JPH0460500A - Tank type fast breeder reactor - Google Patents

Tank type fast breeder reactor

Info

Publication number
JPH0460500A
JPH0460500A JP2171482A JP17148290A JPH0460500A JP H0460500 A JPH0460500 A JP H0460500A JP 2171482 A JP2171482 A JP 2171482A JP 17148290 A JP17148290 A JP 17148290A JP H0460500 A JPH0460500 A JP H0460500A
Authority
JP
Japan
Prior art keywords
plate
coolant
tube bundle
heat exchanger
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2171482A
Other languages
Japanese (ja)
Other versions
JP2937423B2 (en
Inventor
Mitsuo Wakamatsu
若松 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2171482A priority Critical patent/JP2937423B2/en
Publication of JPH0460500A publication Critical patent/JPH0460500A/en
Application granted granted Critical
Publication of JP2937423B2 publication Critical patent/JP2937423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent generation of stagnant flow part and to enable improvement of heat exchanging efficiency and the like by constituting so as to be provided by a means which increases flow rate of a coolant under an outlet part tube bundle, by placing an anti-vibration plate there. CONSTITUTION:Inside an outlet part 28 of tube bundle, an anti-vibration plate 30 made of resistor element is placed and a supporting mechanism 25 of heat transfer tubes is constituted of an egg-crate type supporting mechanism 31 provided with a closure tab 32. The anti-vibration plate 30 has such a constitution of the egg-crate type supporting mechanism provided with a tab 32 as of an inner drum of the mechanism 25, for instance. In this way, since the anti-vibration plate 30 has great flow resistivity, an amount of a coolant passing through the plate 30 decreases and, to the same extent, large amount of coolant flows into underside the plate 30, and therewith flow rate distribution above and under the plate 30 is flattened.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はタンク型高速増殖炉に係り、特に中間熱交換器
における二次冷却材の伝熱管管束出口部の構造の改良に
関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a tank-type fast breeder reactor, and in particular to an improvement in the structure of the exit portion of a heat transfer tube bundle of secondary coolant in an intermediate heat exchanger. Regarding.

(従来の技術) 一般に、タンク型高速増殖炉は、−次および二次の冷却
材として液体金属ナトリウムか用いられ、炉心部で加熱
された一次ナトリウムを、原子炉容器内に設置された中
間熱交換器に導いて二次ナトリウムと熱交換させ、冷却
された一次ナトリウムを再び炉心部に送り込むようにし
ている。
(Prior art) In general, tank-type fast breeder reactors use liquid metal sodium as the secondary and secondary coolant, and the primary sodium heated in the reactor core is transferred to an intermediate heat source installed in the reactor vessel. The primary sodium is led to an exchanger where it exchanges heat with secondary sodium, and the cooled primary sodium is sent back into the reactor core.

第9図は、管内−次冷却材タイブの中間熱交換器を備え
た従来のタンク型高速増殖炉を示すもので、−次ナトリ
ウムを収容する原子炉容器1の内部は、隔壁2により上
部プレナム3と下部プレナム4とに仕切られており、こ
の隔壁2の中央部には、炉心燃料集合体5、ブラケット
燃料集合体6および反射板7からなる炉心部8が設置さ
れてぃる。
FIG. 9 shows a conventional tank-type fast breeder reactor equipped with an in-tube coolant type intermediate heat exchanger. 3 and a lower plenum 4, and in the center of this partition wall 2, a core section 8 consisting of a core fuel assembly 5, a bracket fuel assembly 6, and a reflector plate 7 is installed.

原子炉容器1の上端開口部を閉塞するルーフスラブ9に
は、炉心上部機構10と中間熱交換器11とが搭載され
ており、−次ナトリウムを循環させる循環ポンプ12は
、ルーフスラブ9上のモータ13により駆動され、その
吐出側に配した入口配管14を介し、下部プレナム4内
の一次ナトリウムを高圧プレナム15に送給するように
なっている。
A core upper mechanism 10 and an intermediate heat exchanger 11 are mounted on the roof slab 9 that closes the upper end opening of the reactor vessel 1, and a circulation pump 12 that circulates sodium sodium is installed on the roof slab 9. It is driven by a motor 13 and supplies primary sodium in the lower plenum 4 to a high-pressure plenum 15 via an inlet pipe 14 disposed on its discharge side.

