JPH0458818B2 - - Google Patents

Info

Publication number
JPH0458818B2
JPH0458818B2 JP62112506A JP11250687A JPH0458818B2 JP H0458818 B2 JPH0458818 B2 JP H0458818B2 JP 62112506 A JP62112506 A JP 62112506A JP 11250687 A JP11250687 A JP 11250687A JP H0458818 B2 JPH0458818 B2 JP H0458818B2
Authority
JP
Japan
Prior art keywords
fine particles
film
silicone resin
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62112506A
Other languages
Japanese (ja)
Other versions
JPS63278939A (en
Inventor
Norihiro Nomi
Kinji Hasegawa
Hisashi Hamano
Hideo Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11250687A priority Critical patent/JPS63278939A/en
Publication of JPS63278939A publication Critical patent/JPS63278939A/en
Publication of JPH0458818B2 publication Critical patent/JPH0458818B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は二軸牌配向ポリエステルフイルムに関
し、更に詳しくはシリコン樹脂微粒子及び他の不
活性微粒子を含有し、平坦で滑り性、耐削れ性及
び耐擦り傷性に優れた二軸配向ポリエステルフイ
ルムに関する。 [従来技術] ポリエステルテレフタレートに代表されるポリ
エステルは、その優れた物理性および化学的特性
の故に、磁気テープ用、写真用、コンデンサー
用、包装用などのフイルムとして広く用いられて
いる。これらフイルムにおいては、その滑り性及
び耐削り性はフイルムの製造工程および各用途に
おける加工工程の作業性の良否、さらにはその製
品品質の良否を左右する大きな要因となつてい
る。特にポリエステルフイルム表面に磁性層塗布
時におけるコーテイングロールとフイルム表面と
の摩擦および摩耗が極めて激しく、フイルム表面
へのしわおよび擦り傷が発生しやすい。また磁性
層塗布後のフイルムをスリツトしてオーデイオ、
ビデオまたはコンピユータ用テープ等に加工した
後でも、リールやカセツト等からの引き出し、巻
き上げその他の操作の際に、多くのガイド部、再
生ヘツド等との間で摩耗が著しく生じ、擦り傷、
歪の発生、さらにはポリエステルフイルム表面の
削れ等による白粉状物質を析出させる結果、磁気
記録信号の欠落、即ちドロツプアウトの大きな原
因となることが多い。 一般に、フイルムの滑り性および耐削れ性の改
良には、フイルム表面に凹凸を付与することによ
りガイドロール等との間の接触面積を減少せしめ
る方法が採用されており、大別して(i)フイルム原
料に用いる高分子の触媒残渣か不活性の粒子を析
出せしめる方法と、(ii)不活性の無機粒子を添加せ
しめる方法が用いられている。これら原料高分子
中の微粒子は、その大きさが大きい程、滑り性の
改良効果が大であるの一般的であるが、磁気テー
プ、特にビデオ用のごとき精密用途には、その粒
子が大きいこと自体がドロツプアウト等の欠点発
生の原因ともなり得るため、フイルム表面の凹凸
は出来るだけ微細である必要があり、相反する特
性を同時に満足すべき要求がなされるのが現状で
ある。 従来、フイルムの易滑性を向上させる方法とし
て、フイルム基質であるポリエステルに酸化ケイ
素、二酸化チタン、炭酸カルシウム、タルク、ク
レイ、焼成カオリン等の無機質粒子を添加する方
法(例えば特開昭54−57562号公報参照)又はポ
リエステルを製造する重合系内で、カルシウム、
リチウムあるいはリンを含む微粒子を析出せしめ
る方法が提案されている(特公昭52−32914号公
報参照)。フイルム化した際、ポリエステルに不
活性の上記微粒子はフイルム表面に突起を生成
し、この突起はフイルムの滑り性を向上させる。 しかしながら、微粒子による突起によつて、フ
イルムの滑り性を改善する方法は、突起が一方で
はフイルム表面の平坦性を阻害することとなる本
質的な問題点を孕んでいる。 これらの相反する平坦性と易滑性と解決せんと
する試みとして、比較的大粒径の微粒子と比較的
小粒径の微粒子との複合微粒子系を利用する手段
が提案されている。 米国特許第3821156号明細書は0.5〜30μmの炭
酸カルシウム微粒子0.02〜0.1重量%と0.01〜0.1μ
mのシリカ又は水和アルミナシリケート0.01〜
0.5重量%との組合せを開示している。 米国特許第3884870号明細書は約0.5〜30μmの
炭酸カルシウム、焼成ケイ酸アルミニウム、水和
ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ
酸カルシウム、リン酸カルシウム、シリカ、アル
ミナ、硫酸バリウム、マイカ、ケイソウ土等の不
活性微粒子約0.002〜0.018重量%を、約0.01〜
0.1μmのシリカ、炭酸カルシウム、焼成ケイ酸カ
ルシウム、水和ケイ酸カルシウム、リン酸カルシ
ウム、アルミナ、硫酸バリウム、硫酸マグネシウ
ム、ケイソウ土等の不活性微粒子約0.3〜2.5重量
%との併用を開示している。 米国特許第3980611号明細書は粒径1.0μm以下、
1〜2.5μmおよび2.5μm以下の3種の粒径グレー
ドのリン酸カルシウム微粒子を組合せて全量
5000ppm以下でポリエステルに添加することを開
示している。 特公昭55−41648号公報(特開昭53−71154号公
報)は2〜2.5μmの微粒子0.22〜1.0重量%と1.8
〜10μmの微粒子0.003〜0.25重量%との組合せで
あつて、害微粒子が周期律表の第、および
族の元素の酸化又は無機塩であるこを提案してい
る。 特公昭55−40929号公報(特開昭52−11908号公
報)は、3〜6μmの不活性無機微粒子0.01〜0.08
重量%と1〜2.5μmの不活性無機微粒子0.08〜0.3
重量%との組合せであつて、粒径の異なるこれら
の微粒子の全量が0.1〜0.4重量%であり且つ小さ
い粒径の微粒子に対する大きい粒径の微粒子の割
合が0.1〜0.7である混合粒子を開示している。 特開昭52−78953号公報は10〜1000mμmの不
活性粒子0.01〜0.5重量%と0.5〜15μmの炭酸カル
シウム0.11〜0.5重量%と含有する二軸配向ポリ
エステルフイルムを開示している。特開昭52−
78953号公報には、10〜1000mμmの不活性粒子
として炭酸カルシウム以外の種々の無機質物質が
一般記載の中に列記されている。しかしながら、
この公報には通常10〜1000mμmの微粒子として
入手できるシリカあるいはクレーを無機質物質と
して用いた具体例が開示されているにすぎない。 [発明の目的] 本発明の目的は、表面平坦性、易滑性、耐削れ
性および耐擦り傷性に極めて優れた二軸配向ポリ
エステルフイルムを提供することにある。 [発明の構成・効果] 本発明によれば、本発明の上記目的および利点
は、第一に、 () 芳香族ポリエステル ()(a) 下記式(A) RxSiO2−x/2 ……(A) 〔ここで、Rは炭素数1〜7の炭化水素基で
あり、xは1〜1.2の数である。〕 で表わされる組成を有し、 (b) 下記式(B) f=v/D3 ……(B) 〔ここで、vは粒子の平均体積(μm3)であ
り、Dは粒子の平均最大粒径(μm)であ
る。〕 で定義される体積形状係数(f)が0.4より大きく
π/6以下であり、そして (c) 0.01〜4μmの平均粒径を有する、シリコン
樹脂微粒子0.005〜2.0重量%(芳香族ポリエ
ステルに対し)および、 () 0.01〜5μmの平均粒径を有し、且つ平均粒
径が上記シリコン樹脂微粒子よりも大きい他の
不活性部粒子0.005〜2.0重量%(芳香族ポリエ
ステルに対し)から成る緊密な混合物から形成
された二軸配向ポリエステルによつて達成され
る。 本発明における芳香族ポリエステルとは芳香
族ジカルボン酸を主たる酸成分とし、脂肪族グ
リコールを主たるグリコール成分とするポリエ
ステルである。かかるポリエステルは実質的に
は線状であり、そしてフイルム形成特性に溶融
成形によるフイルム形成性を有する。芳香族ジ
カルボン酸とは、例えばテレフタル酸、ナフタ
レンジカルボン酸、イソフタル酸、ジフエノキ
シエタンジカルボン酸、ジフエルジカルボン
酸、ジフエニルエーテルジカルボン酸、ジフエ
ニルスルホンジカルボン酸、ジフエニルケトン
ジカルボン酸、アンスラセンジカルボン酸等で
ある。脂肪族グリコールとは、例えばエチレン
グリコール、トリメチレングリコール、テトラ
メチレングリコール、ペンタメチレングリコー
ル、ヘキサメチレングリコール、デカメチレン
グリコール等の如き炭素数2〜10のポリメチレ
ングリコールであるいはシクヘキサンジメタノ
ールの如き脂環族ジオール等である。 本発明において、ポリエステルとしては例え
ばアルキレンテレフタレート及び/又はアルキ
レンナフタレートを主たる構成成分とするもの
が好ましく用いられる。 かかるポリエステルのうちでも、例えばポリ
エチレンテレフタレート、ポリエチレンナフタ
レートはもちろんのこと、例えば全ジカルボン
酸成分の80モル%以上がテレフタル酸及び/又
はナフタレンジカルボン酸であり、全グリコー
ル成分の80モル%以上がエチレングリコールで
ある共重合体が特に好ましい。 その際、全酸成分の20モル%以下のジルカル
ボン酸はテレフタル酸及び/又はナフタレンジ
カルボン酸以外の上記芳香族ジカルボン酸であ
ることができ、また例えばアジピン酸、セバチ
ン酸等の如き脂肪族ジカルボン酸;シクロヘキ
サン−1,4−ジカルボン酸の如き脂環族ジカ
