JPS62225250A - Powder deposition type catalyst - Google Patents

Powder deposition type catalyst

Info

Publication number
JPS62225250A
JPS62225250A JP61066336A JP6633686A JPS62225250A JP S62225250 A JPS62225250 A JP S62225250A JP 61066336 A JP61066336 A JP 61066336A JP 6633686 A JP6633686 A JP 6633686A JP S62225250 A JPS62225250 A JP S62225250A
Authority
JP
Japan
Prior art keywords
catalyst
catalytic
carrier
cell
carriers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61066336A
Other languages
Japanese (ja)
Inventor
Ikuo Matsumoto
松本 郁夫
Kenji Tabata
研二 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61066336A priority Critical patent/JPS62225250A/en
Publication of JPS62225250A publication Critical patent/JPS62225250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To form a catalyst layer with same thickness as a plane part by depositing a fine powder catalyst of perovskite having the specified structural formula on a monolithic catalytic carrier having a cell-like shape of quadrangle or hexagon by means of the specified deposition aid. CONSTITUTION:Monolithic catalytic carrier 3, 4 of a cell-like shape of quadrangle or hexagon having corner parts 1, 2 of a curved shape are molded by using a heat resistant ceramic material such as cordierite or mullite. A catalytic layer 5 of perovskite composite oxide having a structural formula of La0.9Ce0.1 CoO3 is formed on the surface of these catalytic carriers. After immersing the catalytic carriers 3, 4 into kneaded slurry of particles of perovskite composite oxide and alumina sol, compressed air is blown to cell holes 6, 7 and the carriers are dried and thereafter calcined at about 800 deg.C for 10min and the catalytic layer 5 is tightly stuck on the catalytic carriers 3, 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃焼の際発生する不完全燃焼成分、未燃成分あ
るいは各種調理の際発生する臭気の原因である炭化水素
等を取り除くため燃焼機器内に設けた排気ガス浄化触媒
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applied to combustion equipment in order to remove incompletely burned components and unburned components generated during combustion, as well as hydrocarbons that cause odors generated during various types of cooking. The present invention relates to an exhaust gas purification catalyst provided therein.

従来の技術 従来この種の触媒には各種のものが存在していた。すな
わちその中で最も一般的な白金族金属を担持している触
媒体は多孔質のセラミック担体に塩化白金酸水溶液の様
な白金族金属を含んだ水溶液を含浸させ、それを乾燥、
焼成させて担体細孔内の表向に金属微粒子としであるい
は金属酸化物微粒子として付着させたものである。白金
族触媒は活性は良いが、コストが非常に高いのが欠点で
ある。遷移金属酸化はその粒径を非常に小さくすれば白
金族触媒並みの活性を有することは公知でおるが、単独
の遷移金族酸化物は高温に不安定で、活性劣化につなが
るのに対し、ある種のペロブスカイト構造を持った複合
酸化物は活性も相当にあり、また耐熱性も有する。従っ
てこれらペロブスカイト化合物の微粉末を担体に付着さ
せれば優れた触媒体になるが、付着させた微粉末はどう
しても密着強度が弱く脱落しやすい。特に付着させた膜
が厚くなるとわずかな衝撃あるいは急激な熱変化に対し
て剥離しやすい欠陥を有する。触媒微粉末を触媒担体に
担持する方法は触媒微粉末をアルミナゾルなどの担持助
剤と共にスラリー状にさせたものの中に含浸させ、担体
のセル内にある余分なスラリーを圧縮空気で吹き飛ばし
、乾燥させ、焼成する。この際に四角あるいは六角セル
の角の部分は第3図、第4図の様にスラリー液の表面張
力により触媒が多量に付着し、触媒の部分的欠落になり
やすい。
BACKGROUND OF THE INVENTION Various types of catalysts of this type have existed in the past. Specifically, the most common catalyst supporting platinum group metals is a porous ceramic carrier impregnated with an aqueous solution containing a platinum group metal, such as an aqueous solution of chloroplatinic acid, and then dried.
It is baked and deposited on the surface of the pores of the carrier as fine metal particles or fine metal oxide particles. Although platinum group catalysts have good activity, their disadvantage is that they are very expensive. It is well known that transition metal oxides can have the same activity as platinum group catalysts if the particle size is made very small; however, individual transition metal oxides are unstable at high temperatures and lead to deterioration of their activity. Composite oxides with a certain type of perovskite structure have considerable activity and are also heat resistant. Therefore, if fine powder of these perovskite compounds is attached to a carrier, it becomes an excellent catalyst, but the attached fine powder inevitably has a weak adhesion strength and easily falls off. In particular, when the deposited film becomes thick, it has defects that make it easy to peel off due to a slight impact or rapid thermal change. The method of supporting fine catalyst powder on a catalyst carrier is to impregnate the fine catalyst powder into a slurry together with a supporting agent such as alumina sol, blow off the excess slurry in the cells of the carrier with compressed air, and dry it. , to be fired. At this time, a large amount of catalyst adheres to the corner portions of the square or hexagonal cells due to the surface tension of the slurry liquid, as shown in FIGS. 3 and 4, and the catalyst tends to be partially missing.

