熱し、支
持体層3を熱が伝達してインク層4が昇温し、溶
融流動することにより、被記録紙上に熱転写記録
されるものである(被記録紙は図示してない)。 ここで、通電熱転写方式の抵抗層に要求される
最も重要な性能は、(1)抵抗値を102〜5×105Ω/
□位に低下させたいこと、(2)抵抗層に少くとも
285℃以上の短時間耐熱性を持たせたいこと、(3)
通電ヘツドの押圧接触による剪断摩擦力に対して
支持体層への抵抗層の密着性は十分であること、
等である。しかし、これらの要求性能に対し、従
来提案されてきた通電抵抗層は、いづれも不十分
であるのが現状である。 これらの問題点と、それらを解決するための本
発明者らの考え方につき順を追つて述べる。 先ず第1に抵抗値の低減である。この場合、抵
抗層が通電により発熱するためには、抵抗層の抵
抗値は、絶縁体と良導体の中間の抵抗値を有する
必要があり、抵抗値は、通電電力量、記録シート
の熱伝導率、インク層の融解エネルギー等のバラ
ンスで設定される。抵抗層を発熱させるために、
従来から、アルミニウム、銅、鉄、錫、亜鉛、ニ
ツケル、モリブデン、銀等の金属粉を樹脂バイン
ダー中に導電性分散粒子として分散させて抵抗層
を形成する方法(特開昭56−86790〜特開昭56−
86793)、沃化銅を樹脂バインダー中に分散させる
方法(特開昭51−106445)、酸化亜鉛、二酸化チ
タンを樹脂バインダー中に分散させる方法(特開
昭53−74047)、導電性ポリマーを支持体層に塗布
する方法(特開昭51−106445)、グラフアイト、
アセチレンブラツクを樹脂バインダーに分散す方
法(特開昭56−27382)等が提案されている。 本発明者らも、上記の種々の提案を、ことごと
く検討してみた。これらの方法の内、樹脂バイン
ダーとの親和性が良好で、均一にバインダーに微
細粒子状に分散でき、且つバインダー樹脂を溶解
する溶剤との親和性も良好で、溶剤にも良好に分
散でき、価格も比較的に安価な導電性粒子はグラ
フアイトやアセチレンブラツク等のカーボン系の
粒子であることが判つた。カーボン系粒子として
は、上記のグラフアイトや、カーボンブラツクが
あるが、カーボンブラツクは、製造法によつてフ
アーネス法、チヤンネル法、ホーマル法等があ
り、粒子の特性値には多くのタイプがある。これ
らのうち、グラフアイトと、アセチレンブラツク
は、カーボン系粒子のうちでも導電性が良好であ
り、ポリマーに混練して、これまでにも面発熱
体、帯電防止材、面スイツチ、包装材料等に用い
られている。 本発明者らの通電抵抗層は、その抵抗値を小さ
くすればするほど、通電ヘツドの印加電圧を小さ
くでき、従つて、電源とヘツドの駆動系は容量を
小さくでき、信頼性が増し、安価にできる。表面
抵抗値は、102〜5×105Ω/□、好ましくは、
103〜104Ω/□にしたい。然るに、グラフアイト
や、アセチレンブラツク等の従来の導電性付与フ
イラーを用いて抵抗層を形成すると、表面抵抗値
は5×105Ω/□以下にすることは困難であるこ
とが判つた。グラフアイト又はアセチレンブラツ
クの充填量を35〜40重量%以上というような、多
量にすると3×105〜5×105Ω/□程度にできる
が、支持体層への抵抗層の塗布が困難になり、ま
た、通電ヘツドを押圧接触させたときの力学的強
度、支持体層への抵抗層の密着性が低下して実用
に耐えない。 本発明者らは、抵抗値を低下させるべく、カー
ボン系粒子について、あらゆるタイプの微粒子を
捜し検討を重ねた結果、従来のグラフアイトやア
セチレンブラツクと異なり、吸油量が大きく、
DBP吸油量が300ml/100g以上であるカーボン
ブラツクが有効であることを見出した。かかるカ
ーボンブラツクは、特殊なオイルフアーネスブラ
ツクとして、オランダのAKZ0 Chemie社が開発
した「ケツチエンブラツク」(商品名)が最近市
販されている。 ケツチエンブラツクは、これまでにも、ポリエ
チレン、ポリプロピレン等の汎用樹脂にバルクで
混練してコンパウンドとして、面発熱体、電線被
覆ケーブル、帯電防止剤等に使用された例はあ
る。本発明者らも、ケツチエンブラツクを、ポリ
塩化ビニル/酢酸ビニル共重合体やポリブチラー
ル、ポリウレタン、フエノキシ樹脂、ニトロセル
ロース、ポリエステル等のバインダー樹脂に従来
と同様にバルクで混練してコンパウンドとした
後、溶剤に溶解して溶液を支持体層上に塗布して
抵抗層を形成してみた。しかし、表面抵抗値は5
×105Ω/□以下には低下できなかつた。また、
ポリビニルブチラールのコンパウンドを120℃前
後で溶融させて、ホツトメルト法で支持体層上に
塗布して抵抗層を形成してみた。この場合も表面
抵抗値は5×105Ω/□以下には低下できなかつ
た。 本発明者らは、さらに検討を重ね、通電抵抗層
を構成する他の固形成分(主成分はバインダーの
役目を果す樹脂成分)を溶解する溶剤の溶液系の
中で、ケツチエンブラツクを、ボールミルで分散
させた後に、該溶液を支持体層に塗布し、溶剤を
乾燥することにより形成した抵抗層は、表面抵抗
値を顕著に低下させて、5×105Ω/□以下、103
〜104Ω/□にも到達しうるという注目すべき結
果を得た。 次に、耐熱性の問題である。通電発熱により、
抵抗層と支持体層は、20μsec〜20msecと短時間
ではあるが、150〜350℃に達すると測定された。
支持体層の素材として耐熱性からはポリイミドフ
イルムとコンデンサー紙が侯補に挙げられるが、
これらは2〜10μmの薄いフイルムの製造が困難
であり、熱伝導率の点から微妙な中間階調を転写
するに必要な10μm以下の薄いフイルムを提供し
てくれない。またポリイミドフイルムは非常に高
価であり使い捨てには適さない。フイルムの厚
さ、耐熱性、力学的強度、価格のバランスから、
支持体層の素材は、ポリエチレンテレフタレート
(PET)の2軸延伸フイルムを選択せざるを得な
い。 しかし、PETフイルムを支持体層にした場合、
抵抗層の耐熱性が低いと、PETフイルムは通電
ヘツド針の走行に沿つて溶融し、穴があくという
ことが大きな問題になる。このために、画質を著
しく低下させ、ときにはヘツド針のステイツクに
よるトラブルを発生させる。抵抗層と支持体層の
内で最も高温度になる場所は、通電ヘツドに接触
している抵抗層の上面である。従つて、抵抗層の
耐熱性の向上は必須の条件であり、また、抵抗層
の耐熱性を向上させれば、支持体層のPETフイ
ルムが溶融することはないことが判つた。即ち、
耐熱性抵抗層は、熱に対して、支持体層PETフ
イルムへの防壁の役割を果す訳である。 本発明者らは耐熱性バインダー素材について、
多くの樹脂を検討した。耐熱性バインダーは耐熱
性のみが優れていれば十分という訳にはいかな
い。カーボン粒子の分散性、PETフイルムへの
密着性、塗工のレオロジー特性等も考慮しなけれ
ばならない。なかなかこれらの条件を満す耐熱性
バインダーを見出すのは困難であつた。例えば、
ポリ塩化ビニル/酢酸ビニル共重合体(PVCl/
VAC)やポリビニルブチラール(PVB)はカー
ボン粒子の分散性は非常に優れているが、耐熱性
は劣りPETフイルムに穴があいてしまう。硝化
綿も分散性はかなり良好であるが、耐熱性は若干
不足で、高濃度画像の個所は穴があく。変性ポリ
エステルはPETフイルムへの密着性は非常に優
れているが、耐熱性は中程度であり、カーボン粒
子分散性は非常に劣る。 本発明者らは多くの検討の結果、フエノキシ樹
脂を、ポリイソシアネート、メラミン−ホルムア
ルデヒド、フエノール−ホルムアルデヒド、尿素
−ホルムアルデヒド等の少くともいずれか1種の
架橋剤で架橋したものは本発明の目的とする通電
熱転写方式の通電抵抗層の耐熱性向上に顕著な効
果を有することを発見した。温度測定の結果、フ
エノキシ樹脂架橋物は300℃以上の短時間耐熱性
をクリアしており、融点が265〜270℃の2軸延伸
PETフイルムにも穴があかないという事実を見
出した。この結果を基に、本発明者らは先に、耐
熱性を向上させるために、通電抵抗層の固形成分
に、フエノキシ樹脂と、それの架橋剤を含有して
なる通電熱転写用の記録シートを提案し特許を出
願した。 しかし、フエノキシ樹脂の架橋構造物にも若干
の欠点はある。カーボン粒子の分散性は、
PVCl/VACやPVBは非常に優れ、次に硝化綿
がかなり良好であり、フエノキシ樹脂はその次と
いうランクである。カーボン粒子の分散性は画
質、特に中間階調域の画質に影響し、分散性が悪
いと特に中間階調域が斑々になる。 硝化綿をポリイソシアネートで架橋した架橋構
造物の耐熱性(PETフイルムに溶融により穴が
あく温度)は、285〜300℃であり、フエノキシ樹
脂架橋物よりも若干耐熱性は低いが、PVCl/
VACやPBTよりも格段に優れている。硝化綿系
は、フル濃度点の電力印加点は、PETフイルム
に穴があく場合があるが、低濃度〜中間階調域の
電力印加点はPETフイルムに穴があくことはな
く、通電ヘツド針のステイツクによるトラブル、
通電ヘツドの汚れ等は大きな問題にならない。画
質はフエノキシ樹脂系よりも却つて良好である。 本発明者らは、耐熱性向上と分散性向上に効果
が認められた硝化綿の架橋構造物を樹脂バインダ
ーとして用いた通電転写記録用シートを提案する
ものである。 第3点は、PETフイルムへの密着性の問題で
ある。硝化綿は耐熱性は抜群であり、カーボン粒
子分散性もかなり良好ではあるが、PETフイル
ムへの密着性は中程度である。1mm間隔クロスカ
ツトの粘着テープによるハク離試験法によれば60
%はハク離してしまう。そこで更にバインダーと
して硝化綿の密着性を向上すべく検討した。
PETフイルムをコロナ放電して表面を活性にし
て塗工してみたが密着性への効果はそれぼど向上
しなかつた。変性ポリエステルの薄層(0.3〜1μ
m)をPETフイルムにアンダーコートしてから、
硝化綿を塗工すると、密着性はかなり向上し、ク
ロスカツト法での評価は、ハク離が約10〜15%程
度である。しかし、アンダーコートの方法は、ア
ンダーコートのために、生産は一工程増えること
になり、記録シートの価格を高めてしまう。 そこで、硝化綿とブレンドして密着性を向上で
きる樹脂素材を検討した。この場合、密着性向上
素材に要求される特性は、(1)硝化綿との相溶性が
よいこと、(2)カーボン粒子の分散性がよいこと、
(3)耐熱性がある程度よいこと、等である。エポキ
シ樹脂、フエノール樹脂、変性ポリエステル、
PVB、PVCl/VAC、ポリウレタン等を検討し
た結果、ブレンドする量を規定してやれば、ポリ
ウレタンが最も上記要求特性を満たすことを見出
した。ポリウレタンは密着性の向上のみでなく、
硝化綿架橋物系の塗工膜が硬質で柔軟性に乏しい
のに対し、柔軟化させるという効果も併せもつて
いる。 先述の如く、通電抵抗層の最も重要な改良要求
は、(1)抵抗値低減化、(2)耐熱性向上、(3)密着性向
上である。これらの要求を満すべく検討を重ね、
本発明の素材を見出したのであるが、前述の素材
を無制限の割合で含有させてよいものではない。
これらの素材の含有割合いは、抵抗値、耐熱性、
密着性にそれぞれ関数の変数として働く。従つ
て、ハードコピーマシンの仕様に従つて、結局、
通電抵抗層の設計抵抗値、耐熱性、密着性に応じ
て、上記素材の含有割合いは、一定の範囲内で若
干ずつ変わつてくる訳である。 以上に詳述した如く、現状の提案では不十分で
ある通電抵抗層の諸欠点を改良すべく鋭意検討を
重ねた末に、新規な通電転写記録用シートを発明
するに至つた。 即ち、本発明は、通電により抵抗層を発熱して
インク層を被記録紙に熱転写させ記録を得るに供
する、通電抵抗層、支持体層、およびインク層よ
り成る通電熱転写用記録シートにおいて、 通電抵抗層は、少くとも次の(1)〜(4)の固形成
分、 (1) 導電性分散粒子としてDBP吸油量が300ml/
100g以上であるカーボンブラツクをCK=5〜
35重量% (2) 窒素分10.7〜12.2%、平均重合度30〜300の
硝化綿をCN=20〜60重量% (3) ポリウレタンをCu=10〜50重量% (4) 上記硝化綿およびポリウレタンの架橋剤とし
てポリイソシアネートをCC=5〜25重量%、
を含有し、且つ上記の(1)〜(4)の固形成分の和
は、 (5) CK+CN+Cu+CC=80〜100重量%を満し、 支持体層は、 (6) ポリエチレンテレフタレートから成る厚さ2
〜10μmの2軸延伸フイルム、 から成り (7) 通電抵抗層の表面抵抗値が、102〜5×105
Ω/□の範囲にある、 上記(1)〜(7)を全て満すことを特徴とする通電転
写記録用シート、である。 本発明において、DBP吸油量の測定は、JIS
K6221の吸油量測定A法によるもので、アブソー
ブトメーターにより、ジブチルフタレート
(DBP)をカーボンブラツクに吸油させるもので
ある。カーボン系粒子のDBP吸油量と、溶液法
で塗布した抵抗層の表面抵抗値の間には強い相関
性がある。DBP吸油量が300ml/100g未満では、
表面抵抗値を5×105Ω/□以下にすることは困
難である。DBP吸油量が300ml/100g以上のカ
ーボン系粒子であれば、明確な理由はよく判らな
いが表面抵抗値を102〜5×105Ω/□にすること
ができることが判つた。 導電性の良好なアセチレンブラツクのDBP吸
油量は210〜280ml/100gである。DBP吸油量が
300ml/100g以上のカーボン粒子としてはケツチ
エンブラツク(商品名)が挙げられる。ケツチエ
ンブラツクのDBP吸油量は300〜450ml/100gで
ある。DBP吸油量が450ml/100gより多いカー
ボン粒子は、現在未だ世の中に見当たらない。通
常のゴム用カーボンブラツク、カラー用カーボン
ブラツクのDBP吸油量は50〜150ml/100gであ
り、抵抗層に用いたときの表面抵抗値は106〜107
Ω/□のオーダーであり、本発明の目的には使え
ない。 本発明の目的を達成するために用いるカーボン
系粒子は、ケツチエンブラツクが好適である。バ
インダー樹脂へのケツチエンブラツクの分散は溶
液中で行なうことが必須の条件である。ケツチエ
ンブラツクは、カルボキシ基含量約0.5ミリ当
量/g、カルボキシル基を除く全酸性度約0.3ミ
リ当量/gであり、極性基は有するが、水/トル
エン2相中では、トルエン相中に浮遊し、本質的
には親油性である。従つて、バインダー樹脂を溶
解した親油性の有機溶剤系の溶液の中でケツチエ
ンブラツクを、ボールミルでほぼ24〜48時間、ア
トライターで6〜12時間、分散処理することによ
り、均一分散することができる。通電熱転写方式
において、抵抗発熱粒子の分散の均一性は、プリ
ント物の画質に大きく作用する。バルク状でバイ
ンダー樹脂にケツチエンブラツクを混練分散させ
たコンパウンドでは、均一な分散が不可能であ
り、表面抵抗値は106〜107Ω/□になつてしま
う。 抵抗層の固形成分に占めるカーボンブラツクの
量は、5〜35重量%、好ましくは、10〜25重量%
である。このように、DBP吸油量が300ml/100
g以上のカーボンブラツクを用いると、カーボン
ブラツクの含有量が顕著に少量であるにも拘わら
ず、表面抵抗値を低下できることが、本発明の特
長である。しかし、カーボンブラツク含有量が5
重量%未満では、表面抵抗値を5×105Ω/□以
下にはできない。他方、カーボンブラツク含有量
が35重量%を越えると、表面抵抗値が、ほぼ102
Ω/□にできるが、抵抗層が力学強度的に脆くな
り、且つ支持体層から、ハク離しやすくなる。ま
た、塗工が円滑に行なえず、塗工物が筋斑が発生
する。カーボンブラツク含有量は5〜35重量%の
範囲内で、設計抵抗値に応じて増減し、設定す
る。 抵抗層の耐熱性を向上するための本発明で使用
する樹脂は、窒素分10.7〜12.2%、平均重合度は
30〜300の工業用硝化綿である。重合度はn=30
〜300、好ましくはn=50〜150である。重合度が
n<30の場合は、カーボン粒子の分散性は良好で
あるが、耐熱性と塗膜の力学的強度が相当に劣り
実用に耐えない。他方、n>300の場合は逆に耐
熱性と力学的強度が優れているが、分散性が悪い
ため、熱転写画像に斑が生じ、中間階調部の画質
が不満足になり、塗工膜のカールがひどくなる。 硝化綿は繰り返し単位毎に平均1.9〜2.3個の水
酸基を有する。カーボン粒子分散性がかなり良好
であるのは、カーボン粒子表面のカルボキシ基等
と何らかの化学結合ないしフアンデルワールス力
的結合をしているかも知れない。 硝化綿の水酸基を利用して、本発明では、ポリ
イソシアネートと架橋反応させる。架橋剤による
架橋構造をもたない単独の硝化綿では、抵抗層の
耐熱性は285℃以上をクリアしない。ポリイソシ
アネートとしては、例えば、2,4−トリレンジ
イソシアネート、2,6−トリレンジイソシアネ
ート、ジフエニルメタン−4,4′−ジイソシアネ
ート、2,4−トリレンジイソシアネート3モル
とトリメチロールプロパン1モルの反応物、3,
3′−ビトリレン4,4′ジイソシアネート、3,
3′ジメチルジフエニルメタン4,4′ジイソシアネ
ート、2,4トリレンジイソシアネートダイマー
(ウレチジンジオン)が挙げられるが,4トリレ
ンジイソシアネートとトリメチロールプロパンの
反応物が好適である。 カーボンブラツクを硝化綿、ポリウレタンに有
機溶剤中で十分に分散させてから、塗工直前に架
橋剤を添加し攪拌混合するのが望ましい。架橋反
応を十分に行ない耐熱性を向上させるためには、
塗工、溶剤蒸発乾燥後、40〜60℃で24〜48時間、
硬化反応を行なうことが望ましい。 抵抗層PETフイルムへの密着性を向上するた
めに本発明で使用するポリウレタンは、ポリウレ
タン接着剤として市販されているものを使用でき
る。例えば、2官能以上のポリエステル、ポリエ
ーテルとTDI、MDI等との反応高分子量化物、
ジイソシアネートと多官能活性水素化合物との反
応によるプレポリマー等がある。 架橋剤は、硝化綿の水酸基のみでなく、ポリウ
レタンのウレタン結合中の活性水素とも反応して
架橋構造を生成し、耐熱性を向上する。しかし、
硝化綿が存在せず、ポリウレタンのみの架橋剤に
よる架橋構造だけでは、耐熱性は不十分である。 硝化綿/ポリウレタンの含有比率は、3/7〜
7/3、好ましくは4/6〜6/4である。抵抗
層固形成分に占める硝化綿の含有量はCN=20〜
60重量%である。CN<20%の場合は、耐熱性285
℃以上は不可能であり、他方、CN>60%の場合
は密着性が不十分となり、塗工膜のカールがひど
くなる。架橋剤の含有量は、CC=5〜25重量%
である。CC<5では耐熱性が劣り、他方、CC
25の場合は抵抗値が大きくなつてしまうことと、
密着性が不十分になつてしまう。ポリウレタンの
含有量はCu=10〜50重量%である。Cu<10%の
場合は、密着性に対し、ポリウレタンを含有させ
ない場合とほとんど差がない。他方、Cu>50%
の場合は、密着性は極めて良好であるが、耐熱性
が低下する。 抵抗層の固形成分の内、カーボンブラツク
(CK)、硝化綿(CN)、架橋剤(CC)、ポリウレタ
ン(Cu)の総和は、Σ=CK+CN+Cu+CC=80〜
100重量%である。即ち、20%未満の範囲で、上
記の4種以外の素材を含有してもよい。例えば、
柔軟剤、耐摩耗剤、帯電防止剤、潤滑剤、平滑
剤、バインダー用樹脂、導電性粒子等である。特
に好適な例は、ポリ塩化ビニル/酢酸ビニル共重
合体の添加であり、硝化綿のカールの傾向を抑制
し、カーボン粒子の分散性を、一層向上させるの
で、固形成分の内、20重量%未満を添加してもよ
い。Σ<80%になると、分散性、抵抗値、耐熱
性、密着性のいづれかの性能が大きく低下し、本
発明の目的とする通電記録シートは得られない。 支持体層のPETフイルムの厚さは、2〜10μm
であり、好ましくは4〜7μmである。フイルム
厚さが薄いほど熱伝達効率は良くなり、印加電力
は少なくて済み、画質も鮮鋭になるので望ましい
が、2μmより薄くなると、塗工中や、熱転写時
のシワ発生が生じ、実用的には困難である。他
方、10μmを越えると、熱伝達効率が悪く、印加
電力が大きくなり、横方向への熱拡散による印画
のドツト径が大きくなり画質の分解能が低下す
る。 硝化綿、ポリウレタンを、有機溶剤にそれぞ
れ、又は同時に溶解して、カーボンブラツク粒子
をボールミル、アトライター等で分散させた分散
液に、架橋剤を塗工直前に添加して攪拌混合する
ことが好ましい。塗工機の塗工ヘツドは、リバー
スロール、グラビアロール、グラビアオフセツト
ロール、ドクターブレード、ワイヤーバー等を用
いることができる。塗工液の固形成分濃度は10〜
40重量%、好ましくは20〜30重量%である。塗工
した後、溶剤を乾燥炉により蒸発乾燥する。架橋
剤による硝化綿とポリウレタンの架橋反応は、乾
燥炉中でも若干行なわれているが、十分な反応の
ためには、更に、別の工程で先述の条件で処理す
ることが望ましい。 インク層(第1図の4)は、ホツトメルト法か
または溶液法により、通電抵抗層2とは反対側の
支持体層3に塗工する。インク層は、パラフイン
ワツクス、変性ワツクス、カルナバワツクス等の
ワツクスをほぼ60重量%、色材顔料又は染料を20
重量%、樹脂を20重量%の構成にすることが望ま
しい。イエロー、シアン、マゼンタ、ブラツク等
の顔料又は染料を含むインク組成物は、第1図の
4の如く、一色に塗工してもよいし、又は、第2
図4(41〜44)の如く、長手方向にダンダラ
塗りに塗工してもよい。 以上に詳述した本発明の通電抵抗層の表面抵抗
値は、102〜5×105Ω/□の範囲にある。好まし
くは103〜104Ω/□である。この様に、小さい抵
抗値に到達できたのは、PBP吸油量が300ml/
100g以上であるカーボンブラツクを用いて、バ
インダー樹脂に溶液中分散を行ない、溶液法によ
り塗工を行なうことにより達成されたものであ
る。 本発明の通電抵抗層は285〜310℃の短時間耐熱
性をもち、最高濃度(光学密度0D≒1.5)を得る
ための印加電力を加えた場合に、PETフイルム
層が溶融し穴があく場合もあるが、低濃度〜中間
階調濃度では、穴あきの問題は全く解決した。こ
れは主として、特定の硝化綿を特定量含有させ、
架橋剤により架橋構造を形成した効果によるもの
である。 本発明の通電抵抗層と支持体層の間の密着性は
ほぼ完全である。1mm間隔クロスカツトによる粘
着テープのハク離試験結果では、ハク離は15%以
内である。これは、特定量のポリウレタンを含有
させた効果によるものである。 本発明の通電転写記録用シートは次の如き長所
を生み出す。 (1) 表面抵抗値を103〜104Ω/□にすれば、印加
電圧を低く、15〜50Vにできるので、通電ヘツ
ドを駆動するICを安価にできる。また、電源
も安価にできる。 (2) 印加電圧を低くできるので、放電が減少し、
通電ヘツドの寿命が飛躍的に向上する。 (3) 通電ヘツドの放電が減少するので、ヘツドへ
の抵抗層の削りクズの付着量が飛躍的に減少す
るので、メンテナンスが向上する。 (4) カーボンブラツクの分散が均一であるので、
画質が向上し、微妙な中間階調が鮮明に印刷で
きるようになつた。 (5) 耐熱性が向上したのでPETフイルムの穴あ
きがほぼなくなり、通電ヘツドのステイツクに
よるトラブルがなくなり、また、穴あきによる
トラブルがなくなり、また、穴あきによる画質
の汚れがなくなつた。 (6) 密着性が向上したので、抵抗層のスポツト的
ハク離や、熱転写中の通電ヘツドへの抵抗層の
ハク離クズの付着がなくなつた。 以下に、実施例により本発明を説明する。勿
論、本発明はこれにより限定されるものではな
い。 なお、本発明で定義するDBP吸油量、表面抵
抗値、耐熱性、密着性の測定法は次の通りであ
る。 (1) DBP吸油量 JIS K6221の吸油量測定A法 (2) 表面抵抗値 平滑平面の台上に通電抵抗層を上面にして置
き、1対の金メツキの真鍮電極(5mm巾、35mm
長、重量350g)を平行にして通電抵抗層の上に、
電極間間隔35mmに置き、抵抗値を電位計で計測す
る。 測定室は、25℃、相対湿度65%の環境である。 (3) 耐熱性 予め、標準の通電抵抗層を用いて、通電ヘツド
の印加電圧、電流から求められる電力量と、赤外
線温度計から測定した温度との関係の較正曲線を
作成しておき、各抵抗層サンプルに対して、次第
にヘツド電力量を印加していき、透過型光学顕微
鏡を用いて、PETフイルム支持体層に溶融によ
り穴があくときの温度を評価し、その温度を耐熱
性の尺度とする。色材ブラツクの熱転写画像のフ
ル濃度(光学密度0D=1.4〜1.5)で、PETフイル
ムに穴があかないとき、耐熱性は十分である。 (4) 密着性 クロスカツト試験機(東洋精機製)により、鋼
板の上に、抵抗層を塗工したPETフイルムを置
き、PETフイルムまでカツトされない荷重で、
1mm間隔に縦10本、横10本にクロスに抵抗層をカ
ツトし、粘着テープで剥ぎ、剥がれずに残つた数
を密着性の尺度(%)とする。 実施例1〜2、および比較例1〜5 第1表に示すごとく、種々のカーボンブラツク
を下記のバインダー樹脂に分散し、支持体層とし
てPETフイルムに塗布し、溶剤を蒸発乾燥し、
架橋反応を行なつた後に、表面抵抗値を測定し
た。 (1) 分散条件 カーボンブラツク; 15部(重量) 硝化綿(旭化成、セルノバBTH1/2、窒素分
11.5〜12.2%、平均重合度88) ;30部 ポリ塩ビ/酢ビ共重合体(UCC,VYHH)
;13部 ポリウレタン(日本ポリウレタン、N−
2304) ;30部 ポリイソシアネート(日本ポリウレタン、コ
ロネートL) 12部 MEK/トルエン=1/1 ;400部 分散は、ポリイソシアネートを除きボールミル
で24時間分散し、塗工直前にポリイソシアネート
を加えて攪拌混合した。 (2) 塗工 支持体;2軸延伸PETフイルム(8μm) 塗工機;3本リバースロールコーター 塗工速度;20m/分、塗工厚さ約4μm(乾燥
厚) 乾 燥;熱風150℃、炉長4m (3) 硬化反応;80℃、20分後に45℃、24時間 (4) 結果
The present invention relates to the improvement of a current transfer recording sheet, and its purpose is to (1) reduce the resistance value by using a specific solid component in the current flow resistance layer;
The objective is to (2) improve heat resistance and (3) improve adhesion to the support layer, thereby reducing the voltage applied to the current-carrying head, reducing dirt on the current-carrying head, and improving image quality. In recent years, thermal transfer recording has attracted attention in many fields such as facsimile machines, computer terminals, and recorders because it has features such as non-impact, noiseless, maintenance-free, low cost, can be made smaller and lighter, and can be colored. . Among these methods, the method of electrical thermal transfer using a current-carrying head is particularly suitable for full-color recording with intermediate gradations, and is the method that is attracting the most attention as a promising future hard copy method. For details on electrical thermal transfer recording, see, for example, "Nikkei Electronics" 64-68.
See Page, June 25, 1979. FIG. 1 shows a principle diagram in which current is applied to a current-carrying transfer recording sheet 1 by a current-carrying head having a current-carrying recording electrode 5 and a return electrode 6. The current-carrying head is connected to a current-carrying resistance layer 2 of the recording sheet. The ink layer 4 is brought into contact with pressure and energized to generate heat and heat up the resistance layer, and the heat is transferred to the support layer 3, causing the ink layer 4 to rise in temperature and melt and flow, thereby thermal transfer recording is performed on the recording paper. (The recording paper is not shown). Here, the most important performance required for the resistance layer of the current thermal transfer method is (1) the resistance value of 10 2 to 5 × 10 5 Ω/
(2) At least the resistance layer should be lowered to □.
(3) We want to have short-term heat resistance of 285℃ or higher.
The adhesion of the resistance layer to the support layer is sufficient against the shearing frictional force caused by the pressing contact of the current-carrying head;
etc. However, the current situation is that all of the current-carrying resistance layers that have been proposed so far are insufficient in meeting these required performances. These problems and the inventors' ideas for solving them will be described in order. The first thing to do is to reduce the resistance value. In this case, in order for the resistance layer to generate heat when energized, the resistance value of the resistance layer must be between that of an insulator and a good conductor, and the resistance value is determined by the amount of electricity applied, the thermal conductivity of the recording sheet , is set based on the balance of the melting energy of the ink layer, etc. To generate heat in the resistance layer,
Conventionally, there has been a method of forming a resistive layer by dispersing metal powders such as aluminum, copper, iron, tin, zinc, nickel, molybdenum, silver, etc. in a resin binder as conductive dispersed particles (Japanese Patent Laid-Open No. 56-86790~ 1977-
86793), method of dispersing copper iodide in a resin binder (JP-A-51-106445), method of dispersing zinc oxide and titanium dioxide in a resin binder (JP-A-53-74047), supporting conductive polymer Method for applying to body layer (Japanese Patent Application Laid-Open No. 51-106445), graphite,
A method of dispersing acetylene black in a resin binder (Japanese Patent Application Laid-Open No. 56-27382) has been proposed. The present inventors have also thoroughly considered the various proposals mentioned above. Among these methods, it has good affinity with the resin binder and can be uniformly dispersed in the binder in the form of fine particles, and also has good affinity with the solvent that dissolves the binder resin and can be well dispersed in the solvent. It has been found that relatively inexpensive conductive particles are carbon-based particles such as graphite and acetylene black. Examples of carbon-based particles include the above-mentioned graphite and carbon black. Carbon black can be manufactured using the furnace method, channel method, formal method, etc., and there are many types of particle characteristics. . Among these, graphite and acetylene black have good conductivity among carbon particles, and have been kneaded into polymers to be used in surface heating elements, antistatic materials, surface switches, packaging materials, etc. It is used. The lower the resistance value of the current-carrying resistance layer developed by the present inventors, the smaller the voltage applied to the current-carrying head. Therefore, the capacity of the power supply and drive system for the head can be reduced, making it more reliable and less expensive. Can be done. The surface resistance value is 10 2 to 5×10 5 Ω/□, preferably
I want to set it to 10 3 to 10 4 Ω/□. However, it has been found that when a resistive layer is formed using a conventional conductive filler such as graphite or acetylene black, it is difficult to reduce the surface resistance value to 5×10 5 Ω/□ or less. If the filling amount of graphite or acetylene black is increased to 35 to 40% by weight or more, it is possible to achieve a resistance of about 3 x 10 5 to 5 x 10 5 Ω/□, but it is difficult to apply the resistance layer to the support layer. In addition, the mechanical strength and the adhesion of the resistance layer to the support layer deteriorate when the current-carrying head is brought into pressure contact with the resistance layer, making it impractical for practical use. The inventors of the present invention have repeatedly searched and studied all types of carbon-based particles in order to lower the resistance value.
It has been found that carbon black with a DBP oil absorption of 300 ml/100 g or more is effective. Such a carbon black has recently been commercially available as a special oil furnace black called "Ketschen Black" (trade name) developed by AKZ0 Chemie of the Netherlands. Ketchen Black has been kneaded in bulk with general-purpose resins such as polyethylene and polypropylene to form a compound and used for surface heating elements, wire-coated cables, antistatic agents, etc. The present inventors also made a compound by kneading Kettien Black in bulk with a binder resin such as polyvinyl chloride/vinyl acetate copolymer, polybutyral, polyurethane, phenoxy resin, nitrocellulose, or polyester in the same manner as before. Thereafter, a resistive layer was formed by dissolving it in a solvent and applying the solution onto the support layer. However, the surface resistance value is 5
It could not be lowered below ×10 5 Ω/□. Also,
A resistive layer was formed by melting a polyvinyl butyral compound at around 120°C and applying it onto a support layer using a hot melt method. In this case as well, the surface resistance value could not be lowered below 5×10 5 Ω/□. The inventors of the present invention conducted further studies and determined that KETSUCHEN BLACK was used in a ball mill in a solution system of a solvent that dissolves other solid components (the main component is a resin component that serves as a binder) constituting the current-carrying resistance layer. After dispersing the solution, the solution is applied to the support layer and the solvent is dried to form a resistive layer, which significantly reduces the surface resistance value to 5×10 5 Ω/□ or less, 10 3
We obtained the remarkable result that it was possible to reach ~10 4 Ω/□. Next is the issue of heat resistance. Due to heat generated by electricity,
The resistance layer and the support layer were measured to reach a temperature of 150 to 350°C, although it was for a short time of 20 μsec to 20 msec.
Polyimide film and capacitor paper are recommended materials for the support layer in terms of heat resistance.
It is difficult to manufacture a thin film of 2 to 10 .mu.m with these methods, and from the viewpoint of thermal conductivity, a thin film of 10 .mu.m or less, which is necessary for transferring delicate intermediate gradations, cannot be provided. Furthermore, polyimide film is very expensive and is not suitable for disposable use. From the balance of film thickness, heat resistance, mechanical strength, and price,
As the material for the support layer, a biaxially stretched polyethylene terephthalate (PET) film must be selected. However, when PET film is used as the support layer,
If the resistance layer has low heat resistance, the PET film will melt along the path of the current-carrying head needle, causing holes to form, which is a major problem. This significantly reduces image quality and sometimes causes troubles due to the head needle sticking. The highest temperature of the resistive layer and support layer is the upper surface of the resistive layer that is in contact with the current carrying head. Therefore, it has been found that improving the heat resistance of the resistance layer is an essential condition, and that if the heat resistance of the resistance layer is improved, the PET film of the support layer will not melt. That is,
The heat-resistant resistance layer serves as a barrier to the support layer PET film against heat. Regarding the heat-resistant binder material, the present inventors
Many resins were considered. It is not sufficient for a heat-resistant binder to have only excellent heat resistance. Dispersibility of carbon particles, adhesion to PET film, rheological properties of coating, etc. must also be considered. It has been difficult to find a heat-resistant binder that satisfies these conditions. for example,
Polyvinyl chloride/vinyl acetate copolymer (PVCl/
VAC) and polyvinyl butyral (PVB) have very good dispersibility of carbon particles, but they have poor heat resistance and cause holes in PET films. Nitrified cotton also has fairly good dispersibility, but its heat resistance is somewhat lacking, and there are holes in areas with high density images. Modified polyester has very good adhesion to PET film, but has only moderate heat resistance and very poor carbon particle dispersibility. As a result of many studies, the present inventors have found that a phenoxy resin crosslinked with at least one crosslinking agent such as polyisocyanate, melamine-formaldehyde, phenol-formaldehyde, urea-formaldehyde, etc., is suitable for the purpose of the present invention. We have discovered that this method has a remarkable effect on improving the heat resistance of the current-carrying resistance layer of the current-carrying thermal transfer method. As a result of temperature measurement, the phenoxy resin crosslinked material passed the short-term heat resistance of 300℃ or more, and it was biaxially stretched with a melting point of 265 to 270℃.
We discovered that there are no holes in PET film either. Based on this result, the present inventors first developed a recording sheet for electrical thermal transfer that contains a phenoxy resin and its crosslinking agent in the solid components of the electrical resistance layer in order to improve heat resistance. We made a proposal and applied for a patent. However, the crosslinked structure of phenoxy resin also has some drawbacks. The dispersibility of carbon particles is
PVCl/VAC and PVB are very good, followed by nitrified cotton, and phenoxy resin ranks next. The dispersibility of carbon particles affects the image quality, especially the image quality in the intermediate gradation region, and if the dispersibility is poor, the intermediate gradation region in particular becomes patchy. The heat resistance (temperature at which holes form in PET film due to melting) of a crosslinked structure made of nitrified cotton crosslinked with polyisocyanate is 285 to 300°C, which is slightly lower than that of a phenoxy resin crosslinked structure, but PVCl/
Much better than VAC or PBT. With nitrified cotton, there may be holes in the PET film at the power application point at full density, but there will be no holes in the PET film at the power application point in the low density to intermediate gradation range, and the current-carrying head needle will not damage the PET film. Trouble due to status,
Dirt on the current-carrying head is not a big problem. The image quality is even better than that of phenoxy resin. The present inventors propose an electrical transfer recording sheet using as a resin binder a crosslinked structure of nitrified cotton, which has been found to be effective in improving heat resistance and dispersibility. The third point is the problem of adhesion to PET film. Although nitrified cotton has excellent heat resistance and carbon particle dispersibility is quite good, its adhesion to PET film is only moderate. According to the peeling test method using cross-cut adhesive tape at 1 mm intervals, 60
% will be released. Therefore, we further investigated ways to improve the adhesion of nitrified cotton as a binder.
I tried applying corona discharge to the PET film to activate its surface, but the effect on adhesion did not improve at all. A thin layer of modified polyester (0.3-1μ
After undercoating m) on PET film,
When nitrified cotton is applied, the adhesion improves considerably, and the cross-cut method shows that peeling is about 10 to 15%. However, the undercoating method requires an additional production step due to the undercoating, which increases the price of the recording sheet. Therefore, we investigated a resin material that can be blended with nitrified cotton to improve adhesion. In this case, the properties required of the material for improving adhesion are (1) good compatibility with nitrified cotton, (2) good dispersibility of carbon particles,
(3) Heat resistance is good to some extent. Epoxy resin, phenolic resin, modified polyester,
After examining PVB, PVCl/VAC, polyurethane, etc., we found that polyurethane best satisfies the above-mentioned required properties if the amount of blending is specified. Polyurethane not only improves adhesion, but also
It also has the effect of softening the coating film based on cross-linked nitrified cotton, which is hard and lacks flexibility. As mentioned above, the most important demands for improvement of the current-carrying resistance layer are (1) reduction in resistance value, (2) improvement in heat resistance, and (3) improvement in adhesion. After repeated consideration to meet these demands,
Although the material of the present invention has been found, it does not mean that the aforementioned materials can be contained in unlimited proportions.
The content ratio of these materials, resistance value, heat resistance,
Each adhesion function functions as a variable. Therefore, according to the specifications of the hardcopy machine, after all,
Depending on the designed resistance value, heat resistance, and adhesion of the current-carrying resistance layer, the content ratio of the above-mentioned materials changes slightly within a certain range. As detailed above, we have made extensive studies to improve the various drawbacks of the current-carrying resistance layer, for which the current proposals are inadequate, and as a result we have come up with the invention of a new current-carrying transfer recording sheet. That is, the present invention provides a recording sheet for current-carrying thermal transfer consisting of a current-carrying resistance layer, a support layer, and an ink layer, which generates heat in the resistance layer by energization and thermally transfers the ink layer to a recording paper to obtain a record. The resistance layer contains at least the following solid components (1) to (4):
Carbon black of 100g or more C K = 5 ~
35% by weight (2) Nitrified cotton with a nitrogen content of 10.7 to 12.2% and an average degree of polymerization of 30 to 300, C N = 20 to 60% by weight (3) Polyurethane, Cu = 10 to 50% by weight (4) The above nitrified cotton and C C = 5 to 25% by weight of polyisocyanate as a crosslinking agent for polyurethane;
and the sum of the solid components of (1) to (4) above satisfies (5) C K + C N + Cu + C C = 80 to 100% by weight, and the support layer is (6) polyethylene terephthalate. thickness consisting of 2
It consists of a biaxially stretched film of ~10 μm (7) The surface resistance value of the current carrying resistance layer is 10 2 ~ 5×10 5
This is an electrical transfer recording sheet characterized by satisfying all of the above (1) to (7) in the range of Ω/□. In the present invention, the measurement of DBP oil absorption is performed using JIS
This is based on K6221's oil absorption measurement method A, in which dibutyl phthalate (DBP) is absorbed into carbon black using an absorbometer. There is a strong correlation between the DBP oil absorption of carbon-based particles and the surface resistance value of a resistance layer coated by a solution method. If the DBP oil absorption is less than 300ml/100g,
It is difficult to reduce the surface resistance value to 5×10 5 Ω/□ or less. It has been found that if carbon particles have a DBP oil absorption of 300 ml/100 g or more, the surface resistance value can be increased to 10 2 to 5×10 5 Ω/□, although the exact reason is not well understood. Acetylene black with good conductivity has a DBP oil absorption of 210 to 280 ml/100 g. DBP oil absorption
Examples of carbon particles of 300 ml/100 g or more include Ketschen Black (trade name). The DBP oil absorption of Ketschen Black is 300-450ml/100g. Carbon particles with a DBP oil absorption of more than 450ml/100g have not yet been found in the world. The DBP oil absorption of normal carbon black for rubber and carbon black for color is 50 to 150ml/100g, and the surface resistance value when used in a resistance layer is 10 6 to 10 7
It is on the order of Ω/□ and cannot be used for the purpose of the present invention. The carbon-based particles used to achieve the object of the present invention are preferably Ketchen Black. It is essential that the dispersion of Ketchen Black in the binder resin be carried out in a solution. Ketsutien black has a carboxyl group content of approximately 0.5 meq/g, a total acidity excluding carboxyl groups of approximately 0.3 meq/g, and although it has polar groups, it does not float in the toluene phase in the water/toluene two phases. However, it is essentially lipophilic. Therefore, it is possible to uniformly disperse Ketchen Black in a lipophilic organic solvent solution containing a binder resin by dispersing it in a ball mill for approximately 24 to 48 hours and in an attritor for 6 to 12 hours. I can do it. In the electrical thermal transfer method, the uniformity of the dispersion of the resistance heating particles has a large effect on the image quality of the print. In the case of a bulk compound in which Ketchen Black is kneaded and dispersed in a binder resin, uniform dispersion is impossible, and the surface resistance value is 10 6 to 10 7 Ω/□. The amount of carbon black in the solid component of the resistance layer is 5 to 35% by weight, preferably 10 to 25% by weight.
It is. In this way, the DBP oil absorption amount is 300ml/100
A feature of the present invention is that when using carbon black with a weight of 1.5 g or more, the surface resistance value can be lowered even though the carbon black content is extremely small. However, the carbon black content is 5
If it is less than % by weight, the surface resistance value cannot be lowered to 5×10 5 Ω/□ or less. On the other hand, when the carbon black content exceeds 35% by weight, the surface resistance value decreases to approximately 10 2
Although it can be made into Ω/□, the resistance layer becomes brittle in terms of mechanical strength and is easily peeled off from the support layer. Furthermore, coating cannot be performed smoothly and streaks occur in the coated product. The carbon black content is set within the range of 5 to 35% by weight and is increased or decreased depending on the design resistance value. The resin used in the present invention to improve the heat resistance of the resistance layer has a nitrogen content of 10.7 to 12.2% and an average degree of polymerization.
30~300 industrial nitrified cotton. The degree of polymerization is n=30
-300, preferably n=50-150. When the degree of polymerization is n<30, the dispersibility of the carbon particles is good, but the heat resistance and the mechanical strength of the coating film are considerably poor and cannot be put to practical use. On the other hand, when n > 300, heat resistance and mechanical strength are excellent, but the dispersibility is poor, resulting in unevenness in the thermally transferred image, unsatisfactory image quality in intermediate gradation areas, and poor coating film quality. My curls get worse. Nitrified cotton has an average of 1.9 to 2.3 hydroxyl groups per repeating unit. The reason why the carbon particle dispersibility is quite good may be due to some kind of chemical bond or van der Waals force bond with the carboxy group on the surface of the carbon particle. In the present invention, the hydroxyl groups of nitrified cotton are used to carry out a crosslinking reaction with polyisocyanate. If nitrified cotton is used alone without a crosslinked structure by a crosslinking agent, the resistance layer will not have a heat resistance of 285°C or higher. Examples of the polyisocyanate include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, and a reaction product of 3 moles of 2,4-tolylene diisocyanate and 1 mole of trimethylolpropane. ,3,
3'-vitrylene 4,4' diisocyanate, 3,
Examples include 3' dimethyl diphenylmethane 4,4' diisocyanate and 2,4 tolylene diisocyanate dimer (uretidine dione), but a reaction product of 4 tolylene diisocyanate and trimethylolpropane is preferred. It is desirable to sufficiently disperse carbon black in nitrified cotton and polyurethane in an organic solvent, and then add a crosslinking agent and stir and mix immediately before coating. In order to sufficiently carry out the crosslinking reaction and improve heat resistance,
After coating and solvent evaporation drying, at 40-60℃ for 24-48 hours,
It is desirable to carry out a curing reaction. As the polyurethane used in the present invention to improve adhesion to the PET film of the resistance layer, commercially available polyurethane adhesives can be used. For example, polyesters with more than two functional groups, polyethers reacted with TDI, MDI, etc.,
There are prepolymers produced by the reaction of diisocyanates and polyfunctional active hydrogen compounds. The crosslinking agent reacts not only with the hydroxyl groups of the nitrified cotton but also with the active hydrogen in the urethane bonds of the polyurethane to form a crosslinked structure and improve heat resistance. but,
Heat resistance is insufficient if there is no nitrified cotton and the crosslinked structure is created using only polyurethane as a crosslinking agent. The content ratio of nitrified cotton/polyurethane is 3/7~
It is 7/3, preferably 4/6 to 6/4. The content of nitrified cotton in the solid components of the resistance layer is C N = 20 ~
It is 60% by weight. If C N < 20%, heat resistance 285
℃ or more is not possible. On the other hand, if C N >60%, the adhesion will be insufficient and the coating film will curl severely. The content of the crosslinking agent is C C =5 to 25% by weight.
It is. When C C <5, the heat resistance is poor; on the other hand, when C C >
In the case of 25, the resistance value will become large, and
Adhesion becomes insufficient. The content of polyurethane is Cu=10-50% by weight. When Cu<10%, there is almost no difference in adhesion compared to when no polyurethane is contained. On the other hand, Cu>50%
In the case of , the adhesion is extremely good, but the heat resistance is reduced. Among the solid components of the resistance layer, the total sum of carbon black (C K ), nitrified cotton (C N ), crosslinking agent (C C ), and polyurethane (Cu) is Σ=C K +C N +Cu+C C =80~
It is 100% by weight. That is, materials other than the above four types may be contained within a range of less than 20%. for example,
These include softeners, anti-wear agents, antistatic agents, lubricants, smoothing agents, binder resins, and conductive particles. A particularly preferred example is the addition of polyvinyl chloride/vinyl acetate copolymer, which suppresses the curling tendency of nitrified cotton and further improves the dispersibility of carbon particles. You may add less than that. When Σ<80%, any one of the performances of dispersibility, resistance value, heat resistance, and adhesion will be greatly reduced, and the current-carrying recording sheet that is the object of the present invention cannot be obtained. The thickness of the PET film of the support layer is 2 to 10 μm.
and preferably 4 to 7 μm. The thinner the film, the better the heat transfer efficiency, the less applied power, and the sharper the image quality. It is difficult. On the other hand, if it exceeds 10 .mu.m, the heat transfer efficiency will be poor, the applied power will be large, the dot diameter of the print will become large due to lateral heat diffusion, and the resolution of the image quality will deteriorate. It is preferable that a crosslinking agent is added to a dispersion liquid in which nitrified cotton and polyurethane are dissolved individually or simultaneously in an organic solvent and carbon black particles are dispersed using a ball mill, an attritor, etc., and the mixture is stirred and mixed immediately before coating. . As the coating head of the coating machine, a reverse roll, gravure roll, gravure offset roll, doctor blade, wire bar, etc. can be used. The solid component concentration of the coating liquid is 10~
40% by weight, preferably 20-30% by weight. After coating, the solvent is evaporated and dried in a drying oven. The crosslinking reaction between nitrified cotton and polyurethane using a crosslinking agent is carried out to some extent even in a drying oven, but in order to achieve a sufficient reaction, it is desirable to perform the treatment in a separate step under the above-mentioned conditions. The ink layer (4 in FIG. 1) is applied to the support layer 3 on the side opposite to the current-carrying resistance layer 2 by a hot melt method or a solution method. The ink layer contains approximately 60% by weight of wax such as paraffin wax, modified wax, carnauba wax, etc., and 20% by weight of color material pigment or dye.
It is desirable to have a resin content of 20% by weight. The ink composition containing pigments or dyes such as yellow, cyan, magenta, and black may be applied in one color, as shown in 4 in FIG. 1, or in a second color.
As shown in FIGS. 4 (41 to 44), the coating may be applied in a uniform manner in the longitudinal direction. The surface resistance value of the current carrying resistance layer of the present invention described in detail above is in the range of 10 2 to 5×10 5 Ω/□. Preferably it is 10 3 to 10 4 Ω/□. In this way, we were able to reach a small resistance value because the PBP oil absorption amount was 300ml/
This was achieved by using 100 g or more of carbon black, dispersing it in a solution in a binder resin, and applying it by a solution method. The current-carrying resistance layer of the present invention has short-term heat resistance of 285 to 310°C, and when the power applied to obtain the highest concentration (optical density 0D≒1.5) is applied, the PET film layer melts and holes form. However, at low to mid-tone densities, the problem of holes was completely resolved. This mainly involves containing a specific amount of specific nitrified cotton,
This is due to the effect of forming a crosslinked structure with the crosslinking agent. The adhesion between the current-carrying resistance layer and the support layer of the present invention is almost perfect. Peeling test results for adhesive tapes using crosscuts at 1 mm intervals show that peeling is within 15%. This is due to the effect of containing a specific amount of polyurethane. The electrical transfer recording sheet of the present invention has the following advantages. (1) By setting the surface resistance to 10 3 to 10 4 Ω/□, the applied voltage can be lowered to 15 to 50 V, making it possible to reduce the cost of the IC that drives the current-carrying head. In addition, the power source can be made inexpensive. (2) The applied voltage can be lowered, reducing discharge,
The life of the current-carrying head is dramatically improved. (3) Since the discharge of the current-carrying head is reduced, the amount of shavings of the resistance layer adhering to the head is dramatically reduced, which improves maintenance. (4) Since the carbon black is uniformly dispersed,
The image quality has improved, and subtle intermediate tones can now be printed clearly. (5) Improved heat resistance almost eliminates holes in the PET film, eliminates troubles caused by the stay of the current-carrying head, eliminates troubles caused by holes, and eliminates contamination of image quality caused by holes. (6) Improved adhesion eliminates spot peeling of the resistive layer and adhesion of peeling debris of the resistive layer to the current-carrying head during thermal transfer. The present invention will be explained below with reference to Examples. Of course, the present invention is not limited to this. The methods for measuring DBP oil absorption, surface resistance, heat resistance, and adhesion defined in the present invention are as follows. (1) DBP Oil Absorption JIS K6221 Oil Absorption Measurement Method A (2) Surface Resistance Value Place the current-carrying resistance layer on top on a smooth flat table, and place a pair of gold-plated brass electrodes (5 mm width, 35 mm
length, weight 350g) in parallel on the current carrying resistance layer,
Place the electrodes with a spacing of 35 mm, and measure the resistance value with an electrometer. The measurement room has an environment of 25°C and 65% relative humidity. (3) Heat resistance Using a standard current-carrying resistance layer, create a calibration curve in advance of the relationship between the amount of power obtained from the applied voltage and current of the current-carrying head and the temperature measured from an infrared thermometer, and Head power is gradually applied to the resistance layer sample, and a transmission optical microscope is used to evaluate the temperature at which a hole is formed in the PET film support layer due to melting, and this temperature is used as a measure of heat resistance. shall be. Heat resistance is sufficient when there are no holes in the PET film at full density (optical density 0D = 1.4 to 1.5) of the thermal transfer image of color material black. (4) Adhesion Using a cross-cut tester (manufactured by Toyo Seiki), a PET film coated with a resistance layer was placed on a steel plate, and the PET film was tested under a load that did not cut the PET film.
Cut the resistance layer crosswise into 10 pieces vertically and 10 pieces horizontally at 1 mm intervals, peel it off with adhesive tape, and use the number of pieces that remain without peeling as a measure of adhesion (%). Examples 1 to 2 and Comparative Examples 1 to 5 As shown in Table 1, various carbon blacks were dispersed in the following binder resin, applied to a PET film as a support layer, and the solvent was evaporated and dried.
After performing the crosslinking reaction, the surface resistance value was measured. (1) Dispersion conditions Carbon black; 15 parts (weight) Nitrified cotton (Asahi Kasei, Cellnova BTH1/2, nitrogen content
11.5-12.2%, average degree of polymerization 88); 30 parts polyvinyl chloride/vinyl acetate copolymer (UCC, VYHH)
; 13 parts polyurethane (Japan Polyurethane, N-
2304); 30 parts polyisocyanate (Japan Polyurethane, Coronate L) 12 parts MEK/toluene = 1/1; 400 parts Dispersion is performed by removing the polyisocyanate and dispersing in a ball mill for 24 hours, then adding the polyisocyanate and stirring immediately before coating. Mixed. (2) Coating Support: Biaxially stretched PET film (8 μm) Coating machine: 3-roll reverse roll coater Coating speed: 20 m/min, coating thickness approximately 4 μm (dry thickness) Drying: Hot air at 150°C, Furnace length: 4m (3) Curing reaction: 80℃ for 20 minutes, then 45℃ for 24 hours (4) Results

【表】 第1表に示す如く、表面抵抗値とDBP吸油量
は大きな相関があり、本発明の目的とする抵抗値
102〜5×105Ω/□とするには、DBP吸油量は
300ml/100gが必要である。DBP吸油量が300
ml/100g以下であるカーボン粒子(比較例1〜
5)の場合は、本実験のようにカーボン粒子の充
填量15wt%程度では、表面抵抗値を5×105Ω/
□以下にはできない。 実施例3〜5および比較例6〜7 硝化綿の銘柄(平均重合度)を種々変え(窒素
分11.5〜12.2%)、ケツチエンブラツク(DBP吸
油量345ml/100g)、ポリイソシアネート、ポリ
ウレタン、を溶剤(MEK/トルエン=1/1、
固形分濃度25%)に分散し、他の分散条件(固形
成分組成)、溶液塗工条件、架橋反応条件は先の
実施例1〜2と同条件で抵抗層を製膜した。それ
らの表面抵抗値、耐熱性(PETフイルムに穴の
あく温度と光学顕微鏡観察)、密着性を測定した。
結果を第2表に示す。
[Table] As shown in Table 1, there is a strong correlation between surface resistance value and DBP oil absorption, and the resistance value targeted by the present invention
To set 10 2 to 5×10 5 Ω/□, the DBP oil absorption should be
300ml/100g is required. DBP oil absorption is 300
ml/100g or less carbon particles (Comparative Examples 1~
In the case of 5), when the filling amount of carbon particles is about 15wt% as in this experiment, the surface resistance value is set to 5×10 5 Ω/
□It cannot be done below. Examples 3 to 5 and Comparative Examples 6 to 7 Various brands (average degree of polymerization) of nitrified cotton (nitrogen content 11.5 to 12.2%) were used, and KETSUEN BLACK (DBP oil absorption 345 ml/100 g), polyisocyanate, polyurethane, Solvent (MEK/toluene = 1/1,
A resistive layer was formed using the same dispersion conditions (solid component composition), solution coating conditions, and crosslinking reaction conditions as in Examples 1 and 2 above. Their surface resistance, heat resistance (temperature at which holes are made in PET film and optical microscope observation), and adhesion were measured.
The results are shown in Table 2.

【表】 比較例6は支持体層PETフイルムに中濃度印
画域でも穴があいた。比較例7は、固形分濃度25
重量%では分散できなかつたので、10%濃度で分
散し塗工した。しかし、抵抗値はバラツキが大き
く、画像処理には使えない。密着性も若干劣る傾
向がある。実施例3〜5は抵抗値、耐熱性、密着
性とも満足できるものであつた。なお、実施例5
も10%濃度で分散した。 実施例6〜16および比較例8〜15 ケツチエンブラツク(DBP吸油量345ml/100
g)、硝化綿、ポリイソシアネート、ポリウレタ
ンを第3表に示す種々の含有率(使用した樹脂の
銘柄は実施例1〜2と同じ)で、溶剤(MEK/
トルエン=1/1、固形分濃度25重量%)に分散
し、他の分散条件、溶液塗工条件、架橋反応条件
は先の実施例1〜2と同条件で抵抗層を製膜し
た。それらの表面抵抗値、耐熱性(PETフイル
ムに穴のあく温度と光学顕微鏡観察)、密着性を
測定した。結果を第3表に示す。 カーボンブラツクの含有率が少ない比較例8は
抵抗値が5×105Ω/□以下にならない。他方、
カーボンブラツクが43%と多量になると、塗り斑
が大きくなり、抵抗値もバラツキ、PETフイル
ムに低濃度〜中間濃度域でも穴があく(比較例
9)。硝化綿が15%程度と少ないと低濃度域でも
穴があき耐熱性がかなり劣る(比較例10)。他方、
硝化綿が65%程度に多くなると、塗り斑が大きく
なり、密着性が著しく低下する(比較例11)。架
橋剤(ポリイソシアネート)が3%程度では低濃
度域でも穴があいて耐熱性がない
[Table] In Comparative Example 6, there were holes in the PET film support layer even in the medium density printing area. Comparative example 7 has a solid content concentration of 25
Since it could not be dispersed at a concentration of 10% by weight, it was coated after being dispersed at a concentration of 10%. However, the resistance values vary widely and cannot be used for image processing. Adhesion also tends to be slightly inferior. Examples 3 to 5 were satisfactory in terms of resistance, heat resistance, and adhesion. In addition, Example 5
was also dispersed at a concentration of 10%. Examples 6 to 16 and Comparative Examples 8 to 15 Ketchen Black (DBP oil absorption 345ml/100
g), nitrified cotton, polyisocyanate, and polyurethane at various contents shown in Table 3 (the brand of resin used is the same as in Examples 1 and 2), and a solvent (MEK/
Toluene = 1/1, solid content concentration 25% by weight), and other dispersion conditions, solution coating conditions, and crosslinking reaction conditions were the same as in Examples 1 and 2 to form a resistive layer. Their surface resistance, heat resistance (temperature at which holes are made in PET film and optical microscope observation), and adhesion were measured. The results are shown in Table 3. In Comparative Example 8, which has a small content of carbon black, the resistance value does not fall below 5×10 5 Ω/□. On the other hand,
When the amount of carbon black is as high as 43%, coating spots become large, resistance values vary, and holes appear in the PET film even in the low to medium density range (Comparative Example 9). If the content of nitrified cotton is as low as 15%, holes will form even in the low concentration range, resulting in considerably poor heat resistance (Comparative Example 10). On the other hand,
When the amount of nitrified cotton increases to about 65%, coating spots become large and adhesion deteriorates significantly (Comparative Example 11). If the crosslinking agent (polyisocyanate) is around 3%, holes will form even in the low concentration range and there will be no heat resistance.

【表】 (比較例12)。他方、架橋剤が30%近く多くなる
と、塗り斑が大きくなり、抵抗値も5×105Ω/
□以上になり、また耐熱温度も却つて低下する傾
向がでてくる(比較例13)。ポリウレタンが5%
程度と極端に少ないと密着性は著しく低下する
(比較例14)。他方、ポリウレタンが60%程度に多
量になると、相対的に硝化綿含有が少なくなり、
耐熱性が低下して低濃度〜中濃度でも穴があく
(比較例15)。 実施例6〜16は、表面抵抗値、耐熱性、密着性
とも、0D=1.4〜1.5のフル濃度ではPETフイルム
に若干穴があく場合もあつたが、実用に耐える満
足できる通電抵抗層を提供してくれた。 実施例 17 実施例13で得られた塗工層を通電抵抗層とし
て、支持体層を介して該抵抗層の反対側に第2図
の如く、イエロー、マゼンタ、シアン、ブラツク
のインク層をシートの長手方向にダンダラ塗りで
ホツトメルト塗工した。 (1) インク層組成 顔 料 ;20重量部 パラフインワツクス ;20部 酸化ワツクス ;40部 ポリエチレン/酢酸ビニル共重合体 ;20部 ステアリン酸 ;3部 混練分散は、ニーダーで予備分散し、3本ロー
ルミルで分散した。 (2) インク層塗工 塗工材;4台のホツトメルトグラビアロール
(120℃)とスムージングバー(120℃) 塗工速度;20m/分 実施例 18 前記実施例17で得られた本発明の通電転写記録
用シートを使用して、第1図に模式的に示した、
記録電極5と帰路電極6を有する通電ヘツドを用
いてA4版の普通紙にフルカラー印刷した。 (1) 通電ヘツド ドツトピツチ;6ドツト/mm ラインピツチ;6ドツト/mm ヘツド針径;60μm (2) 駆動 印加電圧;25V パルス巾変調;50μsec〜1.6ミリsec 32階調 (3) フルカラー印刷結果 カラー銀塩写真をオリジナルとして、カラース
キヤナーにて色分解後、32階調の各色々信号に変
換し、γ補正後、フルカラー印刷した。 本発明の通電転写記録用シートを用いた印刷物
は、原画に極めて近い、階調性のある美しいカラ
ー画像が得られた。 また、抵抗層の抵抗値が103Ω/□オーダーで
低い値であるので、駆動の印加電圧が25Vと、極
めて低い電圧で印画することに成功した。
[Table] (Comparative Example 12). On the other hand, when the amount of crosslinking agent increases by nearly 30%, coating spots become larger and the resistance value decreases to 5×10 5 Ω/
□ or above, and the heat resistance temperature also tends to decrease (Comparative Example 13). 5% polyurethane
If the amount is extremely small, the adhesion will decrease significantly (Comparative Example 14). On the other hand, when the amount of polyurethane increases to around 60%, the nitrified cotton content becomes relatively low.
Heat resistance decreases and holes form even at low to medium concentrations (Comparative Example 15). In Examples 6 to 16, in terms of surface resistance, heat resistance, and adhesion, there were some holes in the PET film at the full concentration of 0D = 1.4 to 1.5, but they provided satisfactory current carrying resistance layers that could withstand practical use. He did it for me. Example 17 The coating layer obtained in Example 13 was used as a current-carrying resistance layer, and yellow, magenta, cyan, and black ink layers were sheeted on the opposite side of the resistance layer with a support layer in between, as shown in Figure 2. Hot melt coating was applied in the longitudinal direction of the plate. (1) Ink layer composition Pigment: 20 parts by weight Parafine wax: 20 parts Oxide wax: 40 parts Polyethylene/vinyl acetate copolymer: 20 parts Stearic acid: 3 parts Dispersed using a roll mill. (2) Ink layer coating Coating materials: 4 hot melt gravure rolls (120°C) and smoothing bar (120°C) Coating speed: 20 m/min Example 18 The ink layer of the present invention obtained in Example 17 above Using a current transfer recording sheet, as shown schematically in Fig. 1,
Full-color printing was performed on A4 size plain paper using a current-carrying head having a recording electrode 5 and a return electrode 6. (1) Current-carrying head Dot pitch: 6 dots/mm Line pitch: 6 dots/mm Head needle diameter: 60 μm (2) Drive Applied voltage: 25 V Pulse width modulation: 50 μsec to 1.6 milliseconds 32 gradations (3) Full color printing result Color silver A salt photograph was used as the original, and after color separation using a color scanner, it was converted into 32 gradation signals, and after gamma correction, it was printed in full color. Printed matter using the current transfer recording sheet of the present invention produced a beautiful color image with gradation that was extremely close to the original image. Furthermore, since the resistance value of the resistive layer is low, on the order of 10 3 Ω/□, we succeeded in printing with an extremely low driving voltage of 25V.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、通電転写記録用シートの構造と、そ
れを通電ヘツドにより通電している原理図を、第
2図は本発明の通電転写記録用シートの構造の一
実施態様を示す。 1……通電転写記録用シート、2……通電抵抗
層、3……支持体層、4及び41〜44……イン
ク層、5……記録電極、6……帰路電極。
FIG. 1 shows the structure of a current-transfer recording sheet and a diagram of the principle of energizing it by a current-carrying head, and FIG. 2 shows an embodiment of the structure of the current-transfer recording sheet of the present invention. DESCRIPTION OF SYMBOLS 1... Current transfer recording sheet, 2... Current carrying resistance layer, 3... Support layer, 4 and 41 to 44... Ink layer, 5... Recording electrode, 6... Return path electrode.

Claims (1)

【特許請求の範囲】 1 通電により抵抗層を発熱してインク層を被記
録紙に熱転写させ記録を得るに供する、通電抵抗
層、支持体層、およびインク層より成る通電熱転
写用記録シートにおいて、 通電抵抗層は、少くとも次の(1)〜(4)の固形成
分、 (1) 導電性分散粒子としてDBP吸油量が300ml/
100g以上であるカーボンブラツクをCK=5〜
35重量%、 (2) 窒素分10.7〜12.2%、平均重合度30〜300の
硝化綿をCN=20〜60重量%、 (3) ポリウレタンをCu=10〜50重量%、 (4) 上記硝化綿およびポリウレタンの架橋剤とし
てポリイソシアネートをCC=5〜25重量%、
を含有し、且つ上記の(1)〜(4)の固形成分の和
は、 (5) CK+CN+Cu+CC=80〜100重量%を満し、
支持体は、 (6) ポリエチレンテレフタレートから成る厚さ2
〜10μmの2軸延伸フイルム、 から成り (7) 通電抵抗層の表面抵抗値が、102〜5×105
Ω/□の範囲にある、 上記(1)〜(7)を全て満すことを特徴とする通電転
写記録用シート。
[Scope of Claims] 1. A recording sheet for current-carrying thermal transfer consisting of a current-carrying resistance layer, a support layer, and an ink layer, which generates heat in the resistance layer by energization to thermally transfer the ink layer to a recording paper to obtain a recording, comprising: The current-carrying resistance layer contains at least the following solid components (1) to (4):
Carbon black of 100g or more C K = 5~
35% by weight, (2) Nitrified cotton with nitrogen content of 10.7-12.2% and average degree of polymerization of 30-300, C N = 20-60% by weight, (3) Polyurethane, Cu = 10-50% by weight, (4) Above Polyisocyanate as a crosslinking agent for nitrified cotton and polyurethane, C C = 5 to 25% by weight,
and the sum of the solid components of (1) to (4) above satisfies (5) C K + C N + Cu + C C = 80 to 100% by weight,
The support is made of (6) polyethylene terephthalate with a thickness of 2
It consists of a biaxially stretched film of ~10 μm (7) The surface resistance value of the current carrying resistance layer is 10 2 ~ 5×10 5
An electrical transfer recording sheet that is in the range of Ω/□ and satisfies all of the above (1) to (7).
JP58201775A 1983-10-27 1983-10-27 Current-sensitized thermal transfer recording sheet Granted JPS6092892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201775A JPS6092892A (en) 1983-10-27 1983-10-27 Current-sensitized thermal transfer recording sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201775A JPS6092892A (en) 1983-10-27 1983-10-27 Current-sensitized thermal transfer recording sheet

Publications (2)

Publication Number Publication Date
JPS6092892A JPS6092892A (en) 1985-05-24
JPH0461788B2 true JPH0461788B2 (en) 1992-10-02

Family

ID=16446729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201775A Granted JPS6092892A (en) 1983-10-27 1983-10-27 Current-sensitized thermal transfer recording sheet

Country Status (1)

Country Link
JP (1) JPS6092892A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2537979B2 (en) * 1988-08-05 1996-09-25 松下電器産業株式会社 Resistant composition film and recording material

Also Published As

Publication number Publication date
JPS6092892A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
CA1085237A (en) Ribbon for non-impact printing
JPH0784095B2 (en) Recording sheet for electrothermal transfer
US4477198A (en) Modified resistive layer in thermal transfer medium having lubricating contact graphite coating
JPS592631B2 (en) polyurethane ribbon
US4291994A (en) Tear resistant ribbon for non-impact printing
JPS5814840A (en) Electrostatic recording material
US4710782A (en) Current-applying thermal transfer film
JPH0461788B2 (en)
JPS6076392A (en) Sheet for electric conduction heat transfer recording
JPS6071293A (en) Current-sensitized thermal transfer recording sheet
JP3294717B2 (en) Thermal transfer recording medium
JPS61164894A (en) Printing plate material for electrostatic printing
JPH0441675B2 (en)
JPH0274377A (en) Conducting thermal transfer recording material
JPS6019585A (en) Current-sensitized transfer recording material
JP2001088455A (en) Thermal transfer recording medium
JPH01198390A (en) Transfer body for current supply thermal transfer recording
JPH0522588B2 (en)
JPS61169287A (en) Raw material composition for thermal transfer ink
JPH0522589B2 (en)
JPH01133788A (en) Electrothermal transfer recording sheet
JPH0684101B2 (en) Film for electrothermal transfer
JP2000141925A (en) Heat-transfer sheet
JPH02233292A (en) Sublimation type thermal transfer recording medium
JPS61179790A (en) Raw material composition for thermal transfer ink