ルボン酸等であることができる。また、全グリ
コール成分の20モル%以下はエチレングリコー
ル以外の上記グリコールであることができ、あ
るいは例えばハイドロキノン、レゾルシン、
2,2′−ビス(4−ヒドロキシフエニル)プロ
パン等の如き芳香族ジオール;1,4−ジヒド
ロキシメチルベンゼンの如き芳香環を有する脂
肪族ジオール;ポリエチレングリコール、ポリ
プロピレングリコール、ポリテトラメチレング
リコール等の如きポリアルキレングリコール
(ポリオキシアルキレングリコール)等である
こともできる。 また、本発明で用いる芳香族ポリエステルに
は、例えばヒドロキシ安息香酸の如き芳香族オ
キシ酸;ω−ヒドロキシカプロン酸の如き脂肪
族オイシ酸;等のオキシカルボン酸に由来する
成分を、ジカルボン酸成分およびオキシカルボ
ン酸成分の総量に対し20モル%以下で含有する
ものも包含される。さらに、本発明における芳
香族ポリエステルには実質的に線状である範囲
の量、例えば全酸成分に対し2モル%以下の量
で、3官能以上のポリカルボン酸又はポリヒド
ロキシ化合物、例えばトリメリツト酸、ペンタ
エリスリトール等を共重合したものをも包含さ
れる。 上記芳香軸ポリエステルは、それ自体公知で
あり、且つそれ自体公知の方法で製造すること
ができる。 上記芳香族ポリエステルとしては、o−クロ
ロフエノール中の溶液として35℃で測定して求
めた固有粘度が約0.4〜約1.0のものが好まし
い。 本発明の二軸配向ポリエステルフイルムはそ
のフイルム表面の平坦性を定義するRaの後記
説明から明らかなとおり、フイルム表面の多数
の微細な突起を有している。 それらの多数の微細な突起は本発明によれば
芳香族ポリエステル中に分散して含有される多
数の実質的に不活性な固体微粒子に由来する。 本発明において、シリコン樹脂微粒子()
は、下記式(A) RxSiO2−x/2 ……(A) 〔ここで、Rは炭素数1〜7の炭化水素基であ
り、xは1〜1.2の数である。〕 て表わされる組成を有する。 上記式(A)におけるRは炭素数1〜7の炭化水素
基であり、例えば炭素数1〜7のアルキル基、フ
エニル基あるいはトリル基が好ましい。炭素数1
〜7のアルキル基は直鎖状であつても分枝鎖状で
あつてもよく、例えばメチル、エチル、n−プロ
ピル、iso−プロピル、n−ブチル、iso−ブチ
ル、tert−ブチル、n−ペンチル、n−ヘプチル
等をあげることができる。 これらのうち、Rとしてはメチルおよびフエニ
ルが好ましく、就中メチルが特に好ましい。 上記(A)においてxが1でらうとき、上記式(A)
は、下記式(A)―1 RSiO1.5 ……(A)―1 [ここで、Rの定義は上記に同じである] で表わすことができる。 上記式(A)―1の組成は、シリコン樹脂の三次
元重合体鎖構造における下記構造部分; に由来するものである。 また、上記(A)においてxが1.2であるとき、上
記式(A)は下記式(A)―2 R1.2SiO1.4 ……(A)―2 [ここで、Rの定義は上記に同じである] で表わすことができる。 上記式(A)―2の組成は(A)―1の構造0.8モ
ルと下記式(A)′ R2SiO ……(A)′ [ここで、Rの定義は上記に同じである] で表わされる構造0.2モルとから成ると理解する
ことができる。 上記式(A)′は、シリコン樹脂の三次元重合体鎖
における下記構造部分; に由来する。 以上の説明から理解されるように、本発明の上
記式(A)の組成は、例えば上記式(A)―1の構造の
みから実質的にみるか、あるいは上記式(A)―1
の構造と上記式(A)―2の構造が適当な割合でラ
ンダムに結合した状態で共存する構造から成るこ
とがわかる。 本発明におけるシリコン樹脂微粒子は、好まし
くは上記式(A)において、xが1〜1.1の間の値を
有する。 また、本発明におけるシリコン樹脂微粒子
()は、下記式(B) f=v/D3 ……(B) [ここで、vは1ケ当りの平均体積(μm3)であ
り、Dは粒子の平均最大粒径(μm)である。〕 で定義される体積形状係数(f)が0.4より大きくそ
してπ/6以下である。 上記定義において、Dの粒子の平均最大粒径は
粒子を横切る任意の直線が粒子の周囲と交叉する
2点間の距離のうち最大の長さを持つ距離をいう
ものと理解すべきである。 本発明におけるシリコン樹脂微粒子の好ましい
fの値は0.44〜π/6であり、より好ましいfの
値は0.48〜π/6である。fの値がπ/6である
粒子は真球である。下限よりも小さいf値を持つ
シリコン樹脂微粒子の使用ではフイルム表面諸特
性の制御が極めて困難となる。 本発明で用いるシリコン樹脂微粒子は、さら
に、0.01〜4μmの平均粒径を有している。平均粒
径が0.01μmよりも小さい粒子を使用した場合に
は、滑り性、耐削れ性及び耐擦り傷性の向上効果
が不充分であり、一方平均粒径が4μmより大き
い粒子を使用した場合には平面平坦性の十分でな
いフイルムしか得られない。 平均粒径は、好ましくは0.05〜3μmの値にあ
り、特に好ましくは0.1〜1.0μmの値にある。 ここにいう平均粒径とは、ストークスの式に基
づいて算出された等価球径粒度分布の積算50%点
における径であると理解される。 本発明で用いるシリコン樹脂微粒子は、例え
ば、下記式 RSi(OR′)3 〔ここで、Rは炭素数1〜7の炭化水素基であ
り、そしてR′は低級アルキル基である。〕 で表わされるトリアルコキシシランまたはこの部
分加水分解縮合物を、アンモニアあるいはメチル
アミン、ジメルアミン、エチレンジアミン等の如
きアミンの存在下、撹拌下に、加水分解および縮
合せしめることによつて製造できる。 上記出発原料を使用する上記方法によれば、上
記式(A)―1で表わされる組成を持つシリコン樹
脂微粒子を製造することができる。 また、上記方法において、例えば下記式 R2Si(OR′)2 〔ここで、R及びR′の定義は上記に同じである〕 で表わされるジアルコキシシランを上記トリアル
コキシシランと一緒に併用し、上記方法に従え
ば、上記式(A)―2で表わされる組成を持つシリ
コン樹脂微粒子を製造することができる。 本発明で用いるシリコン樹脂微粒子は、下記式
(C) γ=D25/D75 ……(C) 〔ここで、γは粒径比でありD25は微粒子の積算
重量が全体の重量の25%であるときの粒径であ
り、そしてD75は微粒子の積算重量が全体の重量
の75%のときの粒径である。但し積算重量の割合
は大きい粒径の方から測定するものとする。〕 で表わされる粒径比(γ)が好ましくは1〜1.4
の範囲にあるものである。この粒径比は、更に好
ましくは1〜1.3の範囲にあり、特に好ましくは
1〜1.5の範囲にある。 本発明において、平均粒径がシリコン樹脂微粒
子()のそれよりも大きい他の不活性微粒子
()としては、芳香族ポリエステルに不活性で
不溶性であり、そして常温で固体のものが使用さ
れる。これらは外部添加市でも内部生成粒子でも
よい。また例えば有機酸の金属塩でもよく、また
無機物でもよい。好ましい不活性粒子(A)として
は、炭酸カルシウム、二酸化ケイ素(水和
物、ケイ藻土、ケイ砂、石英等を含む)、アル
ミナ、SiO2分を30重量%以上含有するケイ酸
塩(例えば非晶質流いは結晶質の粘土鉱物、アル
ミノシリケート化合物(焼成物や水和物を含む)、
温石綿、ジルコン、フライアツシユ等)、Mg、
Zn、Zr及びTiの酸化物、Ca及びBaの硫酸塩、
Li、Na及びCaのリン酸塩(1水素塩や水素塩
を含む)、Li、Na及びKの安息香酸、Ca、
Ba、Zn及びMnのテレフタル酸塩、Mg、Ca、
Ba、Zn、Cd、Pb、Sr、Mn、Fe、Co及びNiの
チタン酸塩、Ba及びPbのクロム酸塩、炭素
(例えばカーボンブラツク、グラフアイト等)、
ガラス(例えばガラス粉、ガラスビーズ等)、
MgCO3、ホタル石、及びZnSが例示される。
特に好ましいいものとして、無水ケイ酸、含水ケ
イ酸、酸化アルミニウム、ケイ酸アルミニウム
(焼成物、水和物等を含む)、燐酸1リチウム、燐
酸3リチウム、燐酸ナトリウム、燐酸カルシウ
ム、硫酸バリウム、酸化チタン、安息香酸リチウ
ム、これらの化合物の複塩(水和物を含む)、ガ
ラス粉、粘土(カオリン、ベントナイト、白土等
を含む)、タルク、ケイ藻土等が例示される。か
かる不活性微粒子()の中でも特に外部添加粒
子が好ましい。 他の不活性微粒子()は、0.01〜5μmの平均
粒径を有するが、上記シリコン樹脂微粒子()
の平均粒径よりも大きいもとして併用される。不
活性微粒子()の平均粒径は、好ましくは0.1
〜4μmの値にあり、特に好ましくは0.5〜1.5μm
の平均粒径を有している。 本発明の二軸配向ポリエステルフイルムを形成
する芳香族ポリエステル()とシリコン樹脂微
粒子()及び平均粒径がシリコン樹脂微粒子の
それよりも大きい他の不活性微粒子()との緊
密な混合物は、該微粒子()を0.005〜2.0重量
%(芳香族ポリエステルに対し)及び該粒子
()を0.005〜2.0重量%(芳香族ポリエステル
に対し)を含有している。上記シリコン樹脂微粒
子()の好ましい含有量は0.01〜1.0重量%
(芳香族ポリエステルに対し)、更に好ましい含有
量は0.01〜0.5重量%(芳香族ポリエステルに対
し)である。更に上記他の不活性微粒子()の
好ましい含有量は0.01〜1.5重量%(芳香族ポリ
エステルに対し)、更に好ましい含有量は0.01〜
1.0重量%(芳香族ポリエステルに対し)、特に好
ましい含有量は0.05〜0.7重量%(芳香族ポリエ
ステルに対し)である。不活性微粒子()或い
はシリコン樹脂微粒子()の含有量が少なすぎ
ると、大小2種の粒子を用いる相乗効果が得られ
ず、走行性、耐摩耗性、耐擦り傷性、耐疲労性、
つぶれ性、端面揃い性等の特性が低下するので好
ましくない。一方不活性微粒子()の含有量が
多すぎると、ポリマーの中の不活性微粒子に起因
するボイドの発生する頻度が多くなる傾向にな
り、耐摩耗性、耐疲労性、つぶれ性、絶縁電圧、
透明性が低下する。また、シリコン樹脂微粒子
()の含有量が多すぎると、フイルム表面が粗
れすぎ、例えば磁気テープにおける電磁変換特性
が低下するので、好ましくない。 本発明で使用する上記シリコン樹脂微粒子は、
上記の如く、ポリエステルフイルムに表面平坦
性、滑り性、耐擦り傷性及び耐削れ性を付与す
る。特に、優れた耐削れ性を与える理由として、
本発明者の研究によれば、該シリコン樹脂微粒子
がそれが混合されている芳香族ポリエステルと非
常に親和性が大きいことによることが明らかとさ
れた。 すなわち、該シリコン樹脂微粒子を含有する本
発明のフイルムの表面をイオンエツチングしてフ
イルム中のシリコン樹脂微粒子を暴露させ、走査
型電子顕微鏡にて表面を観察すると、例えば第1
図に示す様に、シリコン樹脂微粒子の周囲表面が
芳香族ポリエステル基質と実質的に接触している
状態、換言すれば該周囲表面と芳香族ポリエステ
ル基質との間にボイドが殆んどあるいは全く看ら
れない状態が観察されるのである。 本発明のフイルム、上記のようにして、走査型
電子顕微鏡にて、40個の微粒子周辺を観察する
と、その16個(40%)以上が上記ボイドを有さな
いものが実質的に全て占め、20個(50%)以上が
上記ボイドを有さないものはその大部分であり、
さらに24個(60%)以上が上記ボイドを有さない
のは主たる割合を占める。 また、本発明のフイルムの上記シリコン樹脂微
粒子が芳香族ポリエステル基質と大きい親和性を
有することを、別の尺度である後に定義するボイ
ド比(粒子の長径対ボイドの長径の比)で評価す
ると、本発明のフイルムはボイド比が1.0〜1.1で
あるものが実質的に全てであり、1.0〜1.08であ
るものはその大部分であり、さらに1.0〜1.05で
あるものはその主たる部分を占めることが明らか
でとなつた。 ボイドが少なく、そしてボイド比が1.0に近い
本発明の二軸配向ポリエステルフイルムは特に耐
削れ性に優れている。特に、高倍率に延伸され、
ヤング率が高められた高強力ポリエステルフイル
ムについてもボイドが殆んどないものがある。こ
のことはシリコン樹脂微粒子とポリエステルの接
着が優れていることを表わしている。 一般的にポリエステルと不活性粒子(滑剤)と
は親和性がない。このため溶融製膜したポリエス
テル未延伸フイルムを二軸延伸すると、該微粒子
とポリエステルの境界に剥離が生じ、該微粒子の
周りにボイドが形成されるのが普通である。この
ボイドは、微粒子が大きいほど、形状が球形に近
いほど、また微粒子が単一粒子で変形しにくいほ
ど、そしてまた未延伸フイルムを延伸する際に延
伸面積倍率が大きいほど、また低温で行なうほど
大きくなる傾向がある。このボイドは、大きくな
ればなる程突起の形状がゆるやかな形となるので
摩擦係数を高くすることとなり、それと共に繰り
返し使用時に生じた二軸配向ポリエステルフイル
ムの突起の脱落を起し、耐久性を低下させる、ま
た削れ粉発生の原因となつている。 このように従来の無機不活性滑剤の場合には、
該滑剤周辺のボイド量はかなり大きく、高強力ポ
リエステルフイルムにおいてはこのボイドは更に
大きくなり、その結果磁気テープのカレンダー工
程等、加工工程で耐削け製が劣るのが常である。 本発明で用いる上記シリコン樹脂微粒子()
は上記の如く芳香族ポリエステル基質との親和性
が大きく、このため粒子周辺にボイドが発生する
頻度が少ない。更に上記シリコン樹脂微粒子
()は、その形状が真球状に極めて近いという
特徴を有するため、上記シリコン樹脂微粒子の添
加により二軸配向ポリエステルフイルムの表面に
形成された小突起はシヤープな形状を有し且つボ
イド量が少ないことに由来して走行性、耐削れ性
及び耐擦り傷性が極めて優れたものになる。 本発明によれば、走行成、耐削れ性及び耐擦り
傷性に劣る従来の不活性微粒子に対し、更に上記
シリコン樹脂微粒子を添加することにより、耐削
れ性及び耐擦り傷性を更に向上させ、走行性に優
れた二軸配向ポリエステルフイルムを得ることが
可能となつている。 本発明の二軸配向フイルムを製造する際に、シ
リコン樹脂微粒子と名の不活性微粒子を芳香族ポ
リエステルと緊密に混合することはこれらの微粒
子を、芳香族ポリエステルの重合前又は重合中に
重合釜中で、重合終了後ペレタイズするとき押出
機中で、あるいはシート状に溶融押出しする際押
出機中で、該芳香族ポリエステルと十分に混練す
ればよい。 本発明のポリエステルフイルムは、例えば、融
点(Tm:℃)ないし(Tm+70)℃の温度で芳
香族ポリエステルを溶融押出して固有粘度0.35〜
0.9dl/gの未延伸フイルムを得、該未延伸フイ
ルムを一軸方向(縦方向又は横方向)に(Tg−
10)〜(Tg+70)℃の温度(但し、Tg:芳香族
ポリエステルのガラス転移温度)で2.5〜5.0倍の
倍率で延伸し、次いで上記延伸方向と直角方向
(一段目延伸が縦方向の場合には、二段目延伸は
横方向となる)にTg(℃)〜(Tg+70)℃の温
度で2.5〜5.0倍の倍率で延伸することで製造でき
る。この場合、面積延伸倍率は9〜22倍、更には
12〜22倍にするのが好ましい。延伸手段は同時二
軸延伸、逐次二軸延伸のいずれでも良い。 更に、二軸配向フイルムは、(Tg+70)℃〜
Tm(℃)の温度で熱固定することができる。例
えばポリエステルテレフタレートフイルムについ
ては190〜230℃で熱固定することが好ましい。熱
固定時間は例えば1〜60秒である。 ポリエステルフイルムの厚みは、1〜100μm、
更には1〜50μm、特に1〜25μmが好ましい。 本発明のポリエステルフイルムは、走行時の摩
擦係数が小さく、操作性が大変良好である。また
このフイルムを磁気テープのベースとして用いる
と、磁気記録再生装置(ハードウエア)の走行部
分との接触摩擦によるベースフイルムの削れが極
めて少なく、耐久性が良好である。 更に、本発明の二軸配向ポリエステルフイルム
はフイルム形成時において巻き性が良好であり、
かつ巻き皺が発生しにくく、その上スリツト段階
において寸法安定的にシヤープに切断されるとい
う長所がある。 以上のフイルム製品としての長所と、フイルム
形成時の長所との組合せによつて、本発明のフイ
ルムは、特に、高級グレードの磁気用途分野のベ
ースフイルムとして極めて有用であり、またその
製造も容易で安定に生産できる利点を持つ。本発
明のポリエステルフイルムは高級グレードの磁気
記録媒体例えばマイクロ記録材、コンパクト化あ
るいは高密度化したフレキシブルデイスク製品、
オーデイオ及びビデオ等の長時間録画用の超薄
物、高密度記録磁気フイルム、高品質画像記録再
生用の磁気記録フイルム例えばメタルや蒸着磁気
記録材等のベースフイルムとして好適である。 それ故、本発明によれば、上記本発明の二軸配
向ポリエステルフイルムの片側又は両面に磁性層
を設けた磁気記録媒体が同様に提供される。 磁性層よび磁性層をベースフイルム上に設ける
方法はそれ自体公知であり、本発明においても公
知の磁性層およびそれを設ける方法を採用するこ
とができる。 例えば磁性層をベースフイルム上に磁性塗料を
塗布する方法によつて設ける場合には、磁性層に
用いられる強磁性粉体としてはγ−Fe2、O3、Co
含有のγ−Fe3O4、Co含有のFe3O4、CrO2、バリ
ウムフエライト等、公知の強磁性体が使用でき
る。 磁性粉末と共に使用されるバインダーとして
は、公知の熱可塑性樹脂、熱硬化性樹脂、反応型
樹脂他はこれらの混合物である。これらの樹脂と
しては例えば塩化ビニル−酢酸ビニル共重合体、
ポリウレタンエラストマー等があげられる。 磁性塗料は、さらに研磨剤(例えばα−Al2O3
等)、導電剤(例えばカーボンブラツク等)、分散
剤(例えばレシチン等)、潤滑剤(例えばn−ブ
チルステアレート、レシチン酸等)、硬化剤(例
えばエポキシ樹脂等)及び溶楳(例えばメチルエ
チレケトン、メチルイソブチルケトン、トルエン
等)等を含有することができる。 磁性層、ベースフイルム上に金属薄膜を形成さ
せる方法によつて設ける場合には、それ自体公知
の真空蒸着法、スパツタ法、イオンプレーテイン
グ法、C.V.D.(Chemical Vapour Depsition)
法、無電解メツキ法等の方法を採用することがで
きる。金属としては鉄、コバルト、ニツケル、お
よびそれらの合金(例えばCo−Ni−P合金、Co
−Ni−Fe合金、Co−Cr合金、Co−Ni合金等)
があげられる。 本発明の二軸配向ポリエステルは、上述の磁気
記録媒体の他に種々の用途に用いることができ
る。例えば、コンデンサー用、包装用、蒸着用等
の用途に有用である。 なお、本発明における種々の物性値および特性
は以下の如くして測定されたものであり且つ定義
される。 (1) 粒子の平均粒径(DP) 島津製作所製CP−50型セントリフユグル
パーテイル サイズ アナライザー
(Centrifugal Patricle Size Analyser)を用
ちて測定する。得られ遠心沈降曲線を基に算出
した各粒径の粒子とその存在量との積算曲線か
ら、50マスパーセントに相当する粒径を読み取
り、この値を上記平均粒径とする(Book「粒度
測定技術」日刊工業新聞社発行、1975年、頁
242〜247参照)。 (2) 粒子の粒尾分布比(γ) 粒子の平均粒径をの測定において得られた遠
心沈降曲線を基に、各粒径の粒子とその存在量
との積算曲線を算出し描き、粒径の大きい方か
ら積算した粒子の積算重量が2マスパーセント
に相当する粒径(D25)と、粒子の積算重量が
75マスパーセントに相当する粒径(D75)を読
み取り、前者の値を後者の値で除し(D25
D75)各々の粒子分布比(γ)を算出する。 (3) フイルムの走行摩擦係数(μk) 温度20℃、湿度60%の環境で、巾1/2インチ
に裁断したフイルムを、ステンレス鋼SUS304
製の固定棒(表面粗さ0.3μm)に角度θ=
(152/181)πラジアン(152°)で接触させて
毎分200cmの速さで移動(摩擦)させる。入口
テンシヨンT1が35gとなるようにテンシヨン
コントローラーを調整した特に出口テンシヨン
(T2:g)をフイルムが90m走行したのちに出
口テンシヨン検出機で検出し、次式で走行摩擦
係数μkを算出する。 μk=2.303/θlogT1/T2=0.0868logT2/35 (4) スクラツチ判定 ベースフイルムの耐擦り傷性を判定するた
め、磁気コーテイングテープ(1/2インチ巾)
を上記(3)の摩擦係数測定装置を用いて、テープ
のベースフイルム面が固定棒に152°の角度で接
触するようにかけ、20cm/sec速度で10m走行
させ、これを50回繰返えした後に1/2インチ巾
ベースフイルムの表面に入つたスクラツチの太
さ、深さ、数を総合して次の5段階で判定す
る。 <5段階判定> ◎ 1/2インチ巾ベースフイルムに全くスクラ
ツチが認められない ○ 1/2インチ巾ベースフイルムにほとんどス
クラツチが認められない △1/2インチ巾ベースフイルムにスクラツチが
認められる(何本か) ×1/2インチ巾ベースフイルムに太いスクラツ
チが何本か認められる ××1/2インチ巾ベースフイルムに太く深いス
クラツチが多数全面に認められる (5) フイルム表面の平坦 CLA(Center Line Average・中心線平均粗
さ)JIS B 0601に準じて測定する。東京精密
社(株)製の触針式表面粗さ計(SURFCOM 3B)
を用いて、針の半径2μ、荷重0.07gの条件下に
チヤート(フイルム表面粗さ曲線)をかかせ
る。フイルム表面粗さ曲線からその中心線の方
向に測定長さLの部分を抜き取り、この抜き取
り部分の中心線をX軸とし、縦倍率の方向をY
軸として、粗さ曲線Y=f(x)で表わしたとき、
次の式で与えられる値(Ra:μm)をフイル
ム表面の平坦性として定義する。 Ra=1 LL 0|f(x)|dx 本発明では、基準長を0.25mmとして8個測定
し、値の大きい方から3個除いた5個の平均値
としてRaを表わす。 (6) 削れ性 ベースフイルムの走行面の削れ性を5段のミ
ニスーパーカレンダーを使用して評価する。カ
レンダーはナイロンロールとスチールロールの
5段カレンダーであり、処理温度は80℃、フイ
ルムにかかる線圧は200Kg/cm、フイルムスピ
ードは50m/分で走行フイルムは全長2000m走
行させた時点でカレンダーのトツプローラーに
付着する汚れでベースフイルムの削れ性を評価
する。 <5段評価> ◎ ナイロンロールの汚れ全くなし ○ ナイロンロールの汚れほとんどなし △ ナイロンロールが少し汚れる × ナイロンロールが汚れる ×× ナイロンロールがひどく汚れる (7) ボイド比 試料フイルム小片を走査型電子顕微鏡用試料
台に固定し、日本電子(株)製スパツタリング装置
(JFC−1100型イオンスパツターリング装置)
を用いて、フイルム表面を下記条件にてイオン
エツチング処理を施す。ベルジヤー内に上記試
料台を設置し、約10-3Torrの真空状態まで真
空度を上げ電圧0.25kV、電流12.5mAにて約10
分間イオンエツチングを実施する。更に同装置
にてフイルム表面に金スタパツターを施し、約
200程度の金薄膜層を形成し走査型電子顕微
鏡を用いて例えば1万〜3万倍にて測定を行
う。尚、ボイドは粒径0.3μm以上の滑剤につい
てのみ測定を行う。 (8) ヘーズ(曇り度) JIS−K674に準じ、日本精密光学社製、積分
球式HTRメーターによりフイルムのヘーズを
求める。 (9) 固有粘度[η] o−クロロフエノールを溶楳として用い、25
℃で測定した値、単位は100c.c./gである。 (10) 体積形状係数(f) 走査型電子顕微鏡により粒子の写真を例えば
5000倍で10視野撮影し、例えば画像解析処理装
置ルーゼツクス500(日本レギユレーター製)を
用い、最大径の平均値を各視野毎に測定し、更
に、10視野の平均値を求め、Dとする。 測定法の上記(1)項で求めた、粒子の平均粒径
dより、粒子の平均体積(V=π/6d3)を求め、 形状係数fを次式により算出する。 f=V/D3 式中、Vは粒子の平均体積(μm3)、Dは粒
子の平均最大粒径(μm)を表わす。 [実施例] 以下、実施例を掲げて本発明を更に説明する。 比較例 1 ジメチルテレフタレートとエチレングリコール
を、酢酸マンガン(エステル交換触媒)、三酸化
アンチモン(重合触媒)、亜燐酸(安定剤)およ
び平均粒径0.6μm、体積形状係数0.46の炭酸カル
シウム(滑剤)の存在下、常法により重合し、固
有粘度0.62のポリエチレンテレフタレートを得
た。 このポリエチレンテレフタレートのペレツト
を、170℃、3時間乾燥後、押出機ホツパーに供
給し、溶融温度280〜300℃で溶融し、この溶融ポ
リマーを1mmのスリツト状ダイを通して、表面仕
上げ0.3程度、表面温度20℃の回転冷却ドラム上
に押出し、200μmの未延伸フイルムを得た。 このようにして得られた未延伸フイルムを75℃
にて予熱し、更に低速、高速のロール間で15mm上
方より900℃の表面温度のIRヒーター1本にて加
熱し、低、高速ロール表面速度差により3.5倍に
縦延伸し、急冷し、続いてステンターに供給して
105℃にて横方向に3.7倍に延伸した。得られた二
軸延伸フイルムを205℃の温度で5秒間熱固定し、
厚み15μmの熱固定二軸配向フイルムを得た。 得られたフイルムは走行性及び耐擦り傷性は良
いものの、ボイド比1.7であり、且つカレンダー
では白粉が付着し、不満足なものであつた。この
フイルムの特性を第1表に示す。 比較例 2 炭酸カルシウムの代りに平均粒径0.4μm、体積
形状係数0.08のカオリンを用いる以外は比較例1
と同様にして、ポリエチレンテレフタレートのペ
レツトを得た。 このペレツトを用いて、比較例1と同様にして
厚み15μmの二軸配向フイルムを得た。このフイ
ルムはボイド比1.3であり、耐削れ性は良いもの
の、走行性に劣り、且つ耐擦り傷性に劣つてい
た。このフイルムの特性を第1表に示す。 比較例 3 炭酸カルシウムの代りに平均粒径0.33μm、体
積形状係数0.046の酸化チタンを用いる以外は比
較例1と同様にして、ポリエチレンテレフタレー
トのペレツトを得た。 このペレツトを用いて、比較例1と同様にして
厚み15μmの二軸配向フイルムを得た。このフイ
ルムはボイド比1.4であり、耐擦り傷性は良いも
ののカレンダーでは白粉が付着し、不満足なもの
であつた。このフイルムの特性を第1表に示す。 比較例 4〜5 炭酸カルシウムの代りに第1表に記載の滑剤粒
子を用いる以外は比較例1と同様にして、ポリエ
チレンテレフタレートの厚み15μmの二軸配向フ
イルムを得た。 比較例4のものは表面粗さ、走行性は一応満足
出来るものの、耐擦り傷性に劣り不満足なもので
ある。 比較例5のものは、比較例のものが耐擦り傷性
で不充分であつたたため、表面性を犠牲にして平
均粒径を0.8μmの炭酸カルシウムを酸化チタンと
ともに添加することにより、走行性及び耐擦り傷
性の改良を計つたものであるが、、大粒径の炭酸
カルシウムはボイドも大きく、カレンダーによる
削れが激しく、不満足なものであつた。これらの
特性を第1表に示す。 実施例 1〜4 滑剤として第1表に示すものを用いる以外は、
比較例1〜5と同様にしてポリエチレンテレフタ
レートを得、更に該ポリエチレンテレフタレート
を用いて比較例1〜5と同様にして熱固定の二軸
配向フイルムを得た。このフイルムを第1表に示
す。 このフイルムは小粒子としてシリコン樹脂微粒
子(組成;CH3SiO1.5)が用いられているのでボ
イドの発生が抑えられており、そのため突起の脱
落が殆んど生じず、耐擦り傷性及び耐削れ性に極
めて優れた満足出来るものであつた。
[Industrial Application Field] The present invention relates to a biaxially oriented polyester film, and more specifically, the present invention relates to a biaxially oriented polyester film, which contains silicone resin fine particles and other inert fine particles, and is flat and has excellent slip properties, abrasion resistance, and scratch resistance. This invention relates to an axially oriented polyester film. [Prior Art] Polyesters, represented by polyester terephthalate, are widely used as films for magnetic tapes, photographs, capacitors, packaging, etc. because of their excellent physical and chemical properties. The slipperiness and abrasion resistance of these films are major factors that determine the workability of the film manufacturing process and processing process in each application, as well as the quality of the product. In particular, when a magnetic layer is applied to the surface of a polyester film, the friction and abrasion between the coating roll and the film surface are extremely severe, and wrinkles and scratches are likely to occur on the film surface. In addition, the film after the magnetic layer is applied is slit to produce audio.
Even after being processed into a video or computer tape, etc., when it is pulled out from a reel or cassette, wound up, or otherwise operated, significant wear occurs between the tape and the many guides, playback heads, etc., resulting in scratches and scratches.
The generation of distortion and the precipitation of white powdery substances due to scratches on the surface of the polyester film are often a major cause of missing magnetic recording signals, that is, dropouts. Generally, to improve the slipperiness and abrasion resistance of films, a method is adopted in which the surface of the film is made uneven to reduce the contact area between the film and guide rolls, etc. (ii) A method in which inert particles or polymeric catalyst residues used for this purpose are precipitated, and (ii) a method in which inert inorganic particles are added. Generally speaking, the larger the size of the fine particles in these raw polymers, the greater the effect of improving slipperiness. However, for precision applications such as magnetic tape, especially video, it is important that the particles are large. Since the film itself may cause defects such as dropouts, the unevenness on the film surface must be as fine as possible, and there are currently demands to satisfy contradictory characteristics at the same time. Conventionally, a method for improving the slipperiness of a film is to add inorganic particles such as silicon oxide, titanium dioxide, calcium carbonate, talc, clay, and calcined kaolin to polyester, which is the film substrate (for example, Japanese Patent Application Laid-Open No. 54-57562 Calcium,
A method has been proposed in which fine particles containing lithium or phosphorus are precipitated (see Japanese Patent Publication No. 32914/1983). When formed into a film, the above-mentioned fine particles, which are inert to polyester, form protrusions on the surface of the film, and these protrusions improve the slipperiness of the film. However, the method of improving the slipperiness of a film by using projections made of fine particles has an essential problem in that the projections impair the flatness of the film surface. In an attempt to resolve these contradictory issues of flatness and slipperiness, a method has been proposed that utilizes a composite particle system of relatively large particles and relatively small particles. U.S. Patent No. 3,821,156 discloses 0.02 to 0.1% by weight of calcium carbonate fine particles of 0.5 to 30 μm and 0.01 to 0.1 μm.
m silica or hydrated alumina silicate 0.01~
0.5% by weight is disclosed. U.S. Patent No. 3,884,870 discloses that calcium carbonate, calcined aluminum silicate, hydrated aluminum silicate, magnesium silicate, calcium silicate, calcium phosphate, silica, alumina, barium sulfate, mica, diatomaceous earth, etc. Inert fine particles about 0.002~0.018% by weight, about 0.01~
Discloses the combination with about 0.3 to 2.5% by weight of inert fine particles of 0.1 μm silica, calcium carbonate, calcined calcium silicate, hydrated calcium silicate, calcium phosphate, alumina, barium sulfate, magnesium sulfate, diatomaceous earth, etc. . US Pat. No. 3,980,611 specifies that the particle size is 1.0 μm or less,
The total amount of calcium phosphate fine particles in three particle size grades of 1 to 2.5 μm and 2.5 μm or less is combined.
It discloses that it is added to polyester at 5000 ppm or less. Japanese Patent Publication No. 55-41648 (Japanese Unexamined Patent Publication No. 53-71154) contains 0.22 to 1.0% by weight of fine particles of 2 to 2.5 μm and 1.8% by weight.
It is proposed that the harmful particles be oxidized or inorganic salts of elements of the first and third groups of the periodic table in combination with 0.003 to 0.25% by weight of fine particles of ~10 μm. Japanese Patent Publication No. 55-40929 (Japanese Unexamined Patent Publication No. 52-11908) discloses inert inorganic fine particles of 0.01 to 0.08 μm in diameter.
Weight% and 1-2.5 μm inert inorganic fine particles 0.08-0.3
Discloses mixed particles in which the total amount of these fine particles having different particle sizes is 0.1 to 0.4 weight percent, and the ratio of large particle size to small particle size particles is 0.1 to 0.7. are doing. JP-A-52-78953 discloses a biaxially oriented polyester film containing 0.01 to 0.5% by weight of inert particles of 10 to 1000 μm and 0.11 to 0.5% of calcium carbonate of 0.5 to 15 μm. Unexamined Japanese Patent Publication 1972-
In JP 78953, various inorganic substances other than calcium carbonate are listed in the general description as inert particles having a size of 10 to 1000 μm. however,
This publication merely discloses a specific example in which silica or clay, which is usually available as fine particles of 10 to 1000 μm, is used as the inorganic material. [Object of the Invention] An object of the present invention is to provide a biaxially oriented polyester film that is extremely excellent in surface flatness, slipperiness, abrasion resistance, and scratch resistance. [Configuration and Effects of the Invention] According to the present invention, the above objects and advantages of the present invention are as follows: () Aromatic polyester ()(a) Following formula (A) RxSiO 2 −x/2 ……( A) [Here, R is a hydrocarbon group having 1 to 7 carbon atoms, and x is a number of 1 to 1.2. ] It has a composition expressed by (b) the following formula (B) f=v/D 3 ...(B) [Here, v is the average volume of the particles (μm 3 ), and D is the average volume of the particles Maximum particle size (μm). ] Volume shape factor (f) defined as greater than 0.4 and less than or equal to π/6, and (c) 0.005 to 2.0% by weight of silicone resin fine particles (based on aromatic polyester) having an average particle size of 0.01 to 4 μm. ) and () have an average particle size of 0.01 to 5 μm and consist of 0.005 to 2.0% by weight (based on the aromatic polyester) of other inert part particles whose average particle size is larger than the silicone resin fine particles. This is accomplished by biaxially oriented polyester formed from a mixture. The aromatic polyester in the present invention is a polyester containing an aromatic dicarboxylic acid as a main acid component and an aliphatic glycol as a main glycol component. Such polyesters are substantially linear and have film forming properties by melt molding. Aromatic dicarboxylic acids include, for example, terephthalic acid, naphthalene dicarboxylic acid, isophthalic acid, diphenoxyethane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, diphenyl ketone dicarboxylic acid, and anthracene. dicarboxylic acids, etc. Aliphatic glycols are, for example, polymethylene glycols having 2 to 10 carbon atoms such as ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, etc., or fatty acids such as cyclohexane dimethanol. These include cyclic diols. In the present invention, polyesters containing, for example, alkylene terephthalate and/or alkylene naphthalate as main constituents are preferably used. Among such polyesters, for example, not only polyethylene terephthalate and polyethylene naphthalate, but also terephthalic acid and/or naphthalenedicarboxylic acid account for 80 mol% or more of the total dicarboxylic acid component, and 80 mol% or more of the total glycol component include ethylene. Particularly preferred are copolymers that are glycols. In this case, the dicarboxylic acid of up to 20 mol% of the total acid component can be the above-mentioned aromatic dicarboxylic acids other than terephthalic acid and/or naphthalene dicarboxylic acid, and can also be an aliphatic dicarboxylic acid such as adipic acid, sebacic acid, etc. ; It can be an alicyclic dicarboxylic acid such as cyclohexane-1,4-dicarboxylic acid. Also, up to 20 mol% of the total glycol component can be the above-mentioned glycols other than ethylene glycol, or for example, hydroquinone, resorcinol,
Aromatic diols such as 2,2'-bis(4-hydroxyphenyl)propane; aliphatic diols having an aromatic ring such as 1,4-dihydroxymethylbenzene; polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. It is also possible to use polyalkylene glycols such as polyoxyalkylene glycols (polyoxyalkylene glycols). In addition, the aromatic polyester used in the present invention includes a dicarboxylic acid component and a component derived from an oxycarboxylic acid such as an aromatic oxyacid such as hydroxybenzoic acid; an aliphatic oxyacid such as ω-hydroxycaproic acid; It also includes those containing 20 mol% or less based on the total amount of oxycarboxylic acid components. Further, the aromatic polyester in the present invention may contain a trifunctional or higher functional polycarboxylic acid or a polyhydroxy compound, such as trimellitic acid, in an amount within a substantially linear range, for example, an amount of 2 mol % or less based on the total acid component. , pentaerythritol, etc. are also included. The above-mentioned aromatic axis polyester is known per se, and can be produced by a method known per se. The aromatic polyester preferably has an intrinsic viscosity of about 0.4 to about 1.0, measured as a solution in o-chlorophenol at 35°C. The biaxially oriented polyester film of the present invention has a large number of fine protrusions on the film surface, as is clear from the following explanation of Ra, which defines the flatness of the film surface. According to the invention, these large numbers of fine protrusions originate from a large number of substantially inert solid fine particles dispersed in the aromatic polyester. In the present invention, silicone resin fine particles ()
is the following formula (A) RxSiO2- x /2...(A) [Here, R is a C1-C7 hydrocarbon group, and x is the number of 1-1.2. ] It has a composition expressed as follows. R in the above formula (A) is a hydrocarbon group having 1 to 7 carbon atoms, preferably an alkyl group having 1 to 7 carbon atoms, a phenyl group, or a tolyl group. Carbon number 1
The alkyl group of ~7 may be linear or branched, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n- Examples include pentyl and n-heptyl. Among these, R is preferably methyl and phenyl, with methyl being particularly preferred. When x is 1 in the above (A), the above formula (A)
can be represented by the following formula (A)-1 RSiO 1.5 ... (A)-1 [Here, the definition of R is the same as above]. The composition of the above formula (A)-1 is the following structural part in the three-dimensional polymer chain structure of silicone resin; It originates from. In addition, when x is 1.2 in the above (A), the above formula (A) is the following formula (A)-2 R 1.2 SiO 1.4 ... (A)-2 [Here, the definition of R is the same as above. It can be expressed as: The composition of the above formula (A)-2 is 0.8 mol of the structure of (A)-1 and the following formula (A)' R 2 SiO ... (A)' [Here, the definition of R is the same as above] The structure represented can be understood to consist of 0.2 moles. The above formula (A)' represents the following structural part in the three-dimensional polymer chain of silicone resin; It originates from As understood from the above explanation, the composition of the above formula (A) of the present invention can be seen substantially only from the structure of the above formula (A)-1, for example, or the composition of the above formula (A)-1
It can be seen that the structure consists of a structure in which the structure of the formula (A)-2 and the structure of the above formula (A)-2 coexist in a state where they are randomly bonded in an appropriate ratio. In the silicone resin fine particles of the present invention, x preferably has a value between 1 and 1.1 in the above formula (A). In addition, the silicone resin fine particles () in the present invention have the following formula (B) f=v/D 3 ...(B) [Here, v is the average volume per particle (μm 3 ), and D is the particle size. The average maximum particle size (μm) of ] The volumetric shape factor (f) defined by is greater than 0.4 and less than or equal to π/6. In the above definition, the average maximum particle diameter of the particles of D should be understood as the distance having the maximum length among the distances between two points where any straight line that crosses the particle intersects the circumference of the particle. The preferable value of f of the silicone resin fine particles in the present invention is 0.44 to π/6, and the more preferable value of f is 0.48 to π/6. A particle whose value of f is π/6 is a true sphere. If silicone resin fine particles having an f value smaller than the lower limit are used, it becomes extremely difficult to control various film surface properties. The silicone resin fine particles used in the present invention further have an average particle size of 0.01 to 4 μm. When particles with an average particle size smaller than 0.01 μm are used, the effect of improving slipperiness, abrasion resistance and scratch resistance is insufficient, whereas when particles with an average particle size larger than 4 μm are used. However, only a film with insufficient planar flatness can be obtained. The average particle size is preferably between 0.05 and 3 μm, particularly preferably between 0.1 and 1.0 μm. The average particle diameter referred to herein is understood to be the diameter at the cumulative 50% point of the equivalent spherical diameter particle size distribution calculated based on Stokes' equation. The silicone resin fine particles used in the present invention have, for example, the following formula RSi(OR') 3 [where R is a hydrocarbon group having 1 to 7 carbon atoms, and R' is a lower alkyl group. ] It can be produced by hydrolyzing and condensing a trialkoxysilane represented by the following formula or a partially hydrolyzed condensate thereof under stirring in the presence of ammonia or an amine such as methylamine, dimelamine, ethylenediamine, etc. According to the above method using the above starting material, silicone resin fine particles having the composition represented by the above formula (A)-1 can be produced. Further, in the above method, for example, a dialkoxysilane represented by the following formula R 2 Si(OR') 2 [wherein the definitions of R and R' are the same as above] is used in combination with the above trialkoxysilane. According to the above method, silicone resin fine particles having the composition represented by the above formula (A)-2 can be produced. The silicone resin fine particles used in the present invention have the following formula:
(C) γ=D 25 /D 75 ...(C) [Here, γ is the particle size ratio, D 25 is the particle size when the cumulative weight of the fine particles is 25% of the total weight, and D75 is the particle size when the cumulative weight of the fine particles is 75% of the total weight. However, the cumulative weight ratio shall be measured starting from the larger particle size. ] The particle size ratio (γ) expressed by is preferably 1 to 1.4.
It is within the range of This particle size ratio is more preferably in the range of 1 to 1.3, particularly preferably in the range of 1 to 1.5. In the present invention, as the other inert fine particles () whose average particle diameter is larger than that of the silicone resin fine particles (2), those which are inert and insoluble in the aromatic polyester and are solid at room temperature are used. These may be externally added particles or internally generated particles. Further, for example, a metal salt of an organic acid may be used, or an inorganic substance may be used. Preferred inert particles (A) include calcium carbonate, silicon dioxide (including hydrates, diatomaceous earth, silica sand, quartz, etc.), alumina, and silicates containing 30% by weight or more of SiO2 (e.g. Amorphous fluids are crystalline clay minerals, aluminosilicate compounds (including calcined products and hydrates),
warm asbestos, zircon, fly ashes, etc.), Mg,
Zn, Zr and Ti oxides, Ca and Ba sulfates,
Phosphates of Li, Na and Ca (including monohydrogen salts and hydrogen salts), benzoic acid of Li, Na and K, Ca,
Ba, Zn and Mn terephthalates, Mg, Ca,
Titanates of Ba, Zn, Cd, Pb, Sr, Mn, Fe, Co and Ni, chromates of Ba and Pb, carbon (e.g. carbon black, graphite, etc.),
glass (e.g. glass powder, glass beads, etc.),
Examples include MgCO 3 , fluorspar, and ZnS.
Particularly preferred examples include anhydrous silicic acid, hydrated silicic acid, aluminum oxide, aluminum silicate (including calcined products, hydrates, etc.), monolithium phosphate, trilithium phosphate, sodium phosphate, calcium phosphate, barium sulfate, Examples include titanium oxide, lithium benzoate, double salts of these compounds (including hydrates), glass powder, clay (including kaolin, bentonite, clay, etc.), talc, diatomaceous earth, and the like. Among such inert fine particles, externally added particles are particularly preferred. Other inert fine particles () have an average particle size of 0.01 to 5 μm, but the above silicone resin fine particles ()
It is used in combination as a material whose average particle size is larger than that of The average particle size of the inert fine particles () is preferably 0.1
~4μm, particularly preferably 0.5~1.5μm
It has an average particle size of The intimate mixture of aromatic polyester () and silicone resin microparticles () and other inert microparticles () whose average particle size is larger than that of the silicone resin microparticles to form the biaxially oriented polyester film of the present invention is It contains 0.005 to 2.0% by weight (based on the aromatic polyester) of the fine particles () and 0.005 to 2.0% by weight (based on the aromatic polyester) of the particles (). The preferred content of the silicone resin fine particles () is 0.01 to 1.0% by weight
(based on aromatic polyester), and a more preferred content is 0.01 to 0.5% by weight (based on aromatic polyester). Furthermore, the preferred content of the other inert fine particles () is 0.01 to 1.5% by weight (based on the aromatic polyester), and the more preferred content is 0.01 to 1.5% by weight (based on the aromatic polyester).
A particularly preferred content is 1.0% by weight (based on aromatic polyester), a particularly preferred content is 0.05-0.7% by weight (based on aromatic polyester). If the content of inert fine particles () or silicone resin fine particles () is too small, the synergistic effect of using two types of particles, large and small, will not be obtained, resulting in poor running performance, abrasion resistance, scratch resistance, fatigue resistance,
This is not preferable because properties such as crushability and end face alignment deteriorate. On the other hand, if the content of inert fine particles () is too large, voids due to inert fine particles in the polymer tend to occur more frequently, resulting in poor wear resistance, fatigue resistance, crushability, insulation voltage,
Transparency decreases. Furthermore, if the content of the silicone resin fine particles () is too large, the surface of the film becomes too rough and, for example, the electromagnetic conversion characteristics of a magnetic tape deteriorate, which is not preferable. The silicone resin fine particles used in the present invention are:
As described above, surface flatness, slipperiness, scratch resistance, and abrasion resistance are imparted to the polyester film. In particular, the reason for its excellent abrasion resistance is
According to research conducted by the present inventors, it has been found that this is due to the fact that the silicone resin fine particles have a very high affinity with the aromatic polyester with which they are mixed. That is, when the surface of the film of the present invention containing the silicone resin fine particles is ion-etched to expose the silicone resin fine particles in the film and the surface is observed with a scanning electron microscope, for example, the first
As shown in the figure, the peripheral surface of the silicone resin fine particles is in substantial contact with the aromatic polyester substrate, in other words, there are few or no voids between the peripheral surface and the aromatic polyester substrate. The situation is observed where it is impossible to do so. When the periphery of 40 microparticles of the film of the present invention was observed using a scanning electron microscope as described above, 16 or more of them (40%) were substantially entirely free of the above-mentioned voids. Most of them do not have the above-mentioned voids, more than 20 (50%),
Furthermore, the fact that 24 or more (60%) do not have the above-mentioned voids accounts for the main percentage. Further, the fact that the silicone resin fine particles of the film of the present invention have a high affinity with the aromatic polyester substrate is evaluated by another measure, the void ratio (ratio of the major axis of the particles to the major axis of the voids), which will be defined later. Substantially all of the films of the present invention have a void ratio of 1.0 to 1.1, most of the film has a void ratio of 1.0 to 1.08, and a major part of the film has a void ratio of 1.0 to 1.05. It became obvious. The biaxially oriented polyester film of the present invention, which has few voids and a void ratio close to 1.0, has particularly excellent abrasion resistance. Especially when stretched to high magnification,
Some high-strength polyester films with increased Young's modulus have almost no voids. This indicates that the adhesion between the silicone resin fine particles and polyester is excellent. Generally, polyester and inert particles (lubricant) have no affinity. For this reason, when a melt-formed unstretched polyester film is biaxially stretched, peeling occurs at the boundary between the fine particles and the polyester, and voids are usually formed around the fine particles. These voids are formed as the fine particles become larger, as the shape becomes more spherical, as the fine particles become a single particle and are less likely to deform, and as the unstretched film is stretched, the larger the stretching area magnification is, and the lower the temperature. It tends to get bigger. As these voids get larger, the shape of the protrusions becomes gentler, increasing the coefficient of friction, which also causes the protrusions of the biaxially oriented polyester film to fall off during repeated use, reducing durability. It also causes the generation of shavings. In the case of conventional inorganic inert lubricants,
The amount of voids around the lubricant is quite large, and the voids become even larger in high-strength polyester films, resulting in poor abrasion resistance during processing steps such as magnetic tape calendering. The above silicone resin fine particles used in the present invention ()
As mentioned above, it has a high affinity with the aromatic polyester substrate, and therefore voids occur less frequently around the particles. Furthermore, since the silicone resin fine particles () have a shape that is extremely close to a true sphere, the small protrusions formed on the surface of the biaxially oriented polyester film by adding the silicone resin fine particles have a sharp shape. Furthermore, due to the small amount of voids, the running properties, abrasion resistance, and scratch resistance are extremely excellent. According to the present invention, by further adding the above-mentioned silicone resin fine particles to the conventional inert fine particles which are inferior in running formation, scraping resistance and scratch resistance, the cutting resistance and scratch resistance are further improved. It has become possible to obtain biaxially oriented polyester films with excellent properties. When producing the biaxially oriented film of the present invention, inert fine particles called silicone resin fine particles are intimately mixed with the aromatic polyester. After completion of polymerization, it may be thoroughly kneaded with the aromatic polyester in an extruder when pelletizing or in an extruder when melt-extruding into a sheet. The polyester film of the present invention can be produced by melt-extruding an aromatic polyester at a temperature of, for example, the melting point (Tm: °C) to (Tm + 70) °C, and the polyester film has an intrinsic viscosity of 0.35 to
An unstretched film of 0.9 dl/g was obtained, and the unstretched film was uniaxially (vertical or transverse) (Tg-
10) Stretch at a temperature of 2.5 to 5.0 times at a temperature of (Tg + 70) °C (Tg: glass transition temperature of aromatic polyester), then in a direction perpendicular to the above stretching direction (if the first stage stretching is in the longitudinal direction) can be produced by stretching at a magnification of 2.5 to 5.0 times at a temperature of Tg (°C) to (Tg + 70) °C (second-stage stretching is in the transverse direction). In this case, the area stretching ratio is 9 to 22 times, and even
It is preferable to increase the amount by 12 to 22 times. The stretching means may be either simultaneous biaxial stretching or sequential biaxial stretching. Furthermore, the biaxially oriented film has a temperature of (Tg+70)℃~
It can be heat-set at a temperature of Tm (°C). For example, polyester terephthalate film is preferably heat-set at 190 to 230°C. The heat setting time is, for example, 1 to 60 seconds. The thickness of polyester film is 1 to 100 μm,
More preferably, the thickness is 1 to 50 μm, particularly 1 to 25 μm. The polyester film of the present invention has a small coefficient of friction during running and has very good operability. Furthermore, when this film is used as a base for a magnetic tape, there is very little wear of the base film due to contact friction with the running part of a magnetic recording/reproducing device (hardware), resulting in good durability. Furthermore, the biaxially oriented polyester film of the present invention has good windability during film formation,
It also has the advantage of being less prone to wrinkles and being dimensionally stable and sharply cut at the slitting stage. The combination of the above-mentioned advantages as a film product and advantages in film formation makes the film of the present invention extremely useful, especially as a base film for high-grade magnetic applications, and is easy to manufacture. It has the advantage of stable production. The polyester film of the present invention can be used for high-grade magnetic recording media such as micro-recording materials, compact or high-density flexible disk products, etc.
It is suitable as a base film for ultra-thin materials for long-time recording of audio and video, high-density recording magnetic films, magnetic recording films for high-quality image recording and reproduction, such as metal and vapor-deposited magnetic recording materials. Therefore, according to the present invention, there is also provided a magnetic recording medium in which a magnetic layer is provided on one or both sides of the biaxially oriented polyester film of the present invention. The magnetic layer and the method of providing the magnetic layer on the base film are known per se, and the known magnetic layer and method of providing the same can be employed in the present invention. For example, when a magnetic layer is provided by coating a magnetic paint on a base film, the ferromagnetic powder used for the magnetic layer may be γ-Fe 2 , O 3 , Co
Known ferromagnetic materials such as γ-Fe 3 O 4 , Co-containing Fe 3 O 4 , CrO 2 , and barium ferrite can be used. The binder used with the magnetic powder includes known thermoplastic resins, thermosetting resins, reactive resins, and mixtures thereof. Examples of these resins include vinyl chloride-vinyl acetate copolymer,
Examples include polyurethane elastomer. The magnetic paint is further coated with an abrasive (e.g. α-Al 2 O 3
etc.), conductive agents (e.g. carbon black, etc.), dispersants (e.g. lecithin, etc.), lubricants (e.g. n-butyl stearate, lecithic acid, etc.), curing agents (e.g. epoxy resins, etc.), and solvents (e.g. methyl ethylene). ketone, methyl isobutyl ketone, toluene, etc.). When the magnetic layer is provided by a method of forming a metal thin film on the base film, the per se known vacuum evaporation method, sputtering method, ion plating method, CVD (Chemical Vapor Depsition)
Methods such as electroless plating method and electroless plating method can be employed. Metals include iron, cobalt, nickel, and alloys thereof (e.g. Co-Ni-P alloy, Co
-Ni-Fe alloy, Co-Cr alloy, Co-Ni alloy, etc.)
can be given. The biaxially oriented polyester of the present invention can be used for various purposes in addition to the above-mentioned magnetic recording media. For example, it is useful for uses such as capacitors, packaging, and vapor deposition. Note that various physical property values and characteristics in the present invention were measured and defined as follows. (1) Average particle diameter (DP) Shimadzu CP-50 type Centrif Yugur
Measure using a Centrifugal Patricle Size Analyzer. From the integrated curve of particles of each particle size and their abundance calculated based on the obtained centrifugal sedimentation curve, read the particle size corresponding to 50 mass percent, and use this value as the above average particle size (Book "Particle Size Measurement""Technology" published by Nikkan Kogyo Shimbun, 1975, p.
242-247). (2) Particle tail distribution ratio (γ) Based on the centrifugal sedimentation curve obtained when measuring the average particle size of particles, calculate and draw an integrated curve of particles of each particle size and their abundance, and calculate the particle size. The particle size (D 25 ) corresponding to 2 mass percent of the accumulated weight of the particles calculated from the largest diameter, and the accumulated weight of the particles are
Read the particle size corresponding to 75 mass percent (D 75 ) and divide the former value by the latter value (D 25 /
D 75 ) Calculate each particle distribution ratio (γ). (3) Film running friction coefficient (μk) A film cut into 1/2 inch width was cut into a stainless steel SUS304 in an environment with a temperature of 20℃ and a humidity of 60%.
Angle θ=
(152/181) π radians (152°) and move (friction) at a speed of 200 cm/min. The tension controller was adjusted so that the inlet tension T 1 was 35 g. In particular, the outlet tension (T 2 : g) was detected by the outlet tension detector after the film had traveled 90 m, and the running friction coefficient μk was calculated using the following formula. do. μk=2.303/θlogT 1 /T 2 =0.0868logT 2 /35 (4) Scratch judgment To judge the scratch resistance of the base film, magnetic coating tape (1/2 inch width) was used.
Using the friction coefficient measuring device described in (3) above, the base film surface of the tape was applied to the fixed rod at an angle of 152°, and the tape was run for 10 m at a speed of 20 cm/sec, and this was repeated 50 times. The thickness, depth, and number of scratches that later appeared on the surface of the 1/2-inch-wide base film are evaluated in the following five stages. <5-level judgment> ◎ No scratches observed on the 1/2 inch wide base film ○ Almost no scratches observed on the 1/2 inch wide base film △ Scratches observed on the 1/2 inch wide base film (no scratches observed on the 1/2 inch wide base film) (5) Flatness of the film surface CLA (Center Line) Average/center line average roughness) Measured according to JIS B 0601. Stylus type surface roughness meter (SURFCOM 3B) manufactured by Tokyo Seimitsu Co., Ltd.
A chart (film surface roughness curve) is applied using a needle with a radius of 2μ and a load of 0.07g. A portion of measurement length L is extracted from the film surface roughness curve in the direction of its center line, the center line of this extracted portion is the X axis, and the direction of vertical magnification is Y.
When expressed as the roughness curve Y=f(x) as the axis,
The value (Ra: μm) given by the following formula is defined as the flatness of the film surface. Ra= 1 LL 0 |f(x)|dx In the present invention, eight measurements are taken with a reference length of 0.25 mm, and Ra is expressed as the average value of five measurements, excluding three from the largest value. (6) Abrasion resistance The abrasion resistance of the running surface of the base film was evaluated using a 5-stage mini super calendar. The calendar is a 5-stage calendar made of nylon rolls and steel rolls.The processing temperature is 80℃, the linear pressure applied to the film is 200Kg/cm, the film speed is 50m/min, and the film reaches the top of the calendar after running for a total length of 2000m. Evaluate the abrasion resistance of the base film based on the dirt that adheres to the roller. <5-step evaluation> ◎ No stains on the nylon roll ○ Almost no stains on the nylon roll △ Slight stain on the nylon roll × × Stain on the nylon roll ×× Severe stain on the nylon roll (7) Void ratio A small piece of sample film was scanned using a scanning electron microscope JEOL Co., Ltd. sputtering device (JFC-1100 type ion sputtering device)
The surface of the film is subjected to ion etching treatment under the following conditions. Place the sample stand in the bell jar, raise the vacuum level to about 10 -3 Torr, and apply a voltage of 0.25 kV and a current of 12.5 mA for about 10
Perform ion etching for minutes. Furthermore, using the same equipment, a gold starputter is applied to the film surface, and approximately
A gold thin film layer of about 200 layers is formed and measured using a scanning electron microscope at a magnification of, for example, 10,000 to 30,000 times. Note that voids are measured only for lubricants with a particle size of 0.3 μm or more. (8) Haze (cloudiness) According to JIS-K674, determine the haze of the film using an integrating sphere HTR meter manufactured by Nippon Seimitsu Kogaku Co., Ltd. (9) Intrinsic viscosity [η] Using o-chlorophenol as a solvent, 25
The value measured in °C, the unit is 100c.c./g. (10) Volume shape factor (f) For example, if a photograph of a particle is taken using a scanning electron microscope,
Ten fields of view are photographed at 5,000 times magnification, and the average value of the maximum diameter is measured for each field of view using, for example, an image analysis processing device Luzetsu 500 (manufactured by Nippon Regulator).Furthermore, the average value of the 10 fields of view is determined and designated as D. The average volume of the particles (V=π/6d 3 ) is determined from the average particle diameter d of the particles determined in the above item (1) of the measurement method, and the shape factor f is calculated using the following formula. f=V/D In the formula, V represents the average volume of the particles (μm 3 ), and D represents the average maximum particle diameter (μm) of the particles. [Examples] The present invention will be further explained below with reference to Examples. Comparative Example 1 Dimethyl terephthalate and ethylene glycol were mixed with manganese acetate (ester exchange catalyst), antimony trioxide (polymerization catalyst), phosphorous acid (stabilizer) and calcium carbonate (lubricant) with an average particle size of 0.6 μm and a volume shape coefficient of 0.46. Polyethylene terephthalate with an intrinsic viscosity of 0.62 was obtained by polymerization using a conventional method in the presence of the above. After drying the polyethylene terephthalate pellets at 170°C for 3 hours, they are supplied to the extruder hopper and melted at a melting temperature of 280 to 300°C.The molten polymer is passed through a 1 mm slit die with a surface finish of about 0.3 and a surface temperature of It was extruded onto a rotating cooling drum at 20°C to obtain an unstretched film of 200 μm. The unstretched film thus obtained was heated at 75°C.
The material was preheated at , then heated with a single IR heater with a surface temperature of 900°C from 15 mm above between low and high speed rolls, longitudinally stretched to 3.5 times by the difference in surface speed of the low and high speed rolls, rapidly cooled, and then and supply it to the stenter.
It was stretched 3.7 times in the transverse direction at 105°C. The obtained biaxially stretched film was heat-set at a temperature of 205°C for 5 seconds,
A heat-set biaxially oriented film with a thickness of 15 μm was obtained. Although the obtained film had good runnability and scratch resistance, it had a void ratio of 1.7 and was unsatisfactory due to the adhesion of white powder when calendered. The properties of this film are shown in Table 1. Comparative Example 2 Comparative Example 1 except that kaolin with an average particle size of 0.4 μm and a volume shape coefficient of 0.08 was used instead of calcium carbonate.
Polyethylene terephthalate pellets were obtained in the same manner as above. Using this pellet, a biaxially oriented film having a thickness of 15 μm was obtained in the same manner as in Comparative Example 1. This film had a void ratio of 1.3, and although it had good abrasion resistance, it had poor runnability and poor scratch resistance. The properties of this film are shown in Table 1. Comparative Example 3 Polyethylene terephthalate pellets were obtained in the same manner as in Comparative Example 1, except that titanium oxide having an average particle size of 0.33 μm and a volume shape coefficient of 0.046 was used instead of calcium carbonate. Using this pellet, a biaxially oriented film having a thickness of 15 μm was obtained in the same manner as in Comparative Example 1. This film had a void ratio of 1.4, and although it had good scratch resistance, it was unsatisfactory with white powder adhering to it when calendered. The properties of this film are shown in Table 1. Comparative Examples 4-5 A biaxially oriented polyethylene terephthalate film having a thickness of 15 μm was obtained in the same manner as in Comparative Example 1, except that the lubricant particles listed in Table 1 were used instead of calcium carbonate. Although the surface roughness and runnability of Comparative Example 4 are somewhat satisfactory, the scratch resistance is poor and unsatisfactory. In Comparative Example 5, the scratch resistance of the Comparative Example was insufficient, so by adding calcium carbonate with an average particle size of 0.8 μm together with titanium oxide at the expense of surface properties, running properties and Although this was intended to improve scratch resistance, calcium carbonate with a large particle size had large voids and was severely abraded by calendering, making it unsatisfactory. These properties are shown in Table 1. Examples 1 to 4 Except for using the lubricant shown in Table 1,
Polyethylene terephthalate was obtained in the same manner as in Comparative Examples 1 to 5, and heat-set biaxially oriented films were obtained using the polyethylene terephthalate in the same manner as in Comparative Examples 1 to 5. This film is shown in Table 1. This film uses silicone resin fine particles (composition: CH 3 SiO1.5) as small particles, so the generation of voids is suppressed, so there is almost no dropout of protrusions, and it has excellent scratch and abrasion resistance. It was extremely sexually satisfying.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 () 芳香族ポリエステル ()(a) 下記式(A) RxSiO2−x/2 ……(A) 〔ここで、Rは炭素数1〜7の炭化水素基で
あり、xは1〜1.2の数である。〕 で表わされる組成を有し、 (b) 下記式(B) f=v/D3 ……(B) 〔ここで、vは粒子1個当りの平均体積(μ
m3)であり、Dは粒子の平均最大粒径(μ
m)である。〕 で定義される体積形状係数(f)が0.4より大き
くπ/6以下であり且つ、 (c) 0.01〜4μmの平均粒径を有するシリコン樹
脂微粒子0.005〜2.0重量%(芳香族ポリエス
テルに対し)及び、 () 0.01〜5μmの平均粒径を有し、且つ該平均
粒径が上記シリコン樹脂微粒子よりも大きい他
の不活性微粒子0.005〜2.0重量%(芳香族ポリ
エステルに対し)から成る緊密な混合物から形
成された二軸配向ポリエステルフイルム。 2 芳香族ポリエステルが芳香族ジカルボン酸を
主たる酸成分とし、そして脂肪族グルコールを主
たるグリコール成分として成る特許請求の範囲第
1項記載のポリエステルフイルム。 3 上記式(A)において、Rが炭素数1〜7の直鎖
状もしくは分岐状のアルキル基、フエニル基又は
トリル基である特許請求の範囲第1項記載のポリ
エステルフイルム。 4 上記式(A)において、xが1〜1.1の数である
特許請求の範囲第1項記載のポリエステルフイル
ム。 5 シリコン樹脂微粒子の体積形状係数(f)が0.44
〜π/6の間にある特許請求の範囲第1項記載の
ポリエステルフイルム。 6 シリコン樹脂微粒子の平均粒径が0.05〜3μm
の間にある特許請求の範囲第1項記載のポリエス
テルフイルム。 7 シリコン樹脂微粒子の量が0.01〜0.5重量%
(芳香族ポリエステルに対し)である特許請求の
範囲第1項記載のポリエステルフイルム。 8 シリコン樹脂微粒子が下記式(C) γ=D25/D75 ……(C) 〔ここで、D25は粒子の積算重量が25%のときの
平均粒子径(μm)であり、D75は粒子の積算重
量が75%のときの平均粒径である。〕 で定義される粒度分布比(γ)として1〜1.4の
間の値を有する特許請求の範囲第1項記載のポリ
エステルフイルム。 9 フイルム表面をイオンエツチングした後電子
顕微鏡で観察した時、シリコン樹脂微粒子の周囲
表面が芳香族ポリエステル基質と実質的に接触し
ている特許請求の範囲第1項記載のポリエステル
フイルム。
[Claims] 1 () Aromatic polyester ()(a) Following formula (A) RxSiO 2 −x/2 ...(A) [Here, R is a hydrocarbon group having 1 to 7 carbon atoms; , x is a number from 1 to 1.2. ] It has a composition expressed by (b) the following formula (B) f=v/D 3 ...(B) [Here, v is the average volume per particle (μ
m 3 ), and D is the average maximum particle diameter (μ
m). ] 0.005 to 2.0% by weight of silicone resin fine particles (based on aromatic polyester) having a volume shape factor (f) defined as greater than 0.4 and less than or equal to π/6, and (c) an average particle size of 0.01 to 4 μm. and () an intimate mixture consisting of 0.005 to 2.0% by weight (based on the aromatic polyester) of other inert fine particles having an average particle size of 0.01 to 5 μm and whose average particle size is larger than the silicone resin fine particles. A biaxially oriented polyester film formed from. 2. The polyester film according to claim 1, wherein the aromatic polyester has an aromatic dicarboxylic acid as its main acid component and an aliphatic glycol as its main glycol component. 3. The polyester film according to claim 1, wherein in the above formula (A), R is a linear or branched alkyl group having 1 to 7 carbon atoms, a phenyl group, or a tolyl group. 4. The polyester film according to claim 1, wherein in the above formula (A), x is a number from 1 to 1.1. 5 The volume shape factor (f) of silicone resin particles is 0.44
The polyester film according to claim 1, which has a polyester film of between .pi./6 and .pi./6. 6 The average particle size of silicone resin particles is 0.05 to 3 μm
A polyester film according to claim 1, which is located between. 7 The amount of silicone resin fine particles is 0.01 to 0.5% by weight
The polyester film according to claim 1, which is (relative to aromatic polyester). 8 The silicone resin fine particles have the following formula (C) γ=D 25 /D 75 ... (C) [Here, D 25 is the average particle diameter (μm) when the cumulative weight of the particles is 25%, and D 75 is the average particle size when the cumulative weight of particles is 75%. ] The polyester film according to claim 1, having a particle size distribution ratio (γ) defined by 1 to 1.4. 9. The polyester film according to claim 1, wherein the peripheral surface of the silicone resin particles is substantially in contact with the aromatic polyester substrate when the film surface is ion-etched and then observed with an electron microscope.
JP11250687A 1987-05-11 1987-05-11 Biaxially oriented polyester film Granted JPS63278939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11250687A JPS63278939A (en) 1987-05-11 1987-05-11 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11250687A JPS63278939A (en) 1987-05-11 1987-05-11 Biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPS63278939A JPS63278939A (en) 1988-11-16
JPH0458818B2 true JPH0458818B2 (en) 1992-09-18

Family

ID=14588356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11250687A Granted JPS63278939A (en) 1987-05-11 1987-05-11 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPS63278939A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590515B2 (en) * 1988-03-01 1997-03-12 東レ株式会社 Polyester composition and biaxially stretched polyester film comprising the same
JP2621461B2 (en) * 1989-02-16 1997-06-18 東レ株式会社 Biaxially oriented polyester film
JP2550797B2 (en) * 1991-04-10 1996-11-06 東レ株式会社 Liquid crystal polymer resin composition
KR0171632B1 (en) * 1992-01-16 1999-03-30 이따가끼 히로시 Polyester film for metal sheet lamination and use thereof
JPH05310964A (en) * 1992-04-30 1993-11-22 Diafoil Co Ltd Biaxially oriented polyester film
GB9324989D0 (en) * 1992-12-23 1994-01-26 Ici Plc Polymeric film
US5372879A (en) * 1993-02-22 1994-12-13 Teijin Limited Biaxially oriented polyester film
KR100548661B1 (en) * 1997-07-07 2006-02-03 데이진 가부시키가이샤 Biaxially oriented polyester film for magnetic recording media

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734088A (en) * 1980-06-18 1982-02-24 Saint Gobain Isover Removal of excess water in mixture of gypsum and water, device therefor and product thereof
JPS595216A (en) * 1982-06-30 1984-01-12 Fujitsu Ltd Optical fiber connector
JPS59179555A (en) * 1983-03-30 1984-10-12 Teijin Ltd Biaxially stretched polyester film
JPS6092333A (en) * 1983-10-27 1985-05-23 Teijin Ltd Polyester film
JPS61236852A (en) * 1985-04-15 1986-10-22 Toyobo Co Ltd Oriented polyester film
JPS62172031A (en) * 1986-01-24 1987-07-29 Teijin Ltd Biaxially oriented polyester film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734088A (en) * 1980-06-18 1982-02-24 Saint Gobain Isover Removal of excess water in mixture of gypsum and water, device therefor and product thereof
JPS595216A (en) * 1982-06-30 1984-01-12 Fujitsu Ltd Optical fiber connector
JPS59179555A (en) * 1983-03-30 1984-10-12 Teijin Ltd Biaxially stretched polyester film
JPS6092333A (en) * 1983-10-27 1985-05-23 Teijin Ltd Polyester film
JPS61236852A (en) * 1985-04-15 1986-10-22 Toyobo Co Ltd Oriented polyester film
JPS62172031A (en) * 1986-01-24 1987-07-29 Teijin Ltd Biaxially oriented polyester film

Also Published As

Publication number Publication date
JPS63278939A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
US4761327A (en) Biaxially oriented aromatic polyester film
JP2989080B2 (en) Laminated polyester film for magnetic recording media
EP0381213B1 (en) Biaxially oriented film of polyethylene-2,6-naphthalate
EP0460640A1 (en) Polyester film for magnetic recording media
JP2650928B2 (en) Biaxially oriented polyester film
JPH0458818B2 (en)
JPH0512374B2 (en)
JPS6168727A (en) Biaxially stretched polyester film
JPH0518327B2 (en)
JP2528960B2 (en) Polyethylene-2,6-naphthalate film
JPH0336061B2 (en)
JP3361105B2 (en) Biaxially oriented polyester film for magnetic recording media
JPH0458821B2 (en)
JP3241415B2 (en) Polyethylene-2,6-naphthalate film
JPH0458819B2 (en)
JPH01299832A (en) Biaxially oriented polyester film
JPH01126340A (en) Biaxially oriented polyester film
JPH0513977B2 (en)
JPH054412B2 (en)
JP3025646B2 (en) Laminated biaxially oriented film
JPH0458820B2 (en)
JP3489849B2 (en) Base film for magnetic recording tape
JP2003132523A (en) Biaxially oriented polyester film for magnetic recording medium
JPH0618071B2 (en) Biaxially oriented polyester film for magnetic recording media
JPH0513978B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 15