発明が解決しようとする問題点 スラリー液のようなある程度の粘度を有する液体はコー
ナ部に溜りやすい。これは付着させる手段によっても(
例えばdippingによる含浸法をスプレー吹付は法
に変える)多少の改善期待ができる可能性は有するもの
の、スラリー液が流動性を持り以上、担体のコーナ部に
溜りやすい傾向は変わらない。
Problems to be Solved by the Invention Liquids having a certain degree of viscosity, such as slurry liquid, tend to accumulate in the corners. This also depends on the means of attachment (
Although there is a possibility that some improvement can be expected (for example, changing the impregnation method by dipping to a spraying method), as long as the slurry liquid has fluidity, it will still tend to accumulate in the corners of the carrier.

問題点を解決するための手段 上記問題点を解決するために鋭角のコーナを持つ四角あ
るいは六角形状のセルを有したハニカム担体のセル角を
湾曲形にさせる。
Means for Solving the Problems In order to solve the above problems, the cell angles of a honeycomb carrier having square or hexagonal cells with acute corners are curved.

作  用 上記の解決手段によりハニカム担体のセルコーナ部に滞
溜する様な形で、触媒層が厚く析出する仁とがなくなり
、平面部と同じ厚みで触媒層を形成することができる。
Effect: The solution described above eliminates thick deposits of the catalyst layer that accumulate in the cell corner portions of the honeycomb carrier, making it possible to form the catalyst layer with the same thickness as the flat portion.

こnによりコーナ部の密着強度が弱くなり、触媒膜が衝
撃あるいは急激な熱変化に対して剥離しやすいという欠
陥は解消される。
This eliminates the defect that the adhesion strength at the corner portion is weakened and the catalyst film is easily peeled off due to impact or rapid thermal changes.

実施例 本発明の実施例について記述する。Example Embodiments of the present invention will be described.