中間熱交換器11は、シュラウド16と、その中心部に
配置した二次ナトリウム入口管17と、二次ナトリウム
出口管18と、二次ナトリウム入口管17とシュラウド
16との間に形成された熱交換器室内に配された多数本
の伝熱管19と、これら各伝熱管19を支持する上部管
板20および下部管板21とを備えており、シュラウド
16には、隔壁2よりも上方位置に、−次ナトリウムを
吸い込むための流入孔22が設けられているとともに、
隔壁2よりも下方位置に、−次ナトリウムを下部プレナ
ム4に送り出すための流出孔が設けられている。また、
シュラウド16と二次ナトリウム入口管17との間には
、前記伝熱管19を貫通させるようにして、伝熱管支持
機HIi24.25が交互に配置されている。
The intermediate heat exchanger 11 includes a shroud 16 , a secondary sodium inlet pipe 17 disposed in the center thereof, a secondary sodium outlet pipe 18 , and heat generated between the secondary sodium inlet pipe 17 and the shroud 16 . The shroud 16 includes a large number of heat transfer tubes 19 disposed in the exchanger chamber, and an upper tube plate 20 and a lower tube plate 21 that support each of the heat transfer tubes 19. , - an inflow hole 22 for sucking in sodium is provided, and
At a position below the partition wall 2, an outflow hole is provided for sending secondary sodium to the lower plenum 4. Also,
Between the shroud 16 and the secondary sodium inlet pipe 17, heat exchanger tube supports HIi24, 25 are alternately arranged so as to penetrate the heat exchanger tubes 19.

以上の構成を有する従来のタンク型高速増殖炉において
、上部プレナム3内の一次ナトリウムは、流入孔22を
通って中間熱交換器11の中間熱交換器プレナム26内
に流入し、伝熱管19の内部を下部管板21側へ流れ、
さらに流出孔23を経て下部プレナム4内に流入する。
In the conventional tank type fast breeder reactor having the above configuration, the primary sodium in the upper plenum 3 flows into the intermediate heat exchanger plenum 26 of the intermediate heat exchanger 11 through the inlet hole 22, and flows into the intermediate heat exchanger plenum 26 of the intermediate heat exchanger 11. Flows inside to the lower tube plate 21 side,
Further, it flows into the lower plenum 4 through the outflow hole 23 .

下部プレナム4内に流入した一次ナトリウムは、駆動モ
ータ13によって駆動される循環ポンプ12により入口
配管14に送り込まれ、さらに高圧プレナム15を経て
炉心燃料集合体6の中を上昇しつつ加熱される。加熱さ
れた一次ナトリウムは、炉心上部機構10の下端に衝突
し、流れを反射方向に変え、再び流入孔22を通って中
間熱交換器11内に入る。
The primary sodium that has flowed into the lower plenum 4 is sent into the inlet pipe 14 by the circulation pump 12 driven by the drive motor 13, and is further heated while rising through the high-pressure plenum 15 into the core fuel assembly 6. The heated primary sodium collides with the lower end of the core upper mechanism 10, changes the flow to the reflection direction, and enters the intermediate heat exchanger 11 through the inflow hole 22 again.

一方、二次ナトリウムは、第10図に示すように、二次
ナトリウム入口管17を下降し、管束入口部27で外径
側に流れの向きを変えて管束部に流入する。さらに、伝
熱管19を支持する伝熱管支持機構24.25間を、斜
行流成分を持って上方に流れ、管束出口部28でアニユ
ラス流路を持つ二次ナトリウム出口管18を通り、奪っ
た一次ナトリウムの熱を、図示しない二次系配管を介し
て外部に取出す。
On the other hand, as shown in FIG. 10, the secondary sodium flows down the secondary sodium inlet pipe 17, changes its flow direction toward the outer diameter side at the tube bundle inlet section 27, and flows into the tube bundle section. Furthermore, the sodium flows upward between the heat exchanger tube support mechanisms 24 and 25 that support the heat exchanger tubes 19 with an oblique flow component, passes through the secondary sodium outlet pipe 18 having an annulus flow path at the tube bundle outlet section 28, and is taken away. The heat of the primary sodium is taken out to the outside via a secondary system piping (not shown).

第11図は、前記管束部の管外流れを機械的に示したも
のである。
FIG. 11 mechanically shows the flow outside the tube bundle.

第11図からも明らかなように、管束入口部27と管束
出口部28では、流れの向きが水平成分を持っているた
め、伝熱管19に振動力を与えることが考えられる。そ
こで従来は、管束入口部27と管束出口部28とに、前
記振動を防止するための振動防止板29をそれぞれ設置
するようにしている。
As is clear from FIG. 11, since the flow direction has a horizontal component at the tube bundle inlet portion 27 and tube bundle outlet portion 28, it is possible that vibration force is applied to the heat exchanger tubes 19. Therefore, conventionally, vibration prevention plates 29 are installed at the tube bundle inlet section 27 and the tube bundle outlet section 28 to prevent the vibrations.

ここで、−例として、1基の中間熱交換器10に700
0〜8000本程度配置されている伝熱管9の管外流動
を考えると、振動防止板29は、最も流動抵抗の小さい
、例えばエラグクレートタイプ(板を格子状に並べたも
の)で構成され、また伝熱管支持機構24.25は、エ
ラグクレートタイプの流路をダブて閉塞したもので構成
されている。しかも、第11図に示すB、 Cスパン間
の伝熱管支持機構31は、外胴側が流動抵抗か小さ(流
れ易い構成になっており、一方、C,Dスパン間の伝熱
管支持機構24は、内胴側か流れ易い構成になっている
。そして、これら両伝熱管支持機構24.25は交互に
配されているので、管束部を流れる二次ナトリウムは、
管束部を斜行流成分を持って流れることにより、これに
より熱交換性能の向上が図られている。
Here, - as an example, one intermediate heat exchanger 10 has 700
Considering the extra-tube flow of the heat exchanger tubes 9, of which about 0 to 8000 are arranged, the vibration prevention plate 29 is made of, for example, an Elag crate type (plates arranged in a lattice pattern), which has the lowest flow resistance. Further, the heat exchanger tube support mechanisms 24 and 25 are constructed by doubling and blocking an Elag crate type flow path. Moreover, the heat exchanger tube support mechanism 31 between the B and C spans shown in FIG. , the structure is such that it is easy to flow from the inner shell side.And since these two heat exchanger tube support mechanisms 24 and 25 are arranged alternately, the secondary sodium flowing through the tube bundle part is
By flowing through the tube bundle portion with an oblique flow component, heat exchange performance is improved.

(発明が解決しようとする課題) 前記従来のタンク型高速増殖炉において、中間熱交換器
11では、管外におけるナトリウムが均一に流量配分さ
れて流れることが、熱交換効率を向上させる上で重要で
ある。
(Problems to be Solved by the Invention) In the conventional tank-type fast breeder reactor, it is important for the intermediate heat exchanger 11 that sodium flows outside the tubes with a uniform flow rate distribution in order to improve heat exchange efficiency. It is.

ところが、斜行流成分を持って流れた場合、管束出口部
28では、第12図に示すような流速分布のバラ付きが
生じる。この原因としては、以下のことが考えられる。
However, when the flow has an oblique flow component, variations in the flow velocity distribution occur at the tube bundle outlet section 28 as shown in FIG. 12. Possible causes of this are as follows.

すなわち、振動防止板20直下の伝熱管支持機構25は
、内胴側が、例えば流路閉塞ダブ付エッグクレートで構
成されて流動抵抗か大きくなっており、さらに外胴側が
、例えばエラグクレートで構成されて流動抵抗が小さく
なっている。このため、冷却材は伝熱管支持機構25の
外胴側を多く流れることになる。
That is, the heat exchanger tube support mechanism 25 directly below the vibration prevention plate 20 has an inner shell side made of, for example, an egg crate with a flow passage blocking dove, which increases flow resistance, and an outer shell side made of, for example, an elag crate. flow resistance is reduced. Therefore, a large amount of the coolant flows on the outer shell side of the heat transfer tube support mechanism 25.

一方、振動防止板29は、流動抵抗が小さいため、外胴
沿いに流れてきたナトリウムは、そのまま振動防止板2
9を通過して上部管板20に至り、上部管板20の下面
を沿うように流れる。このため、管束出口部28では、
振動防止板29の上面側で流速が速く、下面側で流速が
遅くなる。
On the other hand, since the anti-vibration plate 29 has a small flow resistance, the sodium flowing along the outer shell is directly transferred to the anti-vibration plate 29.
9 and reaches the upper tube sheet 20, and flows along the lower surface of the upper tube sheet 20. Therefore, at the tube bundle outlet section 28,
The flow velocity is high on the upper surface side of the vibration prevention plate 29, and the flow velocity is slow on the lower surface side.

このように、流速分布のバラ付きが大きくなっていると
、流速の速い部分での圧力損失が支配的となり、流速の
遅い部分で、渦を伴う圧力損失の増大が生じる。このた
め、中間熱交換器11の二次側系の全体圧力損失が大き
くなる。そして、圧力損失が大きくなると、二次側のシ
ステム圧力を高くする必要かあり、二次ナトリウムポン
プ容量の増大、配管系の強度向上に伴う肉厚の増加等、
コスト高となる。また、流速分布のバラ付きのためによ
どみ部等ができると、中間熱交換器11としての熱交換
性能の低下につながるとともに、温度分布不均一の原因
ともなり、伝熱管1つの座屈のおそれもある。
As described above, when the variation in the flow velocity distribution becomes large, the pressure loss becomes dominant in the portions where the flow velocity is high, and the pressure loss associated with the vortices increases in the portions where the flow velocity is slow. Therefore, the overall pressure loss in the secondary side system of the intermediate heat exchanger 11 increases. When the pressure loss increases, it becomes necessary to increase the system pressure on the secondary side, increasing the capacity of the secondary sodium pump, increasing the wall thickness as the strength of the piping system increases, etc.
The cost will be high. In addition, if stagnation occurs due to variations in the flow velocity distribution, it will lead to a decrease in the heat exchange performance of the intermediate heat exchanger 11, and it will also cause uneven temperature distribution, which may cause buckling of one of the heat exchanger tubes. There is also.

本発明は、このような点を考慮してなされたもので、管
束出口部の流速分布を均一にして、よどみ部の発生防止
、二次ナトリウム系のコストダウン、熱交換効率および
健全性の向上を図ることかできるタンク型高速増殖炉を
提供することを目的とする。
The present invention has been made with these points in mind, and it makes uniform the flow velocity distribution at the outlet of the tube bundle, prevents the occurrence of stagnation, reduces the cost of secondary sodium systems, and improves heat exchange efficiency and soundness. The purpose is to provide a tank-type fast breeder reactor that can achieve

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、前記目的を達成する手段として、管束出口部
に、振動防止板を介しその下側の冷却材の流量を増大さ
せる手段を施すようにしたことを特徴とする。
(Means for Solving the Problem) As a means for achieving the above object, the present invention provides a means for increasing the flow rate of the coolant below the outlet portion of the tube bundle via a vibration prevention plate. Features.

(作 用) 本発明に係るタンク型高速増殖炉においては、例えば振
動防止板の流動抵抗を大きくする等の方法により、振動
防止板を介しその下側の冷却材の流量の増大が図られる
。このため、管束出口部の流速分布が均一となり、よど
み部の発生防止および二次ナトリウム系のコストダウン
を図ることか可能となるとともに、熱交換効率の向上お
よび健全性の向上を図ることが可能となる。
(Function) In the tank-type fast breeder reactor according to the present invention, the flow rate of the coolant below the vibration prevention plate is increased by, for example, increasing the flow resistance of the vibration prevention plate. Therefore, the flow velocity distribution at the outlet of the tube bundle becomes uniform, making it possible to prevent the occurrence of stagnation and reduce the cost of the secondary sodium system, as well as improve heat exchange efficiency and soundness. becomes.

(実施例) 以下、本発明を図面を参照して説明する。なお、本発明
は、中間熱交換器の管束出口部の構造にのみ特徴を有し
、その他の点については、第9図ないし第12図に示す
従来のタンク型高速増殖炉と同一構成であるので、以下
その特徴部分についてのみ図示説明する。
(Example) The present invention will be described below with reference to the drawings. The present invention is unique only in the structure of the tube bundle outlet of the intermediate heat exchanger, and other points have the same structure as the conventional tank-type fast breeder reactor shown in FIGS. 9 to 12. Therefore, only the characteristic parts thereof will be illustrated and explained below.

第1図は、本発明の第1実施例に係るタンク型高速増殖
炉の中間熱交換器を示すもので、図中、符号28は上部
管板20と上端の伝熱管支持機構25との間に形成され
た管束出口部であり、この管束出口部28には、二次ナ
トリウム出口管18が接続され、また、管束出口部28
内には、抵抗素子振動防止板30か設置されている。
FIG. 1 shows an intermediate heat exchanger for a tank-type fast breeder reactor according to a first embodiment of the present invention. The secondary sodium outlet pipe 18 is connected to the tube bundle outlet portion 28 , and the tube bundle outlet portion 28 is connected to the secondary sodium outlet pipe 18 .
A resistance element vibration prevention plate 30 is installed inside.

伝熱管支持機構25は、第1図に網目を施して示す内胴
側が、第2図に示すように、エラグクレートタイプの支
持機構31に閉塞用のダブ32を設けた構成になってお
り、また、第1図に白抜きて示す外胴側が、第3図に示
すように、エラグクレートタイプの支持機構31のみの
構成になっている。したがって、伝熱管支持機構25は
、外胴側が流動抵抗が小さくナトリウムが流れ易い構造
となっている。
The inner shell side of the heat exchanger tube support mechanism 25, which is shown with mesh in FIG. 1, has a structure in which a dove 32 for closing is provided on an erag crate type support mechanism 31, as shown in FIG. Further, the outer shell side shown in outline in FIG. 1 is composed of only an erug crate type support mechanism 31, as shown in FIG. 3. Therefore, the heat exchanger tube support mechanism 25 has a structure in which flow resistance is small on the outer shell side and sodium flows easily.

一方、抵抗素子振動防止板30は、例えば第2図に示す
伝熱管支持機構25の内胴側の構成と同様、エラグクレ
ートタイプの支持機構にタブを設けた構成になっており
、エラグクレートタイプの支持機構のみで構成される従
来の振動防止板29(第11図参照)に比較し、流動抵
抗が大きくなるようになっている。
On the other hand, the resistance element vibration prevention plate 30 has a configuration in which a tab is provided on an Elag crate type support mechanism, similar to the configuration of the inner shell side of the heat exchanger tube support mechanism 25 shown in FIG. 2, for example. Compared to the conventional anti-vibration plate 29 (see FIG. 11) which is composed of only a supporting mechanism, the flow resistance is increased.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

伝熱管支持機構25は、外胴側の流動抵抗か小さいため
、外胴側を多くの冷却材が流れることになるが、抵抗素
子振動防止板30は、流動抵抗が大きいので、抵抗素子
振動防止板30を通過する冷却材の量が少なくなり、そ
の分抵抗素子振動防止板30の下側に多くの冷却材か流
れることになる。このため、抵抗素子振動防止板30上
下の流量配分か均一化され、管束出口部28の流量分布
が均一となり、よどみ部の発生防止および二次ナトリウ
ム系のコストダウンを図ることかできる。
The heat exchanger tube support mechanism 25 has a small flow resistance on the outer shell side, so a large amount of coolant flows through the outer shell side, but the resistance element vibration prevention plate 30 has a large flow resistance, so it prevents resistance element vibration. The amount of coolant passing through the plate 30 decreases, and a correspondingly large amount of coolant flows under the resistive element vibration prevention plate 30. Therefore, the flow rate distribution above and below the resistance element vibration prevention plate 30 is made uniform, and the flow rate distribution at the tube bundle outlet section 28 is made uniform, making it possible to prevent the occurrence of stagnation and reduce the cost of the secondary sodium system.

なお、前記実施例では、抵抗素子振動防止板30を、エ
ラグクレートタイプの支持機構にダブを設けて構成した
ものについて説明したか、ダブに代えて、流動抵抗素子
フローホール付支持機構等を用いるようにしてもよい。
In the above embodiments, the resistance element vibration prevention plate 30 is constructed by providing a dove in an Elag crate type support mechanism, or instead of the dove, a support mechanism with a flow resistance element flow hole or the like is used. You can do it like this.

また、前記実施例では、抵抗素子振動防止板30の流動
抵抗率か全面同一の場合について説明したか、内胴側か
ら外胴側に段階的に流動抵抗率が順次増大するようなも
のを用いるようにしてもよい。
Furthermore, in the above embodiments, the case where the flow resistivity of the resistance element vibration prevention plate 30 is the same over the entire surface is explained, or the flow resistivity increases stepwise from the inner shell side to the outer shell side. You can do it like this.

第4図および第5図は、本発明の第2実施例を示すもの
で、前記第1実施例における抵抗素子振動防止板30に
代え、抵抗素子振動防止板4oを用いるようにしたもの
である。
4 and 5 show a second embodiment of the present invention, in which a resistance element vibration prevention plate 4o is used in place of the resistance element vibration prevention plate 30 in the first embodiment. .

すなわち、この抵抗素子振動防止板4oは、第4図に網
目を施して示す外胴側のみが、第5図に示すようにエラ
グクレートタイプの支持!u441に閉塞用のダブ42
を設けた構造になっており、内胴側は、エラグクレート
タイプの支持機構のみの構成となっている。
That is, in this resistance element vibration prevention plate 4o, only the outer shell side shown with mesh in FIG. 4 is supported by an erug crate type as shown in FIG. 5! Dub 42 for occlusion on u441
It has a structure where the inner shell side has only an Elag crate type support mechanism.

このように、抵抗素子振動防止板4oを通過する冷却材
の流量は、外胴側が最も多いので、この部分にダブ42
を設けて流動抵抗を増大させれば、抵抗素子振動防止板
4oの上側に流入する冷却材の流量が制限され、前記第
1実施例と同様の効果が期待できる。
In this way, the flow rate of the coolant passing through the resistance element vibration prevention plate 4o is highest on the outer shell side, so the dove 42 is placed in this part.
If the flow resistance is increased by providing this, the flow rate of the coolant flowing into the upper side of the resistance element vibration prevention plate 4o is restricted, and the same effect as in the first embodiment can be expected.

第6図および第7図は、本発明の第3実施例を示すもの
で、前記第1実施例における抵抗素子振動防止板30に
代えて抵抗素子振動防止板5oを用い、かつ角部パッド
53を設けるようにしだものである。
6 and 7 show a third embodiment of the present invention, in which a resistance element vibration prevention plate 5o is used in place of the resistance element vibration prevention plate 30 in the first embodiment, and a corner pad 53 is used. It is designed to provide a.

すなわち、抵抗素子振動防止板50は、第7図に示すよ
うに、エラグクレートタイプの支持機構51の全域に、
閉塞用のダブ52を設けた構造をなし、かつ内胴側に向
かって上り勾配をなしている。また、角部パッド53は
、第6図に示すように、断面三角形状をなし、上部管板
20下面の外胴側の角部に設置されている。
That is, as shown in FIG.
It has a structure in which a dove 52 for closure is provided, and has an upward slope toward the inner body side. Further, as shown in FIG. 6, the corner pad 53 has a triangular cross section and is installed at a corner of the lower surface of the upper tube plate 20 on the outer body side.

このように、抵抗素子振動防止板50が傾斜しているの
で、冷却材を、抵抗素子振動防止板50の下側によりス
ムースに案内することができ、流量配分をより均一化す
ることかできる。また、角部パッド53により、よどみ
部の発生を確実に防止でき、抵抗素子振動防止板50の
上側の流動を、より均一化できる。
Since the resistance element vibration prevention plate 50 is thus inclined, the coolant can be guided more smoothly under the resistance element vibration prevention plate 50, and the flow rate distribution can be made more uniform. Furthermore, the corner pads 53 can reliably prevent the occurrence of stagnation, and can make the flow above the resistance element vibration prevention plate 50 more uniform.

第8図は、本発明の第4実施例を示すもので、前記第1
実施例における抵抗素子振動防止板30に代え、従来と
同一の振動防止板29を用い、かつその出口部分に、多
孔抵抗板61.62をそれぞれ設けるようにしたもので
ある。
FIG. 8 shows a fourth embodiment of the present invention.
In place of the resistance element vibration prevention plate 30 in the embodiment, the same vibration prevention plate 29 as in the conventional example is used, and porous resistance plates 61 and 62 are provided at the outlet portions of the vibration prevention plate 29, respectively.

すなわち、振動防止板29の上側に配された多孔抵抗板
61は、振動防止板29の下側に配された多孔抵抗板6
2に比較して、流動抵抗係数が大きく設定されている。
That is, the porous resistance plate 61 arranged above the vibration prevention plate 29 is the same as the porous resistance plate 6 arranged below the vibration prevention plate 29.
Compared to No. 2, the flow resistance coefficient is set larger.

このように、上側の多孔抵抗板61は、下側の多孔抵抗
板62に比較して、冷却材の流動抵抗が大きいので、こ
れにより、振動防止板29を通過する冷却材の流量か制
限され、その分、振動防止板2つの下側を流れる冷却材
の流量が多くなる。
As described above, since the upper porous resistance plate 61 has a larger flow resistance of the coolant than the lower porous resistance plate 62, this limits the flow rate of the coolant passing through the vibration prevention plate 29. , the flow rate of the coolant flowing under the two anti-vibration plates increases accordingly.

このため、前記第1実施例と同様の効果が期待てきる。Therefore, the same effects as in the first embodiment can be expected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、管束出口部に、振動防止
板を介しその下側の冷却材の流量を増大させる手段を施
すようにしているので、管束出口部の流速分布が均一と
なり、よどみ部の発生を防止できるとともに、二次ナト
リウム系のコストダウンを図ることができ、また熱交換
効率の向上および健全性の向上を図ることができる。
As explained above, in the present invention, the tube bundle outlet section is provided with a means for increasing the flow rate of the coolant below through the vibration prevention plate, so that the flow velocity distribution at the tube bundle outlet section becomes uniform and stagnation is prevented. In addition, it is possible to reduce the cost of the secondary sodium system, and also to improve heat exchange efficiency and soundness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係るタンク型高速増殖炉
の中間熱交換器を示す要部構成図、第2図および第3図
は伝熱管支持機構の構成をそれぞれ示す説明図、第4図
は本発明の第2実施例を示す第1図相当図、第5図は第
4図の抵抗素子振動防止板の構成を示す説明図、第6図
は本発明の第3実施例を示す第1図相当図、第7図は第
6図の抵抗素子振動防止板の構成を示す説明図、第8図
は本発明の第4実施例を示す第1図相当図、第9図は従
来のタンク型高速増殖炉を示す断面図、第10図は第9
図の中間熱交換器の詳細図、第11図は従来の中間熱交
換器における管束部の管外流れを機械的に示す説明図、
第12図は従来の管束出口部における冷却材の流速分布
を示す説明図である。 1・・・原子炉容器、2・・・隔壁、3・・・上部プレ
ナム、4・・・下部プレナム、11・・・中間熱交換器
、19・・・伝熱管、20・・・上部管板、21・・・
下部管板、24.25・・・伝熱管支持機構、27・・
・管束入口部、28・・・管束出口部、29・・・振動
防止板、30.40.50・・抵抗素子振動防止板、6
1.62・・・多孔抵抗板。
FIG. 1 is a main part configuration diagram showing an intermediate heat exchanger of a tank-type fast breeder reactor according to a first embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams showing the configuration of a heat exchanger tube support mechanism, respectively, FIG. 4 is a diagram corresponding to FIG. 1 showing a second embodiment of the present invention, FIG. 5 is an explanatory diagram showing the configuration of the resistive element vibration prevention plate of FIG. 4, and FIG. 6 is a third embodiment of the present invention. FIG. 7 is an explanatory diagram showing the configuration of the resistance element vibration prevention plate of FIG. 6, FIG. 8 is a diagram equivalent to FIG. 1 showing the fourth embodiment of the present invention, and FIG. 9 is a diagram equivalent to FIG. is a cross-sectional view showing a conventional tank-type fast breeder reactor, and Fig.
11 is an explanatory diagram mechanically showing the flow outside the tube bundle in the conventional intermediate heat exchanger,
FIG. 12 is an explanatory diagram showing the flow velocity distribution of coolant at the exit portion of a conventional tube bundle. DESCRIPTION OF SYMBOLS 1... Reactor vessel, 2... Partition wall, 3... Upper plenum, 4... Lower plenum, 11... Intermediate heat exchanger, 19... Heat exchanger tube, 20... Upper tube Board, 21...
Lower tube plate, 24.25... Heat exchanger tube support mechanism, 27...
- Tube bundle inlet section, 28... Tube bundle outlet section, 29... Vibration prevention plate, 30.40.50... Resistance element vibration prevention plate, 6
1.62...Porous resistance plate.

Claims (1)

【特許請求の範囲】[Claims] 炉心および一次冷却材を収容する原子炉容器内を隔壁に
より上部プレナムと下部プレナムとに区分して一次冷却
材を循環させるとともに、原子炉容器内に、前記隔壁を
貫通して中間熱交換器を配置し、この中間熱交換器内で
、伝熱管を介し一次冷却材と二次冷却材との熱交換を行
なうとともに、二次冷却材の前記伝熱管の管束入口部お
よび管束出口部に、振動防止板をそれぞれ設置したタン
ク型高速増殖炉において、前記管束出口部に、振動防止
板を介しその下側の冷却材の流量を増大させる手段を施
したことを特徴とするタンク型高速増殖炉。
The inside of the reactor vessel, which houses the reactor core and the primary coolant, is divided into an upper plenum and a lower plenum by a partition wall to circulate the primary coolant, and an intermediate heat exchanger is inserted into the reactor vessel by penetrating the partition wall. In this intermediate heat exchanger, heat is exchanged between the primary coolant and the secondary coolant through the heat transfer tubes, and vibration is applied to the tube bundle inlet and tube bundle outlet of the heat transfer tubes of the secondary coolant. 1. A tank-type fast breeder reactor, each of which is provided with a prevention plate, characterized in that the tube bundle outlet section is provided with means for increasing the flow rate of the coolant below the vibration prevention plate.
JP2171482A 1990-06-29 1990-06-29 Tank type fast breeder reactor Expired - Fee Related JP2937423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171482A JP2937423B2 (en) 1990-06-29 1990-06-29 Tank type fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171482A JP2937423B2 (en) 1990-06-29 1990-06-29 Tank type fast breeder reactor

Publications (2)

Publication Number Publication Date
JPH0460500A true JPH0460500A (en) 1992-02-26
JP2937423B2 JP2937423B2 (en) 1999-08-23

Family

ID=15923926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171482A Expired - Fee Related JP2937423B2 (en) 1990-06-29 1990-06-29 Tank type fast breeder reactor

Country Status (1)

Country Link
JP (1) JP2937423B2 (en)

Also Published As

Publication number Publication date
JP2937423B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US5345483A (en) Lower tie plate strainers having double plate with offset holes for boiling water reactors
JP3407722B2 (en) Combination heat exchanger
US3830292A (en) Flow distribution for heat exchangers
JPH0460500A (en) Tank type fast breeder reactor
JPH04299299A (en) Intermediate heat exchanger for fast breeder reactor
CN219141578U (en) Heat exchanger
US4657071A (en) Heat exchanger incorporating an auxiliary cooling device
JP7394041B2 (en) Reactor
JPS6337289A (en) Tank type reactor
JPS62278485A (en) Nuclear reactor structure
JPH01245193A (en) Tank type fast breeder
JPS61193093A (en) Nuclear reactor
JPS5930473Y2 (en) Core support device in fast breeder reactor
JPH01176976A (en) Tank type fast breeder
JPH0830754B2 (en) Tank type fast breeder reactor
JPS5938589A (en) Heat exchanger with built-in pump
JPH0578721B2 (en)
JPH04194595A (en) Shell and tube type heat exchanger
JPH07119901A (en) Steam generator
JPH0446321B2 (en)
JPH08110389A (en) Fuel assembly and core for pressurized water reactor
JPS6358292A (en) Tank type reactor
JPS60195487A (en) Integral structure type pressurized water type reactor
JPH01217292A (en) Tank reactor
JP2001056193A (en) Heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees