JPH0459055A - Manufacture of monolithick catalyst - Google Patents

Manufacture of monolithick catalyst

Info

Publication number
JPH0459055A
JPH0459055A JP16186690A JP16186690A JPH0459055A JP H0459055 A JPH0459055 A JP H0459055A JP 16186690 A JP16186690 A JP 16186690A JP 16186690 A JP16186690 A JP 16186690A JP H0459055 A JPH0459055 A JP H0459055A
Authority
JP
Japan
Prior art keywords
slurry
carrier
medium
cells
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16186690A
Other languages
Japanese (ja)
Other versions
JP2616157B2 (en
Inventor
Keiichi Sawamura
沢村 敬一
Akihiko Saotome
五月女 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2161866A priority Critical patent/JP2616157B2/en
Publication of JPH0459055A publication Critical patent/JPH0459055A/en
Application granted granted Critical
Publication of JP2616157B2 publication Critical patent/JP2616157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To prevent the selective absorption of a medium and to prevent the clogging in cells of a monolithick carrier, before passing catalytic slurry into the cells of the monolithick carrier by previously damping the cells by a medium of quality same as that of the medium used for this slurry. CONSTITUTION:A catalytic raw material such as active alumina and ceria is pulverized and mixed together with a medium into catalytic slurry. Then before immersing this catalytic slurry into a monolithick carrier, it is immersed into a medium such as water used for the slurry and is pulled up after the lapse of certain time, and the surplus medium is removed by air blowing. Thereafter, the monolithick carrier is immersed into the catalytic slurry. In the above- mentioned manner, before passing the catalytic slurry into the cells of the monolithick carrier, the cells are previously damped by the medium, so that the selective absorption of the medium from the slurry caused by cell walls can be prevented and the clogging in the cells caused by the increase of the viscosity of the slurry can be prevented.

Description

【発明の詳細な説明】 産業−にの利用分野 本発明は、モノリス触媒担体の管状通路すなわち一般的
にはセルと呼ばれる構造の壁面に、アルミナ、セリアな
どを主成分とする触媒スラリを塗布する方法に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention applies a catalyst slurry mainly composed of alumina, ceria, etc. to the wall surface of the tubular passageway of a monolithic catalyst carrier, that is, the structure generally called a cell. Regarding the method.

従来の技術 大気汚染の防止を目的として、自動車の排気ガス中の有
害成分を触媒により無害な成分に変換することか行われ
ている。現在、一般的な自動車の排気カス浄化用モノリ
ス触媒は、セラミックモノリス担体または金属箔モノリ
ス担体の軸方向に整列した管状通路(一般的にはセルと
呼ばれる)に、白金、ロジウム、パラジウム等の触媒活
性物質と触媒活性物質を細かく分散させるための大きな
表面積を有する耐熱性物質がともに塗布されている。
BACKGROUND OF THE INVENTION In order to prevent air pollution, a catalyst is used to convert harmful components in automobile exhaust gas into harmless components. Currently, common monolithic catalysts for purifying automobile exhaust residue are equipped with catalysts such as platinum, rhodium, palladium, etc. Both the active material and the heat-resistant material with a large surface area for finely dispersing the catalytically active material are coated.

高表面積耐熱性物質は例えば微粒化されたガンマアルミ
ナ等が粘性のあるスラリとして塗布される。
The high surface area heat-resistant material, for example, finely divided gamma alumina, is applied as a viscous slurry.

触媒の生産プロセスにおいては、コストおよび所望のレ
ベルの触媒性能を得るという観点からすると、高表面積
物質や触媒活性物質を塗布する場合には、反復性のある
結果を生じるように塗布作業を制御し得るようにするこ
とが極めて重要である。
In the catalyst production process, from a cost and a desired level of catalytic performance point of view, when applying high surface area or catalytically active materials, the application process must be controlled to produce repeatable results. It is extremely important to make sure that you get the best results.

従来よりモノリス担体にスラリを塗布するための方法お
よび装置は種々知られている。
Various methods and apparatus are known in the art for applying slurry to monolithic carriers.

例えば米国特許第3565830号明細書には、セラミ
ックモノリス担体をスラリに浸漬後、空気を吹き込んで
スラリを除去し、閉塞した通路を開通させる技術か開示
されている。
For example, US Pat. No. 3,565,830 discloses a technique in which a ceramic monolithic carrier is immersed in a slurry and then air is blown to remove the slurry and open a blocked passageway.

また特開昭59−1.93140号公報には、スラリを
定量印加後セラミックモノリス担体に真空圧力を与えて
両端面に差圧を生しさせることて、過剰スラリを排出さ
ぜるとともに閉塞した通路を開通させる技術か開示され
ている。
Furthermore, in JP-A-59-1.93140, after applying a fixed amount of slurry, a vacuum pressure is applied to the ceramic monolith carrier to generate a differential pressure on both end faces, thereby removing excess slurry and clogging the carrier. A technique for opening the passage has been disclosed.