コーディエライト(2MgOLI58i○2 ” 2A
l2O3〕、あるいはムライト(2Si02・3At2
03)のような耐熱性セラミック材料を用い、湾曲形の
コーナ部1.2を持った四角形(第1図)あるいは六角
形(第2図)のセル形状を有したモノリス形の触媒担体
3,4の表面上にLa0.9Co   COO3の構造
式を有するペロブスカイト0.1 複合酸化物触媒層5を形成する。(第5図)ペロブスカ
イト複合酸化物触媒層5を形成する方法は以下の通りで
ある。ペロブスカイト複合酸化物微粒子、アルミナゾル
(酢酸酸性、焼成後のA4203の重量10チ)及び水
を重量比1:1:2の割合で混合させ、特殊ミルにより
十分混練させた触媒スラリー内に上記触媒担体3,4を
dippingさせ、堆す出し、ブロワ−により圧縮空
気を触媒担体3,4のセルル孔6,7に対し直角に吹き
つけ、セル孔6,7内〈滞溜している余分なスラリーを
吹き洛とす。触媒スラリーを付着させた触媒担体3.4
を金網上において常温で乾燥させ、水分を無くした後、
約800℃で10分間空気中で焼成させ、触媒担体3,
4上に密着させて作成する。
Cordierite (2MgOLI58i○2” 2A
l2O3] or mullite (2Si02・3At2
A monolithic catalyst carrier 3, which is made of a heat-resistant ceramic material such as 03) and has a square (Fig. 1) or hexagonal (Fig. 2) cell shape with curved corner portions 1.2. A perovskite 0.1 composite oxide catalyst layer 5 having a structural formula of La0.9CoCOO3 is formed on the surface of 4. (FIG. 5) The method for forming the perovskite composite oxide catalyst layer 5 is as follows. Perovskite composite oxide fine particles, alumina sol (acidic acid, weight of A4203 after firing: 10 cm), and water are mixed in a weight ratio of 1:1:2, and the above catalyst carrier is placed in a catalyst slurry that is sufficiently kneaded using a special mill. 3 and 4 are dipped, deposited, and a blower is used to blow compressed air at right angles to the cell holes 6 and 7 of the catalyst carriers 3 and 4. blown away. Catalyst carrier with catalyst slurry attached 3.4
After drying on a wire mesh at room temperature to remove moisture,
The catalyst carrier 3,
4. Make it in close contact with the top.

本発明による湾曲形のコーナ部1.2を持った触媒担体
(第1図、第2図)を用いた粉末担持型触媒(第5図)
は従来一般に用いられている鋭角のコーナ部6,7を持
った触媒担体(@3図、第4図)を用いたもの(第6図
)に比較して、ペロブスカイト複合酸化物触媒層5は均
一な厚みのものになっている。第6図に示した様に鋭角
なコーナ部6には触媒スラリーの表面張力によりその部
分のみ過剰に担持されることになり、焼成後わずかな衝
撃あるいは急激な熱変化により剥離しやすい欠陥を有す
る。従って従来の鋭角のコーナ部を有する担体を用いた
粉末担持型触媒の活性はもとより美観的にも問題がある
。上記の例では四角形のセルの場合を示したが六角形の
セルの場合においても同様なことがいえる。第7図はセ
ル湾曲部の大きさと触媒剥げ落ち率の図であり、触媒担
持後10 m/m の高さより落下させた後の触媒の剥
げ落ち率である。
A powder-supported catalyst (Fig. 5) using a catalyst carrier (Figs. 1 and 2) having curved corner portions 1.2 according to the present invention
The perovskite composite oxide catalyst layer 5 is different from the conventionally commonly used catalyst carrier with acute corner portions 6 and 7 (@Fig. 3, Fig. 4) (Fig. 6). It is of uniform thickness. As shown in Figure 6, the surface tension of the catalyst slurry causes excessive loading at the sharp corner portion 6, and there is a defect that easily peels off due to a slight impact or rapid thermal change after firing. . Therefore, the conventional powder-supported catalyst using a carrier having acute corners has problems not only in terms of activity but also in terms of aesthetics. Although the above example shows the case of a rectangular cell, the same can be said for a hexagonal cell. FIG. 7 is a diagram showing the size of the cell curved portion and the catalyst flaking rate, and shows the catalyst flaking rate after being dropped from a height of 10 m/m after supporting the catalyst.

本発明の実施例では使用したペロブスカイト複合酸化物
触媒の実施例をLa□、 c、 Coo、I Coo3
で示したが、特にこの組成に限定するものではなく、一
般にABO3、AxA;、BO3、A B y B’1
  。
Examples of perovskite composite oxide catalysts used in the examples of the present invention are La□, c, Coo, I Coo3
However, the composition is not particularly limited to this, and generally ABO3, AxA;, BO3, A B y B'1
.

03 、 AxA′1−XByffl  、(Aは希土
類元素、RはSrあるいはCe、B及びB′は遷移金属
)の構造式を有するペロブスカイト微粉末であるならば
本発明の中に含まれる。また触媒微粉末を担体に接着さ
せるための役割を有する担持助剤も本例で示したアルミ
ナゾルの他に硝酸アルミニウム、水酸化アルミニウムな
ど焼成することにより各種0A7203 の形状を有す
るものであるならアルミナゾルと同等の効果を得ること
ができる。勿論上記の担持助剤を複合して用いても良い
03, AxA'1-XByffl, (A is a rare earth element, R is Sr or Ce, and B and B' are transition metals) are included in the present invention. In addition to the alumina sol shown in this example, supporting aids that play a role in adhering the fine catalyst powder to the carrier include aluminum nitrate, aluminum hydroxide, and other materials that have the shape of 0A7203 when fired. You can get the same effect. Of course, the above-mentioned supporting aids may be used in combination.

触媒担体セルの湾曲部は大きいほうが良い効果が得られ
るが、セルの形状から考え極端な大きさは取り得す、1
R(半径1 mm )以上であるなら十分効果は発揮す
る。触媒の密着強度は担体の性状(吸水率、細孔の大き
さ、担体の表面状態)、担持助剤の量、及び担持後の触
媒膜の厚さなどと関係を有するが、特に吸水率の大少は
大きな影響があり、大きいと担体内に水の吸込みが多く
それにつれ担体表面に析出される触媒量が多くなる。
The larger the curved part of the catalyst carrier cell, the better the effect, but considering the shape of the cell, an extreme size is possible.
If the radius is R (radius 1 mm) or more, the effect will be sufficient. The adhesion strength of a catalyst is related to the properties of the carrier (water absorption rate, pore size, surface condition of the carrier), the amount of supporting agent, and the thickness of the catalyst film after supporting. The size has a big influence; the larger the amount, the more water will be absorbed into the carrier, and the more the amount of catalyst will be deposited on the surface of the carrier.

実施例で示したスラリー組成では触媒担体の吸水率が5
〜25%のものが望ましく、中でも15〜20%が最適
であった。
In the slurry composition shown in the example, the water absorption rate of the catalyst carrier was 5.
-25% is desirable, and 15-20% is most suitable.

従来の触媒担体の形状を本発明の様に変更することによ
り、コーナ部の剥げ落ちはほとんど無くなり、従来実施
困難であった粉末を担体上に担持するタイプの触媒作成
が容易になった。特にペロブスカイト複合酸化物触媒の
様に担体上で直接合成しにくい触媒に対しては有力な方
法であると云える。図7にセル湾曲部の大きさと触媒の
剥げ落ちの程度を表わしたグラフを示す。
By changing the shape of the conventional catalyst carrier as in the present invention, peeling off of the corner portions is almost eliminated, and it has become easier to produce a type of catalyst in which powder is supported on the carrier, which was previously difficult to do. It can be said that this is a particularly effective method for catalysts that are difficult to synthesize directly on a carrier, such as perovskite composite oxide catalysts. FIG. 7 shows a graph showing the size of the cell curved portion and the degree of catalyst flaking off.

発明の効果 本発明による粉末担持型触媒の効果を以下列記する。Effect of the invention The effects of the powder-supported catalyst according to the present invention are listed below.

(1)  モノリスセル形状の角の部分を湾曲形にさせ
た触媒担体を用いることにより、触媒層の担持肉厚のバ
ラツキが少なくなり、特にコーナ部などの触媒層の衝撃
あるいは急激な熱変化に対する剥離)がなくなった。
(1) By using a catalyst carrier with curved corner portions of the monolith cell shape, variations in the thickness of the supported catalyst layer are reduced, and the catalyst layer is particularly resistant to shocks or sudden thermal changes at corners. peeling) has disappeared.

(2) 同一肉厚を存する触媒担体で比較した場合、湾
曲形のコーナ部を持った触媒担体の強度は、鋭角のコー
ナ部を持った触媒担体の強度より圧倒的に強くすること
ができた。
(2) When comparing catalyst carriers with the same wall thickness, the strength of the catalyst carrier with curved corners was overwhelmingly stronger than the strength of the catalyst carrier with sharp corners. .

(3担持触媒の部分的剥離がなくなり、触媒活性を上げ
ることができ、また美観的にも優れた品質を提供するこ
とができた。
(3) Partial peeling of the supported catalyst was eliminated, catalytic activity could be increased, and aesthetically superior quality could be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例の粉末担持型触媒の
触媒担体の横断面図、第3図、第4図は従来の触媒担体
を示す横断面図、第5図は本発明の一実施例の粉末担持
型触媒の触媒担持の状態を示すモデル図、第6図は従来
の粉末担持型触媒の触媒担持の状態を示すモデル図、第
7図は触媒の剥げ落ち率を示す図である。 1.2・・・・・・湾曲形のコーナ部、3,4・・・・
・・触媒担体、5・・・・・ペロブスカイト複合酸化物
触媒層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
  コーナ昔p s−”r’ロブス声イト窪艮合彦ビし省が蜜で(1第1
図 第2図 第3図 第5図 第6図
FIGS. 1 and 2 are cross-sectional views of a catalyst carrier of a powder-supported catalyst according to an embodiment of the present invention, FIGS. 3 and 4 are cross-sectional views of conventional catalyst supports, and FIG. A model diagram showing the state of catalyst support in a powder-supported catalyst according to an embodiment of the invention, FIG. 6 is a model diagram showing the state of catalyst support in a conventional powder-supported catalyst, and FIG. 7 shows the flaking rate of the catalyst. FIG. 1.2...Curved corner part, 3,4...
... Catalyst carrier, 5... Perovskite composite oxide catalyst layer. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
Corner old ps-”r'Robs voice it kubo 艮 Ahihikobi and the ministry is honey (1st 1st
Figure 2 Figure 3 Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)耐熱性セラミック材料を用いた四角形あるいは六
角形のセル形状を有したモノリス形の触媒担体上に、一
般にABO_3、AxA′_1_−_xBO_3、AB
_yB′_1_−_yO_3、AxA′_1_−_xB
yB′_1_−_y(Aは希土類元素、A′はSrある
いはCe、B及びB′は遷移金属)の構造式を有したペ
ロブスカイト微粉末触媒を担持助剤としてアルミナゾル
、硝酸アルミニウム、水酸化アルミニウムなど焼成し、
各種のAl_2O_3の形状を有する担持助剤と共に表
面担持を行い、かつモノリスセル形状の角の部分を湾曲
形とした粉末担持型触媒。
(1) Generally, ABO_3, AxA'_1_-_xBO_3, AB
_yB'_1_-_yO_3, AxA'_1_-_xB
Alumina sol, aluminum nitrate, aluminum hydroxide, etc. using a perovskite fine powder catalyst having the structural formula yB'_1_-_y (A is a rare earth element, A' is Sr or Ce, B and B' are transition metals) as a supporting agent. Baked,
A powder-supported catalyst that is supported on the surface together with a supporting agent having the shape of various Al_2O_3, and the corner portions of the monolithic cell shape are curved.
(2)モノリスセルの湾曲部は1R以上の角度を有する
特許請求の範囲第1項記載の粉末担持型触媒。
(2) The powder-supported catalyst according to claim 1, wherein the curved portion of the monolithic cell has an angle of 1R or more.
(3)セラミック材料はコーディエライト(2MgO5
SiO_2・2Al_2O_3)、ムライト(2Al_
2O_3・TiO_2)など1000℃以上の耐熱性を
有し、かつ吸水率が5〜25%の範囲内にある特許請求
の範囲第1項記載の粉末担持型触媒。
(3) The ceramic material is cordierite (2MgO5
SiO_2・2Al_2O_3), mullite (2Al_
2O_3.TiO_2), etc., which has heat resistance of 1000° C. or higher and has a water absorption rate within the range of 5 to 25%.
JP61066336A 1986-03-25 1986-03-25 Powder deposition type catalyst Pending JPS62225250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61066336A JPS62225250A (en) 1986-03-25 1986-03-25 Powder deposition type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066336A JPS62225250A (en) 1986-03-25 1986-03-25 Powder deposition type catalyst

Publications (1)

Publication Number Publication Date
JPS62225250A true JPS62225250A (en) 1987-10-03

Family

ID=13312909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066336A Pending JPS62225250A (en) 1986-03-25 1986-03-25 Powder deposition type catalyst

Country Status (1)

Country Link
JP (1) JPS62225250A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193512A (en) * 1995-01-13 1996-07-30 Ngk Insulators Ltd Exhaust emission control device
US5559073A (en) * 1994-09-26 1996-09-24 Beijing Huaxia Environmental Protection Company Pollution control catalyst with mutual protective distributed-active-combinations each including noble-metal-atoms stably structured and protected therein
JPH10263416A (en) * 1997-01-21 1998-10-06 Toyota Motor Corp Exhaust gas purifying catalyst
JP2000237602A (en) * 1998-12-21 2000-09-05 Denso Corp Catalyst for cleaning exhaust gas of internal combustion engine
US6159578A (en) * 1998-05-12 2000-12-12 Ngk Insulators, Ltd. Hexagonal-cell honeycomb structure and method for fixation thereof
BE1012807A3 (en) * 1998-12-21 2001-03-06 Denso Corp Catalyst for cleaning exhaust engine explosion.
KR20030005929A (en) * 2001-07-11 2003-01-23 현대자동차주식회사 A intake catalyst having hexagonal monolith structure
JP2007175571A (en) * 2005-12-27 2007-07-12 Denso Corp Hexagonal cell honeycomb structure
EP1654447A4 (en) * 2003-08-01 2007-12-26 Lexco Inc Monolith for use in regenerative oxidizer systems
JP2008246472A (en) * 2007-03-02 2008-10-16 Denso Corp Hexagonal cell honeycomb carrier and hexagonal cell honeycomb catalyst
CN102671715A (en) * 2012-03-29 2012-09-19 杭州中环化工设备有限公司 Method for adhering powder catalyst for decomposing sodium hypochlorite onto ceramic carrier
JP2012192390A (en) * 2011-03-18 2012-10-11 Ngk Insulators Ltd Honeycomb structure
US20170021321A1 (en) * 2005-04-14 2017-01-26 Chemical Process Engineering Research Institute Center For Research And Technology- Hellas (Certh- Gas-solid reactor
JP2018512743A (en) * 2015-02-05 2018-05-17 イオニクス アドバンスト テクノロジーズ リミテッドIonix Advanced Technologies Ltd Piezoelectric transducer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147637A (en) * 1980-01-24 1981-11-16 Engelhard Min & Chem Carrier member
JPS60166038A (en) * 1984-02-06 1985-08-29 Matsushita Electric Ind Co Ltd Manufacture of oxidizing catalyst for catalytic combustion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147637A (en) * 1980-01-24 1981-11-16 Engelhard Min & Chem Carrier member
JPS60166038A (en) * 1984-02-06 1985-08-29 Matsushita Electric Ind Co Ltd Manufacture of oxidizing catalyst for catalytic combustion

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559073A (en) * 1994-09-26 1996-09-24 Beijing Huaxia Environmental Protection Company Pollution control catalyst with mutual protective distributed-active-combinations each including noble-metal-atoms stably structured and protected therein
JPH08193512A (en) * 1995-01-13 1996-07-30 Ngk Insulators Ltd Exhaust emission control device
JPH10263416A (en) * 1997-01-21 1998-10-06 Toyota Motor Corp Exhaust gas purifying catalyst
US6421915B1 (en) 1998-05-12 2002-07-23 Ngk Insulators, Ltd. Hexagonal-cell honeycomb structure and method for fixation thereof
US6159578A (en) * 1998-05-12 2000-12-12 Ngk Insulators, Ltd. Hexagonal-cell honeycomb structure and method for fixation thereof
US6713429B1 (en) 1998-12-21 2004-03-30 Denso Corporation Purification catalyst for internal combustion engine exhaust gas
BE1012807A3 (en) * 1998-12-21 2001-03-06 Denso Corp Catalyst for cleaning exhaust engine explosion.
JP2000237602A (en) * 1998-12-21 2000-09-05 Denso Corp Catalyst for cleaning exhaust gas of internal combustion engine
KR20030005929A (en) * 2001-07-11 2003-01-23 현대자동차주식회사 A intake catalyst having hexagonal monolith structure
EP1654447A4 (en) * 2003-08-01 2007-12-26 Lexco Inc Monolith for use in regenerative oxidizer systems
US20170021321A1 (en) * 2005-04-14 2017-01-26 Chemical Process Engineering Research Institute Center For Research And Technology- Hellas (Certh- Gas-solid reactor
JP2007175571A (en) * 2005-12-27 2007-07-12 Denso Corp Hexagonal cell honeycomb structure
JP4709002B2 (en) * 2005-12-27 2011-06-22 株式会社デンソー Hex cell honeycomb structure
JP2008246472A (en) * 2007-03-02 2008-10-16 Denso Corp Hexagonal cell honeycomb carrier and hexagonal cell honeycomb catalyst
JP2012192390A (en) * 2011-03-18 2012-10-11 Ngk Insulators Ltd Honeycomb structure
CN102671715A (en) * 2012-03-29 2012-09-19 杭州中环化工设备有限公司 Method for adhering powder catalyst for decomposing sodium hypochlorite onto ceramic carrier
JP2018512743A (en) * 2015-02-05 2018-05-17 イオニクス アドバンスト テクノロジーズ リミテッドIonix Advanced Technologies Ltd Piezoelectric transducer
US10730074B2 (en) 2015-02-05 2020-08-04 Ionix Advanced Technologies Ltd Piezoelectric transducers

Similar Documents

Publication Publication Date Title
US7510755B2 (en) Honeycomb structure and method for producing same
JP6998871B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
EP1723998B1 (en) Filter catalyst
JP4082559B2 (en) Catalyst body and method for producing the same
JPS62225250A (en) Powder deposition type catalyst
JP4567285B2 (en) Exhaust gas purification catalyst body
JP7228065B2 (en) Catalyst-coated gasoline particulate filter and its manufacturing method
JP4437785B2 (en) Method for producing silicon carbide based catalyst body
JP3874443B2 (en) Particulate collection filter
JP4404538B2 (en) Silicon carbide catalyst body for exhaust gas purification and method for producing the same
JP2000225340A (en) Honeycomb structure
JP2002054422A (en) Ceramic filter, and method of manufacturing same
JP6949019B2 (en) Honeycomb structure and method for manufacturing the honeycomb structure
JP2005279436A (en) Process for producing catalyst for purifying exhaust gas
JP2004154766A (en) Ceramic catalyst body
JP2007136357A (en) Manufacturing method of catalyst for purification of exhaust gas
JP4369097B2 (en) Coating material, honeycomb structure and manufacturing method thereof
JP4355469B2 (en) Alumina-supported support, catalyst body, and method for producing alumina-supported support
JP2020062627A (en) Ammonia cleaning catalyst
JP6782571B2 (en) Honeycomb structure
JP3835659B2 (en) Exhaust gas purification catalyst
JP3247956B2 (en) Exhaust gas purification catalyst
JPH08299809A (en) Production of honeycomb catalyst
JP2003326162A (en) Catalyst for purifying exhaust gas and its manufacturing method
JP2004041852A (en) Catalyst carrier and catalyst body