JPS61193093A - Nuclear reactor - Google Patents

Nuclear reactor

Info

Publication number
JPS61193093A
JPS61193093A JP60031572A JP3157285A JPS61193093A JP S61193093 A JPS61193093 A JP S61193093A JP 60031572 A JP60031572 A JP 60031572A JP 3157285 A JP3157285 A JP 3157285A JP S61193093 A JPS61193093 A JP S61193093A
Authority
JP
Japan
Prior art keywords
reactor
reactor vessel
core
heat exchanger
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60031572A
Other languages
Japanese (ja)
Inventor
松本 秀
重谷 卓哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60031572A priority Critical patent/JPS61193093A/en
Publication of JPS61193093A publication Critical patent/JPS61193093A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は原子炉容器と、同原子炉容器内に配設された炉
心槽と、同炉心槽内に配設された炉心と。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a nuclear reactor vessel, a reactor core vessel disposed within the reactor vessel, and a reactor core disposed within the reactor core vessel.

同原子炉容器の上部を閉じるルーフスラブと、同ルーフ
スラブから同原子炉容器と同炉心槽との間に垂下された
冷却材循環ポンプとを有する原子炉の改良に関するもの
である。
The present invention relates to an improvement of a nuclear reactor having a roof slab that closes the upper part of the reactor vessel, and a coolant circulation pump suspended from the roof slab between the reactor vessel and the reactor core barrel.

(従来の技術) 従来、タンク型高速増殖炉と称せられる原子炉では、第
11.12,13.図に示すように炉心(2)が原子炉
容器(1)内の中央部に配設され、1次系の液体金属冷
却材と2次系の液体金属冷却材とを圧送する冷却材循環
ポンプ(3)と1次系の液体金属冷却材と2次系の液体
金属冷却材とを熱交−摸する中間熱交換器(4)とがル
ーフスラブ(5)から垂下されて、上記炉心(2)の周
囲に交互に配設されている。
(Prior Art) Conventionally, in a nuclear reactor called a tank-type fast breeder reactor, No. 11, 12, 13. As shown in the figure, the reactor core (2) is installed in the center of the reactor vessel (1), and the coolant circulation pump pumps the liquid metal coolant in the primary system and the liquid metal coolant in the secondary system. (3) and an intermediate heat exchanger (4) for exchanging heat between the primary liquid metal coolant and the secondary liquid metal coolant are suspended from the roof slab (5). They are arranged alternately around 2).

(考案が解決しようとする問題点) 前記第11.12,13.図に示す原子炉では。(The problem that the idea attempts to solve) Said No. 11, 12, 13. In the reactor shown in fig.

中間熱交換器(4)の外部容器が円筒形なので、その周
囲に第12図に斜線で示すように利用されない空間部が
生ずる。また第13図に示すように多くの中間熱交換器
(4)支持用リブ(6)が中間熱交換器(4)とルーフ
スラブ(5)とに溶接されているので、 ?fl接作業
及び検査が面倒である。しかも原子炉容器(1)は、そ
の直径が二十数m、高さも同じように二十数mにも達す
る大型構造物で、同原子炉容器(1)で耐震性を確保し
よとすると、原子炉容器(1)を可能な限り小型化する
必要があるが。
Since the outer container of the intermediate heat exchanger (4) is cylindrical, an unused space is created around it as shown by diagonal lines in FIG. Also, as shown in Figure 13, many intermediate heat exchanger (4) supporting ribs (6) are welded to the intermediate heat exchanger (4) and the roof slab (5), so... FL contact work and inspection are troublesome. Moreover, the reactor vessel (1) is a large structure with a diameter of over 20 meters and a height of over 20 meters, and it is difficult to ensure earthquake resistance with the reactor vessel (1). However, it is necessary to make the reactor vessel (1) as small as possible.

原子炉容器(1)の直径及び高さは、主として中間熱交
換器(4)の直径及び高さに左右されるので。
Since the diameter and height of the reactor vessel (1) mainly depend on the diameter and height of the intermediate heat exchanger (4).

中間熱交換器(4)の小型化が強く望まれている。There is a strong desire to reduce the size of the intermediate heat exchanger (4).

また原子炉容器(1)の耐震性を向上させようとすると
、原子炉容器(1)の板厚を厚くしてもよいが。
Furthermore, in order to improve the earthquake resistance of the reactor vessel (1), the plate thickness of the reactor vessel (1) may be increased.

その場合には、炉心(2)から出る冷却材の温度が約s
oo’cと非常に高く、液面以下の高温冷却材に触れる
原子炉容器(1)部分と液面以上の高温冷却材に触れな
い原子炉容器(1)部分との間に大きな温度差が生じて
、原子炉容器(1)に過大な熱応力が発生するという問
題があった。
In that case, the temperature of the coolant coming out of the core (2) is approximately s
oo'c is very high, and there is a large temperature difference between the reactor vessel (1) part that touches the high-temperature coolant below the liquid level and the reactor vessel (1) part that does not touch the high-temperature coolant above the liquid level. As a result, there was a problem in that excessive thermal stress was generated in the reactor vessel (1).

本発明は前記の問題点に対処するもので、原子炉容器と
、同原子炉容器内に配設された炉心槽と。
The present invention addresses the above-mentioned problems and includes a nuclear reactor vessel and a reactor core barrel disposed within the reactor vessel.

同炉心槽内に配設された炉心と、同原子炉容器の上部を
閉じるルーフスラブと、同ルーフスラブから同原子炉容
器と同炉心槽との間に垂下された冷却材循環ポンプとを
有する原子炉において、前記炉心槽と前記冷却材循環ポ
ンプとの間に隔壁を立設して、同炉心槽と同隔壁との間
に熱交換領域を形成し、前記ルーフスラブから垂下され
た管束を同熱交換領域に位置させたことを特徴とする原
子炉に係わり、その目的とする処は、原子炉容器を小型
化できる。原子炉容器に生じていた過大な熱応力を解消
できる。さらに耐震性を向上できる改良された原子炉を
供する点にある。
It has a reactor core disposed in the reactor core tank, a roof slab that closes the top of the reactor vessel, and a coolant circulation pump suspended from the roof slab between the reactor vessel and the reactor core tank. In the nuclear reactor, a partition wall is erected between the core tank and the coolant circulation pump to form a heat exchange area between the core tank and the partition wall, and a tube bundle suspended from the roof slab is formed. The present invention relates to a nuclear reactor characterized by being located in a heat exchange region, and its purpose is to downsize the reactor vessel. The excessive thermal stress that was occurring in the reactor vessel can be eliminated. Another object of the present invention is to provide an improved nuclear reactor with improved earthquake resistance.

(問題点を解決するための手段) 本発明は前記のように原子炉容器と、同原子炉容器内に
配設された炉心槽と、同炉心槽内に配設された炉心と、
同原子炉容器の上部を閉じるルーフスラブと、同ルーフ
スラブから同原子炉容器と同炉心槽との間に垂下された
冷却材循環ポンプとを有する原子炉において、前記炉心
槽と前記冷却材循環ポンプとの間に隔壁を立設して、同
炉心槽と同隔壁との間に熱交換領域を形成し、前記ルー
フスラブから垂下された管束を同熱交換領域に位置させ
ており、炉心を出た高温冷却材は、炉心槽から熱交換領
域へ流出し、そこを管外流体として流れて、管束内を流
れる管内流体を加熱し2次いで冷却材循環ポンプ内を経
て炉心へ戻るので、中間熱交換器を必要とせず、同中間
熱交換器の周りに生じていた無駄な空間部が無くなって
、原子炉容器が小型化される。また熱交換を終わった後
の低温の冷却材が原子炉容器に触れるに過ぎないので、
原子炉容器が425”C以下の温度に保持さ1.れて、
原子炉容器の過大な熱応力が解消される。
(Means for Solving the Problems) As described above, the present invention includes a nuclear reactor vessel, a reactor core tank disposed within the reactor vessel, a reactor core disposed within the reactor core barrel,
In a nuclear reactor having a roof slab that closes an upper part of the reactor vessel, and a coolant circulation pump suspended from the roof slab between the reactor vessel and the core tank, A partition wall is erected between the pump and a heat exchange area between the core tank and the partition wall, and the tube bundle hanging from the roof slab is located in the heat exchange area. The discharged high-temperature coolant flows from the core tank to the heat exchange area, flows there as extra-tube fluid, heats the intra-tube fluid flowing inside the tube bundle, and then returns to the core via the coolant circulation pump. There is no need for a heat exchanger, and the wasted space around the intermediate heat exchanger is eliminated, making the reactor vessel more compact. Also, since the low-temperature coolant only touches the reactor vessel after heat exchange,
1. The reactor vessel is maintained at a temperature below 425"C;
Excessive thermal stress in the reactor vessel is eliminated.

また中間熱交換器が無くなるので、原子炉容器が小型化
されて、耐震性が向上する。
Furthermore, since there is no intermediate heat exchanger, the reactor vessel can be made smaller and its earthquake resistance can be improved.

(実施例) 次に本発明の原子炉を第1.2図に示す一実施例により
説明すると、(1)が原子炉容器、(8)が同原子炉容
器(1)内に配設された炉心槽、(2)が同炉心槽(8
)内に配設された炉心、(5)が同原子炉容器(1)の
上部を閉じるルーフスラブ、(3)が同ルーフスラブ(
5)から同原子炉容器(1)と同炉心槽(8)との間に
垂下された冷却材循環ポンプで。
(Example) Next, the nuclear reactor of the present invention will be explained using an example shown in Fig. 1.2. (1) is a reactor vessel, and (8) is arranged within the reactor vessel (1). (2) is the same core tank (8).
), (5) is the roof slab that closes the top of the reactor vessel (1), and (3) is the roof slab (
5) by the coolant circulation pump suspended between the reactor vessel (1) and the reactor core tank (8).

上記記炉心槽(8)と上記冷却材循環ポンプ(3)との
間に隔壁(9)を立設して、同炉心槽(8)と同隔壁(
9)との間に熱交換領域(7)を形成し、上記ルーフス
ラブ(5)から垂下された伝熱管束(第5図乃至第1O
図の(15)参照)を同熱交換領域(7)に位置させて
いる。なお第5図の(15)は、伝熱管束を円筒螺旋状
のヘリカルコイル型にした例、第6図は、伝熱管束を角
筒螺旋状のヘリカルコイル型にした例、第7図は、伝熱
管束をサーペンタイン型にした例、第8図は、伝熱管束
をU字型にする一方、底部を円弧状にした例、第9図は
、伝熱管束をU字型にする一方、底部を直線状にした例
A partition wall (9) is erected between the core tank (8) and the coolant circulation pump (3), and the partition wall (9) is installed between the core tank (8) and the coolant circulation pump (3).
A heat exchange area (7) is formed between the roof slab (5) and the heat exchanger tube bundle (Fig. 5 to 1
(see (15) in the figure) is located in the same heat exchange area (7). (15) in Figure 5 is an example in which the heat exchanger tube bundle is a cylindrical spiral helical coil type, Figure 6 is an example in which the heat exchanger tube bundle is a rectangular cylinder spiral helical coil type, and Figure 7 is an example in which the heat exchanger tube bundle is a helical coil type in a cylindrical spiral shape. , an example in which the heat exchanger tube bundle is made into a serpentine shape, Fig. 8 shows an example in which the heat exchanger tube bundle is made into a U-shape, while the bottom part is shaped like an arc, and Fig. 9 shows an example in which the heat exchanger tube bundle is made into a U-shape, while , an example where the bottom is straight.

第10図は、伝熱管束を内管(15a)と外管(15b
)とにより構成して、管内流体(B)を矢印方向に流通
させるようにした例である。また第1.2図の(10)
は上記炉心槽(8)の上部に円周方向に沿い設けた出口
窓、 (11)は上記冷却材循環ポンプ(3)の下部に
設けた吸入口、 (12)は同冷却材循環ポンプ(3)
と上記炉心(2)とを連絡する連絡管である。
Figure 10 shows the heat exchanger tube bundle with an inner tube (15a) and an outer tube (15b).
), and the fluid (B) in the pipe is made to flow in the direction of the arrow. Also, (10) in Figure 1.2
(11) is the inlet port provided at the bottom of the coolant circulation pump (3); (12) is the coolant circulation pump (3); 3)
This is a communication pipe that connects the reactor core (2) with the reactor core (2).

(作用) 次に前記第1.2図の原子炉の作用を説明する。(effect) Next, the operation of the nuclear reactor shown in FIG. 1.2 will be explained.

炉心(2)を通過した1次系液体金属冷却材(A)は、
炉心槽(8)内を上昇して、炉心槽(8)の出口窓(1
0)から熱交換領域(7)へ流出する。同熱交換領域(
7)は、断面花弁状の隔壁(9)で冷却材循環ポンプ(
3)と仕切られており、炉心槽(8)の出口窓(10)
から熱交換領域(7)へ流出した冷却材(A)は、伝熱
管束(15)の周りを管外流体として下降して、同伝熱
管束(15)内を流れる管内流体(B)を加熱し、その
後、同冷却材(A)は、隔壁(9)の下部に設けた出口
窓(13)から隔壁(9)と原子炉容器(1)との間に
形成されたコールドプレナムへ流出し9次いで冷却材循
環ポンプ(3)の吸入口(11)から同冷却材循環ポン
プ(3)内へ吸入され、その後、連絡管(12)を経て
炉心(2)へ流入する。以上のようにいままで中間熱交
換器(4)で行っていた熱交換を本発明の原子炉では、
炉心槽(8)と同隔壁(9)との間の熱交換領域(7)
に配設した伝熱管束(15)で行うようにしており、中
間熱交換器(4)の周りに生じていた無駄な空間部が解
消される。
The primary liquid metal coolant (A) that has passed through the reactor core (2) is
Climb up inside the core barrel (8) and open the exit window (1) of the core barrel (8).
0) to the heat exchange area (7). Isothermal exchange area (
7) is a coolant circulation pump (
3) and the exit window (10) of the core tank (8).
The coolant (A) that has flowed out into the heat exchange area (7) descends around the heat exchanger tube bundle (15) as an extra-tube fluid, and becomes an inner-tube fluid (B) flowing inside the heat exchanger tube bundle (15). After heating, the coolant (A) flows out from the exit window (13) provided at the bottom of the bulkhead (9) into the cold plenum formed between the bulkhead (9) and the reactor vessel (1). Then, the coolant is sucked into the coolant circulation pump (3) through the suction port (11) of the coolant circulation pump (3), and then flows into the reactor core (2) through the connecting pipe (12). As mentioned above, in the nuclear reactor of the present invention, the heat exchange that was conventionally performed by the intermediate heat exchanger (4),
Heat exchange area (7) between the core tank (8) and the bulkhead (9)
This is done using a bundle of heat transfer tubes (15) disposed in the intermediate heat exchanger (4), eliminating the wasted space around the intermediate heat exchanger (4).

また熱交換を終わった後の低温の冷却材が原子炉容器(
1)に触れるに過ぎないので、原子炉の定格運転時に、
原子炉容器(1)が425°C以下の温度に保持される
In addition, after heat exchange, the low-temperature coolant is transferred to the reactor vessel (
Since this only touches on 1), during rated operation of the reactor,
The reactor vessel (1) is maintained at a temperature below 425°C.

第3図は、炉心(2)を出た1次系液体金属冷却材(A
)が炉心(8)内を上昇して、炉心槽(8)の上縁部か
ら熱交換領域(7)へ流出し、同熱交換領域(7)内に
設けた伝熱管束(15)の周りを管外流体として下降し
て、同伝熱管束(15)内を流れる管内流体(I3)を
加熱し、その後、同冷却材(A)は。
Figure 3 shows the primary liquid metal coolant (A
) rises in the core (8), flows out from the upper edge of the core tank (8) into the heat exchange area (7), and flows into the heat exchanger tube bundle (15) provided in the heat exchange area (7). The coolant (A) descends around the tube as an extra-tube fluid and heats the tube-in-tube fluid (I3) flowing inside the heat transfer tube bundle (15).

隔壁(9)の下部に設けた出口部から隔壁(9)と原子
炉容器(1)との間に形成されたコールドプレナムへ流
出し1次いで冷却材循環ポンプ(3)の吸入口から同冷
却材循環ポンプ(3)内へ吸入され、その後、連絡管(
12)を経て炉心(2)へ流入するようにした他の実施
例、第4図は、隔壁(9)の一部に熱交換領域(7)を
形成して、炉心(2)を出た1次系液体金属冷却材(A
)を上記と同様に導くようにしたさらに他の実施例で、
この場合にも、第1゜2図または第3図の原子炉と同様
の作用が達成される。
It flows out from the outlet provided at the bottom of the bulkhead (9) into the cold plenum formed between the bulkhead (9) and the reactor vessel (1), and then cools the same through the inlet of the coolant circulation pump (3). The material is sucked into the circulation pump (3), and then the connecting pipe (
Another embodiment in which the heat exchanger region (7) is formed in a part of the bulkhead (9), and the heat exchange region (7) is formed in a part of the partition wall (9), and the heat exchange region (7) is formed in a part of the partition wall (9), and the heat exchange region (7) is formed in a part of the partition wall (9). Primary liquid metal coolant (A
) is derived in the same way as above,
In this case as well, the same effect as in the nuclear reactor of FIGS. 1-2 or 3 is achieved.

(発明の効果) 本発明は前記のように原子炉容器と、同原子炉容器内に
配設された炉心槽と、同炉心槽内に配設された炉心と、
同原子炉容器の上部を閉じるルーフスラブと、同ルーフ
スラブから同原子炉容器と同炉心槽との間に垂下された
冷却材循環ポンプとを有する原子炉において、前記炉心
槽と前記冷却材循環ポンプとの間に隔壁を立設して、同
炉心槽と同隔壁との間に熱交換領域を形成し、前記ルー
フスラブから垂下された管束を同熱交換領域に位置させ
ており、炉心を出た高温冷却材は、炉心槽から熱交換領
域へ流出し、そこを管外流体として流れて、管束内を流
れる管内流体を加熱し2次いで冷却材循環ポンプ内を経
て炉心へ戻るので、中間熱交換器を必要とせず、同中間
熱交換器の周りに生じていた無駄な空間部を無くすこと
ができて。
(Effects of the Invention) As described above, the present invention includes a nuclear reactor vessel, a reactor core tank disposed within the reactor vessel, a reactor core disposed within the reactor core barrel,
In a nuclear reactor having a roof slab that closes an upper part of the reactor vessel, and a coolant circulation pump suspended from the roof slab between the reactor vessel and the core tank, A partition wall is erected between the pump and a heat exchange area between the core tank and the partition wall, and the tube bundle hanging from the roof slab is located in the heat exchange area. The discharged high-temperature coolant flows from the core tank to the heat exchange area, flows there as extra-tube fluid, heats the intra-tube fluid flowing inside the tube bundle, and then returns to the core via the coolant circulation pump. There is no need for a heat exchanger, and the wasted space around the intermediate heat exchanger can be eliminated.

原子炉容器を小型化できる。また熱交換を終わった後の
低温の冷却材が原子炉容器に触れるに過ぎないので、原
子炉容器を425°C以下の温度に保持できて、原子炉
容器に生じていた過大な熱応力を解消できる。また中間
熱交換器が無くなるので、原子炉容器を小型化できて、
耐震性を向上できる効果がある。
The reactor vessel can be made smaller. In addition, since the low-temperature coolant after heat exchange only comes into contact with the reactor vessel, the reactor vessel can be maintained at a temperature of 425°C or less, and the excessive thermal stress that was occurring in the reactor vessel can be reduced. It can be resolved. Also, since there is no intermediate heat exchanger, the reactor vessel can be made smaller.
It has the effect of improving earthquake resistance.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく1本発
明の精神を逸脱しない範囲で種々の設計の改変を施しう
るちのである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and can be modified in various ways without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原子炉の一実施例を示す斜視図、第2
図はその縦断側面図、第3図は他の実施例を示す縦断側
面図、第4図はさらに他の実施例を示す縦断側面図、第
5図乃至第10図は管束の各実施例を示す説明図、第1
1図は従来の原子ろを示す縦断側面図、第12図は第1
1図の矢視Xr−xr線に沿う平面図、第13図は第1
1図の矢印xm部分の拡大斜視図である。 (1)  ・・・原子炉容器、(2)・・・炉心、(3
)・・・冷却材循環ポンプ、(5)・・・ルーフスラブ
、(8)・・・炉心槽、(9)・・・隔壁、 (15)
・・・管束。 弗2図 第11図
Fig. 1 is a perspective view showing one embodiment of the nuclear reactor of the present invention;
The figure is a vertical side view of the tube bundle, FIG. 3 is a vertical side view showing another embodiment, FIG. 4 is a vertical side view showing still another embodiment, and FIGS. 5 to 10 show each embodiment of the tube bundle. Explanatory diagram showing, 1st
Figure 1 is a vertical side view showing a conventional atomic filter, and Figure 12 is a side view of the conventional atomic filter.
A plan view taken along the arrow line Xr-xr in Fig. 1, and Fig. 13
FIG. 2 is an enlarged perspective view of a portion indicated by an arrow xm in FIG. 1; (1) ...Reactor vessel, (2) ...Reactor core, (3
)... Coolant circulation pump, (5)... Roof slab, (8)... Core tank, (9)... Bulkhead, (15)
...tube bundle. Figure 11 of 弗2

Claims (1)

【特許請求の範囲】[Claims] 原子炉容器と、同原子炉容器内に配設された炉心槽と、
同炉心槽内に配設された炉心と、同原子炉容器の上部を
閉じるルーフスラブと、同ルーフスラブから同原子炉容
器と同炉心槽との間に垂下された冷却材循環ポンプとを
有する原子炉において、前記炉心槽と前記冷却材循環ポ
ンプとの間に隔壁を立設して、同炉心槽と同隔壁との間
に熱交換領域を形成し、前記ルーフスラブから垂下され
た管束を同熱交換領域に位置させたことを特徴とする原
子炉。
A reactor vessel, a reactor core tank disposed within the reactor vessel,
It has a reactor core disposed in the reactor core tank, a roof slab that closes the top of the reactor vessel, and a coolant circulation pump suspended from the roof slab between the reactor vessel and the reactor core tank. In the nuclear reactor, a partition wall is erected between the core tank and the coolant circulation pump to form a heat exchange area between the core tank and the partition wall, and a tube bundle suspended from the roof slab is formed. A nuclear reactor characterized by being located in a heat exchange region.
JP60031572A 1985-02-21 1985-02-21 Nuclear reactor Pending JPS61193093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60031572A JPS61193093A (en) 1985-02-21 1985-02-21 Nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60031572A JPS61193093A (en) 1985-02-21 1985-02-21 Nuclear reactor

Publications (1)

Publication Number Publication Date
JPS61193093A true JPS61193093A (en) 1986-08-27

Family

ID=12334886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60031572A Pending JPS61193093A (en) 1985-02-21 1985-02-21 Nuclear reactor

Country Status (1)

Country Link
JP (1) JPS61193093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892792A (en) * 1994-09-21 1996-04-09 Yamaguchi Seisakusho:Kk Lead wire for electroplating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892792A (en) * 1994-09-21 1996-04-09 Yamaguchi Seisakusho:Kk Lead wire for electroplating

Similar Documents

Publication Publication Date Title
RU2408094C2 (en) Nuclear reactor, namely nuclear reactor with liquid-metal cooling
CN210533099U (en) Coil pipe heat exchanger and water tank
JPS61193093A (en) Nuclear reactor
JPS60207087A (en) Integrated type fast breeder reactor
JP2508538Y2 (en) Fast breeder reactor cooling unit
JPS62159089A (en) Core support mechanism for tank type fast breeder reactor
JPS6057290A (en) Tank type fast breeder reactor
JPS5929799B2 (en) Heat exchanger
JPS6033083A (en) Tank type fast breeder reactor
JPS6337289A (en) Tank type reactor
JP2937423B2 (en) Tank type fast breeder reactor
JPH0452433B2 (en)
JPS639888A (en) Tank type reactor
JPS6071992A (en) Boiling-water reactor
JPH03103799A (en) Intermediate heat exchanger for fast breeder
JPH09288194A (en) Top flow-in and out, no liquid level type intermediate heat exchanger
JPS6244694A (en) Nuclear reactor
JPS62278485A (en) Nuclear reactor structure
JPH01217192A (en) Intermediate heat exchanger
JPS6224189A (en) Gas cooling type nuclear reactor
JPH04299299A (en) Intermediate heat exchanger for fast breeder reactor
JPS6190096A (en) Intermediate heat exchanger
JPS618698A (en) Nuclear reactor
JPS5938589A (en) Heat exchanger with built-in pump
JPH03207992A (en) Heat exchanger