発明か解決しようとする課題 しかしながら、このような従来の方法においては、触媒
スラリかセルを通過する間に、スラリ中の媒体、例えば
水分か選択的にセル壁に吸収されるため、セル内でスラ
リか濃縮され粘度が1−昇するという問題点があった。
However, in such conventional methods, while the catalyst slurry passes through the cells, the medium in the slurry, such as water, is selectively absorbed by the cell walls, so that the There was a problem that the slurry was concentrated and the viscosity increased by 1.

そのため、粘度−I−昇が著しい時には、従来技術の前
者の例では、セラミックモノリス担体をスラリに浸漬後
、空気を吹き込んでもスラリか除去されず、閉塞した通
路を開通できないという問題があった。一方、従来技術
の後者の例では、スラリを定量印加後、セラミックモノ
リス担体に真空圧力を与えて両端面に差圧を生じさせて
も、上記と同様の理由により過剰スラリか排j1)され
ず閉塞した通路を開通てきないという問題があった。
Therefore, when the viscosity -I- increases significantly, in the former example of the prior art, the slurry is not removed even if air is blown after the ceramic monolith carrier is immersed in the slurry, and the blocked passage cannot be opened. On the other hand, in the latter example of the prior art, even if a vacuum pressure is applied to the ceramic monolith carrier to create a differential pressure on both end faces after applying a fixed amount of slurry, excess slurry is not discharged due to the same reason as above. There was a problem that the blocked passage could not be opened.

また、スラリの枯度土昇がそれほと大きくない時には、
モノリス担体毎に壁による媒体の吸収の仕方に差がある
ため、スラリの粘度−1−昇の度合が異なり、従来技術
のいずれの例でもセルを閉塞したスラリの除去のされ方
に差が生じ、結果的にセルに塗布されるスラリの計が一
定にならないという問題かあった。この現象は特にポー
ラスなセラミック製モノリス担体において著しい。
Also, when the dryness of the slurry is not so large,
Since there is a difference in the way the media is absorbed by the walls of each monolithic carrier, the degree of increase in the viscosity of the slurry differs, and in all examples of conventional technology, there is a difference in the way in which the slurry that has clogged the cells is removed. As a result, there was a problem that the amount of slurry applied to the cell was not constant. This phenomenon is particularly noticeable in porous ceramic monolithic carriers.

課題を解決するための手段 本発明はこのような従来の問題点に着LI してなされ
たもので、モノリス担体のセルに触媒スラリを通す前に
、予め該スラリに使用されている媒体と同質の媒体でセ
ルを湿潤させることにより、セル壁によるスラリからの
選択的な媒体の吸収を防止し、スラリの粘度−にη1に
よるセルの閉塞を防止しつつセルに触媒スラリを塗布す
るものである。
Means for Solving the Problems The present invention has been made in view of these conventional problems.Before passing the catalyst slurry through the cells of the monolith carrier, it is necessary to prepare a medium of the same quality as that used for the slurry. By wetting the cells with the medium, the cell walls are prevented from selectively absorbing the medium from the slurry, and the catalyst slurry is applied to the cells while preventing clogging of the cells due to the viscosity of the slurry. .

第1図は本発明の触媒スラリ塗布工程の例を、また第2
図は従来の触媒スラリ塗布f程の例をそれぞれ示してい
る。
FIG. 1 shows an example of the catalyst slurry coating process of the present invention, and a second example of the catalyst slurry coating process of the present invention.
The figures each show an example of conventional catalyst slurry application.

従来の塗布工程例では第2図に示すように、活性アルミ
ナやセリアなとの触媒原材料か媒体と緒にホールミルや
振動ミルで粉砕・混合されて触媒スラリになる。その触
媒スラリに、米国特許第3565830号明細書の例で
は、軸方向に整列した管状通路を有するモノリス担体か
浸漬され、一定時間経過後に引き一]二げられてエアブ
ロ−により余剰のスラリを吹き払い乾燥される。この時
、モノリス)1体のセル内でスラリの粘度−1−昇が著
しい時にはエアブロ−により余剰のスラリを吹き払うこ
とができない。1回の操作で触媒スラリの所望の付着量
が得られない場合には、これらスラリへの浸漬、エアブ
ロ−1乾燥のサイクルか繰り返され、触媒スラリの所望
の付着量が得られた時点て焼成することにより、触媒ス
ラリをモノリス担体に固層させて触媒スラリの塗布され
たモノリス担体を得るとされている。
In a conventional application process, as shown in FIG. 2, a catalyst raw material such as activated alumina or ceria is ground and mixed together with a medium in a hole mill or vibration mill to form a catalyst slurry. In the example of U.S. Pat. No. 3,565,830, a monolithic carrier having tubular passages aligned in the axial direction is immersed in the catalyst slurry, and after a certain period of time, it is pulled back and the excess slurry is blown away by an air blower. Brush dry. At this time, if the viscosity of the slurry increases significantly within the cells of the monolith, the excess slurry cannot be blown away by air blowing. If the desired amount of catalyst slurry cannot be obtained in one operation, the cycle of immersion in the slurry and air blow-1 drying is repeated, and when the desired amount of catalyst slurry is obtained, baking is performed. By doing so, it is said that the catalyst slurry is solidified on the monolithic carrier to obtain a monolithic carrier coated with the catalyst slurry.

一方、本発明の工程例では、第1図に示すように活性ア
ルミナやセリアなどの触媒原材料を媒体と一緒に従来と
同様の方法で粉砕・混合して触媒スラリにする。モノリ
ス担体は触媒スラリに浸漬される前に、該スラリに使用
されている媒体、本例では純水に浸漬され、一定時間経
過後に引きI−げられてエアブロ−により余剰の水分か
除去される。純水への浸漬の代わりに純水をシャワーし
てもよいし、エアブロ−の替わりに吸引してもよい。
On the other hand, in the process example of the present invention, as shown in FIG. 1, catalyst raw materials such as activated alumina and ceria are ground and mixed together with a medium in a conventional manner to form a catalyst slurry. Before being immersed in the catalyst slurry, the monolithic carrier is immersed in the medium used for the slurry, in this example pure water, and after a certain period of time it is pulled out and excess water is removed by air blowing. . A shower of pure water may be used instead of immersion in pure water, and suction may be used instead of air blowing.

この操作によって、セル壁にスラリに使用されている媒
体を充分に吸収せしめる。
This operation allows the cell walls to fully absorb the medium used in the slurry.

加湿処理されたモノリス担体は触媒スラリに浸漬され、
一定時間経過後に引き」−げられてエアブロ−により余
剰のスラリを吹き払い、乾燥、焼成される。この時、モ
ノリス担体は車重に該スラリに使用されている媒体を充
分に吸収しているので、セル内のスラリから媒体を選択
吸収してスラリの粘度を」−昇させることはない。した
がって、余剰のスラリは確実に除去される。そして、所
望のスラリ付着量が得られるまで上記のサイクルを繰り
返す。ここで、毎回焼成するのは、次回の加湿処理てそ
れまでにセル壁に形成された触媒スラリ層が崩壊しない
ように固化させるためである。
The humidified monolithic support is immersed in a catalyst slurry,
After a certain period of time has elapsed, it is pulled out, the excess slurry is blown off with an air blower, and it is dried and fired. At this time, since the monolithic carrier has sufficiently absorbed the medium used in the slurry based on the weight of the vehicle, the viscosity of the slurry does not increase by selectively absorbing the medium from the slurry in the cells. Therefore, excess slurry is reliably removed. The above cycle is then repeated until the desired amount of slurry adhesion is obtained. Here, the reason why firing is performed every time is to solidify the catalyst slurry layer formed on the cell walls so as not to collapse during the next humidification process.

実施例] 活性アルミナ(比表面積120m2/g)75重量部と
酸化セリウム25重量部を混合した粉末10,000g
と硝酸解膠ベーマイトゾル11,950gをバッチ型振
動ミルで混合・粉砕して触媒スラリを得た。該スラリの
固形分は51wt%て、粘度は90CPSてあった。こ
のスラリに浸漬する、コーンライト(Cordieri
tc)製て1インチ平方当り/100ケのセルを有する
1 、 3 T、、のモノリス担体No、、l]−1(
表−1参照)を、容器に入った純水に60秒間浸漬し、
引き上げてエアブロ−により余剰の水分を吹き払った。
Example] 10,000 g of powder mixed with 75 parts by weight of activated alumina (specific surface area 120 m2/g) and 25 parts by weight of cerium oxide
and 11,950 g of nitric acid peptized boehmite sol were mixed and pulverized in a batch-type vibrating mill to obtain a catalyst slurry. The solid content of the slurry was 51 wt% and the viscosity was 90 CPS. Corn light (Cordieri) is soaked in this slurry.
tc) with 1,3 T, , monolithic carrier No.,,l]-1(
(see Table 1) for 60 seconds in a container of pure water,
It was pulled up and the excess moisture was blown off with air.

この操作により、該モノリス担体No、J1−1は10
5gの純水を吸収した。
Through this operation, the monolithic carrier No., J1-1, had 10
Absorbed 5g of pure water.

次に、この加湿処理されたモノリス担体No。Next, this humidified monolithic carrier No.

Jl−1を、触媒スラリに60秒間浸漬し、引き」ユげ
てエアブロ−により余剰のスラリを吹き払った。セルが
閉塞されることなく余剰のスラリか除去され、WET状
態で129gのスラリかモノリス担体に付着した。80
’Cの温風をセルに吹き込んて該担体を乾燥後、300
 ’Cて焼成したところDRY状態で96gのスラリか
付着したモノリス担体を得た。
Jl-1 was immersed in the catalyst slurry for 60 seconds, then pulled out and the excess slurry was blown off with an air blower. Excess slurry was removed without clogging the cells, and 129 g of slurry was deposited on the monolithic carrier in a wet state. 80
After drying the carrier by blowing warm air at 300 °C into the cell,
When the monolithic carrier was fired at 10° C., a monolithic carrier with 96 g of slurry attached thereto was obtained in a dry state.

触媒スラリの付着量を増やすため、同様のサイクルを繰
り返したところ、90gの純水を吸収し、WET状態て
2 ]、 Ogのスラリか411着し、それを乾燥、焼
成したところD RY状態て12/Igの触媒スラリを
新たにイ」着させることができた。合計で220gの触
媒スラリを付着さぜたモノリス担体を得た。No、Jl
−2〜J1−10のモノリス担体について同様の操作を
行い表−1の結果を得た。
In order to increase the amount of catalyst slurry deposited, the same cycle was repeated, and 90 g of pure water was absorbed, and a slurry of Og was deposited in the wet state. A new catalyst slurry of 12/Ig was applied. A monolithic carrier having a total of 220 g of catalyst slurry adhered thereto was obtained. No, Jl
Similar operations were performed on the monolith carriers -2 to J1-10, and the results shown in Table 1 were obtained.

実施例2 モノリス担体を純水で加湿処理する代わりに、p H/
Iの希硝酸て加湿処理をした以外は実施例1と同様の方
法で、No、J2−1〜J2−10のモノリス担体につ
いて、実施例1とほぼ同様の結果を得た。
Example 2 Instead of humidifying the monolithic carrier with pure water, pH/
Using the same method as in Example 1 except that No. I was humidified with dilute nitric acid, almost the same results as in Example 1 were obtained for monolithic carriers No. and J2-1 to J2-10.

比較例1 実施例1と同様の方法で触媒スラリを得た−1−1実施
例1で使用したコージライト製て1インチ平方当り/1
00ケのセルを有する1、31−のモノリス担体No、
H1−1を触媒スラリに60秒間浸?jf L、引き」
−げてエアブロ−を行ったがセル内のスラリ粘度か高く
、余剰スラリを除去することができなかった。全面にわ
たってセルは閉塞したままたった。
Comparative Example 1 Catalyst slurry was obtained in the same manner as in Example 1 -1-1 Cordierite used in Example 1/1/1 square inch
1,31-monolith carrier No. with 00 cells,
Soak H1-1 in catalyst slurry for 60 seconds? jf L, pull.”
Although air blowing was performed after removing the cell, the viscosity of the slurry inside the cell was high and the excess slurry could not be removed. The cell remained occluded throughout.

比較例2 実施例1と同様の方法で得たスラリに純水を添加して固
形分が45wt%になるまで希釈して触媒スラリを得た
。粘度は1.2 CP Sであった。実施例1で使用し
たコージライト製で1インチ平方当り400ケのセルを
有する1、3Lのモノリス担体N o、 H2−1(表
−2参照)を触媒スラリに60秒間浸漬し、引きにげて
エアブロ−を行った。余剰のスラリか除去され、WET
状態で102gのスラリかモノリス担体に付着した。8
0°Cの温風をセルに吹き込んで該担体を乾燥させたと
ころ、D RY状態で41gのスラリか付着したモノリ
ス担体を得た。
Comparative Example 2 Pure water was added to a slurry obtained in the same manner as in Example 1 to dilute the slurry until the solid content reached 45 wt% to obtain a catalyst slurry. The viscosity was 1.2 CP S. The 1.3L monolithic carrier No.H2-1 (see Table 2) made of cordierite used in Example 1 and having 400 cells per square inch (see Table 2) was immersed in the catalyst slurry for 60 seconds, and then dried. Then air blow was performed. Excess slurry is removed and wet
102 g of slurry was deposited on the monolithic carrier. 8
When the carrier was dried by blowing hot air at 0°C into the cell, a monolith carrier with 41 g of slurry attached thereto was obtained in a dry state.

触媒スラリの付71量を増やすため、同様のサイクルを
2回繰り返したところ、各々WET状態て125g、1
48gのスラリがイー1着し、それを乾燥させたところ
I) RY状態てそれぞれ52g、61gの触媒スラリ
を新たに付着させることかできた。最後に300°Cて
焼成して合計で154gの触媒スラリをイー1着させた
モノリス担体を得た。No、 I(2−2〜H2−10
のモノリス担体について同様の操作を行い表−2の結果
を得た。
In order to increase the amount of catalyst slurry applied, the same cycle was repeated twice, and 125 g and 1
When 48 g of slurry was deposited on E1 and dried, it was possible to newly deposit 52 g and 61 g of catalyst slurry in I) RY state, respectively. Finally, it was calcined at 300°C to obtain a monolithic carrier on which a total of 154 g of catalyst slurry was deposited. No, I (2-2~H2-10
The same operation was performed on the monolithic carrier, and the results shown in Table 2 were obtained.

実施例3 ランタンを金属換算で3wt%含有する活性アルミナ(
比表面積107m2/g) 75重量部と酸化セリウム
25重i11部を混合した粉末6,360gと酢酸解膠
ベーマイトゾル10,000gをバッチ型振動ミルで混
合・粉砕して触媒スラリを得た。該スラリの固形分は/
15wt%て、粘度は120CPSてあった。このスラ
リか塗布される、コージライト製で1インチ平方当り4
00ケのセルを有する1 、 3 Lのモノリス担体N
o、J31 (表−3参照)に、セルの軸方向と同一方
向から純水を30秒間ンヤワーで掛けた後、第3図の装
置で余剰の水分を吸引除去した。この操作によリ、該モ
ノリス担体No、J3−1は10 ]、 gの純水を吸
収した。
Example 3 Activated alumina containing 3 wt% lanthanum (calculated as metal)
A catalyst slurry was obtained by mixing and pulverizing 6,360 g of a powder obtained by mixing 75 parts by weight of specific surface area (107 m2/g) with 11 parts of 25 parts of cerium oxide and 10,000 g of acetic acid-peptized boehmite sol using a batch-type vibration mill. The solid content of the slurry is /
It was 15 wt% and the viscosity was 120 CPS. This slurry is made of cordierite and is coated with 4
1,3 L monolithic carrier N with 00 cells
After applying pure water to the cell tube J31 (see Table 3) for 30 seconds from the same direction as the axial direction of the cell, excess water was removed by suction using the apparatus shown in FIG. Through this operation, the monolith carrier No. J3-1 absorbed 10 g of pure water.

第3図の装置は、内部に液飛散防止板2を設けた吸引タ
ンク1の開口部3の上部にリング状の支持台4を介して
ワークたるモノリス担体Wをセットするとともに、モノ
リス担体Wの上にシール材5を介してホッパ6を接続し
、他方の開口部7から吸弓ブロアにより吸引するように
したものである。8は開閉バルブ、9は圧力計である。
In the apparatus shown in FIG. 3, a monolith carrier W as a workpiece is set via a ring-shaped support 4 at the top of an opening 3 of a suction tank 1 provided with a liquid scattering prevention plate 2 inside. A hopper 6 is connected to the top via a sealing material 5, and suction is carried out from the other opening 7 by a suction bow blower. 8 is an on-off valve, and 9 is a pressure gauge.

次に、この加湿処理されたモノリス担体No。Next, this humidified monolithic carrier No.

J3−1の一方の端面に、第3図のホッパ6を用いて触
媒スラリを1,200g供給し、第3図の装置で他方の
開口部7から10秒間吸引して余剰のスラリを除去した
。セルが閉塞されることなく余剰のスラリが除去され、
WET状態で197gのスラリかモノリス担体に付着し
た。80°Cの温風をセルに吹き込んで該担体を乾燥さ
せた後、300°Cで焼成したところDRY状態で12
8gのスラリか付着したモノリス担体を得た。
1,200 g of catalyst slurry was supplied to one end face of J3-1 using the hopper 6 shown in Fig. 3, and the excess slurry was removed by suction for 10 seconds from the other opening 7 using the device shown in Fig. 3. . Excess slurry is removed without clogging the cells.
In the wet state, 197 g of slurry was deposited on the monolithic support. After drying the carrier by blowing hot air at 80°C into the cell, it was fired at 300°C, resulting in a dry state of 12
A monolithic carrier with 8 g of slurry attached was obtained.

触媒スラリの付着量を増やすため、同様のサイクルを繰
り返したところ、87gの純水を吸収し、WET状態で
262gのスラリが付着し、それを乾燥、焼成したとこ
ろDRY状態で152gの触媒スラリを新たに付着させ
ることができた。合計で280gの触媒スラリを付着さ
せたモノリス担体を得た。No、J3−2〜J3−10
のモノリス担体について同様の操作を行い表−3の結果
を得た。
In order to increase the amount of catalyst slurry deposited, the same cycle was repeated, and 87g of pure water was absorbed, and 262g of slurry was deposited in the wet state.When it was dried and fired, 152g of catalyst slurry was deposited in the dry state. I was able to attach a new one. A monolithic carrier having a total of 280 g of catalyst slurry deposited thereon was obtained. No, J3-2 to J3-10
The same operation was performed on the monolithic carrier, and the results shown in Table 3 were obtained.

実施例4 モノリス担体を純水で加湿処理する代わりに、p H4
の希酢酸で加湿処理をした以外は実施例1と同様の方法
で、No J4−1〜J4−10のモノリス担体につい
て、実施例3とほぼ同様の結果を得た。
Example 4 Instead of humidifying the monolithic carrier with pure water, pH 4
Using the same method as in Example 1, except that the humidification treatment was performed with dilute acetic acid, substantially the same results as in Example 3 were obtained for the monolith carriers Nos. J4-1 to J4-10.

比較例3 実施例3と同様の方法で得たスラリに、純水を添加して
固形分が36wt%になるまで希釈して触媒スラリを得
た。粘度は38CPSであった。
Comparative Example 3 Pure water was added to a slurry obtained in the same manner as in Example 3 to dilute the slurry until the solid content reached 36 wt% to obtain a catalyst slurry. The viscosity was 38 CPS.

実施例3で使用したコージライト製で1インチ平方当り
400ケのセルを有する1、3Lのモノリス担体No、
H3−1の一方の端面に、実施例3と同様の方法で触媒
スラリを1.200g供給し、実施例3と同様の方法で
他方の端面から10秒間吸引したが、セルは閉塞したま
まで余剰のスラリを除去できなかった。
Monolith carrier No. 1, 3L made of cordierite and having 400 cells per square inch used in Example 3,
1.200 g of catalyst slurry was supplied to one end face of H3-1 in the same manner as in Example 3, and suction was applied from the other end face for 10 seconds in the same manner as in Example 3, but the cell remained closed. Excess slurry could not be removed.

比較例4 実施例3と同様の方法で得たスラリに、純水を添加して
固形分が20wt%になるまで希釈して触媒スラリを得
た。粘度は11CPSであった。
Comparative Example 4 Pure water was added to a slurry obtained in the same manner as in Example 3 to dilute the slurry until the solid content became 20 wt% to obtain a catalyst slurry. The viscosity was 11 CPS.

実施例3で使用したコージライト製で1インチ平方当り
400ケのセルを有する1、3Lのモノリス担体No、
T−I3−1の一方の端面に、実施例3と同様の方法で
触媒スラリを1,200g供給し、実施例3と同様の方
法で他方の端面から10秒間吸引したが、セルは閉塞し
たままで余剰のスラリを除去できなかった。
Monolith carrier No. 1, 3L made of cordierite and having 400 cells per square inch used in Example 3,
1,200 g of catalyst slurry was supplied to one end face of T-I3-1 in the same manner as in Example 3, and suctioned for 10 seconds from the other end face in the same manner as in Example 3, but the cell was blocked. Excess slurry could not be removed.

実施例5 活性アルミナ(比表面積120m2/g)751g量部
と酸化セリウム25重量部を混合した粉末10.000
gと塩酸解膠ベーマイトツル11,420gをバッチ型
振動ミルで混合・粉砕して触媒スラリを得た。該スラリ
の固形分は52wt%で、粘度はIQQcPsてあった
。このスラリに、ステンレス系の金属箔製で1インチ平
方当り400ケのセルを有する1 、 3 Lのモノリ
ス担体No。
Example 5 10.000 parts of powder mixed with 751 g parts of activated alumina (specific surface area 120 m2/g) and 25 parts by weight of cerium oxide
g and 11,420 g of hydrochloric acid peptized boehmite vine were mixed and pulverized in a batch-type vibrating mill to obtain a catalyst slurry. The solid content of the slurry was 52 wt%, and the viscosity was IQQcPs. A 1.3 L monolith carrier No. made of stainless steel metal foil and having 400 cells per square inch was added to this slurry.

J5−1(表−4参照)を60秒間浸漬し、引き上げて
エアブロ−により余剰のスラリを吹き払った。セルが閉
塞されることな(余剰のスラリか除去され、WET状態
で110gのスラリかモノリス担体に付着した。80°
Cの温風をセルに吹き込んて該担体を乾燥させた後、3
00℃で焼成したところDRY状態で59gのでラリが
付着したモノリス担体を得た。
J5-1 (see Table 4) was immersed for 60 seconds, then pulled out and the excess slurry was blown off with an air blower. The cells were not blocked (excess slurry was removed and 110 g of slurry was deposited on the monolithic support in the wet state. 80°
After drying the carrier by blowing hot air of C into the cell, 3
When fired at 00° C., a monolithic carrier with lariat attached was obtained, weighing 59 g in a dry state.

この1回目のコーティングを行う前に加湿処理を行わな
かったのは、モノリス担体を構成するステンレス系金属
箔は全く吸水しない、すなわち触媒スラリから媒体を選
択的に吸収しないためである。しかし、2回目以降のコ
ーティングでは、それまでにセルに付着したスラリによ
る媒体の選択的吸引か起こるので加湿処理を必要とする
The reason why no humidification treatment was performed before this first coating is because the stainless metal foil constituting the monolithic carrier does not absorb any water, that is, it does not selectively absorb the medium from the catalyst slurry. However, in the second and subsequent coatings, a humidification process is required because selective suction of the medium by the slurry that has adhered to the cells up to that time occurs.

触媒スラリの付着量を増やすため、1回目のコーティン
グの終わった担体No、J5−1を、容器に入った純水
に60秒間浸漬し、引き上げてエアブロ−により余剰の
水分を吹き払った。この操作により、該モノリス担体N
o、J5−4は67gの純水を吸収した。この加湿処理
を施したモノリス担体No、J5−1に2回目のコーテ
ィング操作を行ったところ、WET状態で170gのス
ラリか付着し、それを乾燥、焼成したところDRY状態
で106gの触媒スラリを新たに付着させることができ
た。合計で165gの触媒スラリを付着させたモノリス
担体を得た。No、J5−2〜J5−5のモノリス担体
について同様の操作を行い表−4の結果を得た。
In order to increase the amount of catalyst slurry deposited, carrier No. J5-1, which had been coated for the first time, was immersed in pure water in a container for 60 seconds, taken out, and excess moisture was blown off with an air blower. By this operation, the monolithic carrier N
o, J5-4 absorbed 67 g of pure water. When the second coating operation was performed on the humidified monolith carrier No. J5-1, 170 g of slurry adhered in the wet state, and when it was dried and fired, 106 g of catalyst slurry was added in the dry state. I was able to attach it to. A monolithic carrier having a total of 165 g of catalyst slurry deposited thereon was obtained. Similar operations were performed on monolithic carriers No. J5-2 to J5-5, and the results shown in Table 4 were obtained.

(以下余白) 発明の効果 以I−説明したようにこの発明によれば、モノリス担体
のセルに触媒スラリを通す前に、予め該スラリに使泪さ
れている媒体と同質の媒体でセルを湿潤させることによ
り、セル壁によるスラリからの選択的な媒体の吸収を防
止し、セル内てスラリの粘度を上昇させてセルを閉塞さ
せることなくモノリス担体のセルに触媒スラリを塗布す
ることができ、かつモノリス担体毎のスラリ付着量のば
らつきが小さいという効果が得られる。
(Left below) Effects of the Invention I - As explained, according to the present invention, before passing the catalyst slurry through the cells of the monolithic carrier, the cells are wetted in advance with a medium of the same quality as the medium used for the slurry. By this, the catalyst slurry can be applied to the cells of the monolithic support without selectively absorbing the medium from the slurry by the cell walls and increasing the viscosity of the slurry within the cells and clogging the cells. Moreover, the effect of reducing the variation in the amount of slurry deposited on each monolithic carrier can be obtained.

また、本発明によれば、比較的固形分濃度が高かったり
、ランタンなどの成分が添加されて粘度の高い触媒スラ
リてもセルを閉塞させることなくセルに塗布できるとい
う効果がある。
Further, according to the present invention, even if the catalyst slurry has a relatively high solid content concentration or has a high viscosity due to the addition of components such as lanthanum, it can be applied to the cells without clogging the cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の処理手順を示す工程説明図、第2図は
従来の製造方法による処理手順を示す工程説明図、第3
図は吸引型コーティング装置の構成説明図である。 1・吸引タンク、W・・モノリス担体(ワーク)。
FIG. 1 is a process explanatory diagram showing the processing procedure of the present invention, FIG. 2 is a process explanatory diagram showing the processing procedure according to the conventional manufacturing method, and FIG.
The figure is an explanatory diagram of the configuration of a suction type coating device. 1. Suction tank, W... Monolith carrier (work).

Claims (1)

【特許請求の範囲】[Claims] (1)軸方向に整列した管状通路を有するモノリス担体
に触媒スラリを塗布する方法において、触媒スラリに含
まれる媒体と同質の媒体で管状通路を湿潤させてから触
媒スラリを管状通路に通して触媒スラリを塗布すること
を特徴とするモノリス触媒の製造方法。
(1) In a method of applying a catalyst slurry to a monolithic support having axially aligned tubular passages, the tubular passages are moistened with a medium homogeneous to that contained in the catalyst slurry, and then the catalyst slurry is passed through the tubular passages to catalyze the catalyst slurry. A method for producing a monolithic catalyst, characterized by applying a slurry.
JP2161866A 1990-06-20 1990-06-20 Method for producing monolith catalyst Expired - Fee Related JP2616157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2161866A JP2616157B2 (en) 1990-06-20 1990-06-20 Method for producing monolith catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161866A JP2616157B2 (en) 1990-06-20 1990-06-20 Method for producing monolith catalyst

Publications (2)

Publication Number Publication Date
JPH0459055A true JPH0459055A (en) 1992-02-25
JP2616157B2 JP2616157B2 (en) 1997-06-04

Family

ID=15743453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161866A Expired - Fee Related JP2616157B2 (en) 1990-06-20 1990-06-20 Method for producing monolith catalyst

Country Status (1)

Country Link
JP (1) JP2616157B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339648A (en) * 1989-07-06 1991-02-20 Nok Corp Glucose biosensor
JP2001219077A (en) * 1999-12-23 2001-08-14 Degussa Huels Ag Method for coating ceramic honeycomb body
JP2012521286A (en) * 2009-03-24 2012-09-13 ビーエーエスエフ ソシエタス・ヨーロピア Method and apparatus for coating a catalyst carrier object in the absence of a catalyst on the outer surface
JPWO2013136869A1 (en) * 2012-03-16 2015-08-03 日本碍子株式会社 Separation membrane production method, separation membrane complex production method, and separation membrane complex

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307455A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Preparation of waste gas purification catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307455A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Preparation of waste gas purification catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339648A (en) * 1989-07-06 1991-02-20 Nok Corp Glucose biosensor
JP2001219077A (en) * 1999-12-23 2001-08-14 Degussa Huels Ag Method for coating ceramic honeycomb body
JP2012521286A (en) * 2009-03-24 2012-09-13 ビーエーエスエフ ソシエタス・ヨーロピア Method and apparatus for coating a catalyst carrier object in the absence of a catalyst on the outer surface
JPWO2013136869A1 (en) * 2012-03-16 2015-08-03 日本碍子株式会社 Separation membrane production method, separation membrane complex production method, and separation membrane complex

Also Published As

Publication number Publication date
JP2616157B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
CA1243656A (en) Method of impregnating ceramic monolithic structures with predetermined amount of catalyst
JP5150719B2 (en) Method for introducing a catalyst coating into the pores of a ceramic honeycomb flow body
EP1243335B1 (en) Catalyst and method for preparation thereof
WO2018037637A1 (en) Honeycomb structure body, honeycomb structure type catalyst, and manufacturing methods therefor
US20080200328A1 (en) Method and Device For Applying Washcoat Suspensions to a Molded Article
JP2008510606A (en) Method for coating a wall flow filter with a coating composition
CN102781586A (en) Method of coating a monolith substrate with catalyst component
BRPI0908461B1 (en) SUITABLE EMISSION TREATMENT SYSTEM FOR THE TREATMENT OF A DISCHARGE SYSTEM DOWNWARD OF A DIRECT INJECTION GASOLINE ENGINE
EP1723998B1 (en) Filter catalyst
JP2007526827A (en) Method for producing catalytic wall-flow filter with catalytic action
JP2001219077A (en) Method for coating ceramic honeycomb body
ZA200504013B (en) Catalyst and method for coating a catalyst carrier containing two different partial structures with a catalytically active coating
JPH0459055A (en) Manufacture of monolithick catalyst
CN111148570B (en) Non-contact leveling of a washcoat suspension
JPS62225250A (en) Powder deposition type catalyst
JPS61268356A (en) Method for supporting alumina by catalyst carrier
DE102005054946A1 (en) Process for coating or impregnating the surfaces of a catalyst support
JP2009254985A (en) Impregnation method for honeycomb structure, method of manufacturing honeycomb structure catalyst and obtained honeycomb structure catalyst
US5516494A (en) Process for applying a coating to honeycomb structures in an exhaust gas converter
CN109219590A (en) The manufacturing method of cylindrical honeycomb structure body with overlay film and the manufacturing method of catalyst
JP2019503842A (en) Process for the preparation of monolith catalysts for selective catalytic reduction of nitrogen oxides
JP2693981B2 (en) Method for manufacturing monolith catalyst for exhaust gas purification
WO2021017042A1 (en) Dust-removal and denitration integrated inorganic membrane tube and preparation method therefor
JPH01307455A (en) Preparation of waste gas purification catalyst
JP2009254987A (en) Method of partially impregnating honeycomb structure, method of manufacturing honeycomb structure catalyst and obtained honeycomb structure catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees