JPH0456289A - Manufacture of thin oxide superconductor film - Google Patents

Manufacture of thin oxide superconductor film

Info

Publication number
JPH0456289A
JPH0456289A JP2165670A JP16567090A JPH0456289A JP H0456289 A JPH0456289 A JP H0456289A JP 2165670 A JP2165670 A JP 2165670A JP 16567090 A JP16567090 A JP 16567090A JP H0456289 A JPH0456289 A JP H0456289A
Authority
JP
Japan
Prior art keywords
film
superconductor
gas
fine particles
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2165670A
Other languages
Japanese (ja)
Inventor
Toshiya Matsubara
俊哉 松原
Shinichi Ohashi
大橋 信一
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2165670A priority Critical patent/JPH0456289A/en
Publication of JPH0456289A publication Critical patent/JPH0456289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable fine particles of non-superconductor to be dispersed into a thin film of oxide superconductor by a method wherein fine particles of non- superconductor are mixed into gas which is fed at the formation of a film, and the thin oxide superconductor film is formed as fine particles of man- superconductor are dispersed into it. CONSTITUTION:An SrTiO3 crystal substrate whose plane [100] is polished is placed on a platinum susceptor heated by high frequency induction. Dipivaloyl methane complex of Y, Ba, and Cu is used as material, material evaporators are heated, argon gas is made to flow through the material evaporators, vaporized material is introduced into a reaction vessel, on the other hand, BaSnO3 powder is put in a power mixer and stirred up with a stirrer and suspended, oxygen gas is introduced into the powder mixer and mixed with the suspended powder, the mixed gas is classified passing through a cyclone to separate coarse particles, and then the mixed gas is introduced into the reaction tube to form a film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物超電導体薄膜の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an oxide superconductor thin film.

[従来の技術] 従来、臨界温度が液体窒素温度以上である酸化物超電導
体の薄膜は、種々のPVD法(スパッタ法、蒸着法、レ
ーザービーム蒸着法など)や、CVD法などで気相から
作製されてきた。
[Prior Art] Conventionally, thin films of oxide superconductors whose critical temperature is higher than liquid nitrogen temperature have been produced from the gas phase by various PVD methods (sputtering, vapor deposition, laser beam deposition, etc.) or CVD methods. has been created.

いずれの方法でも、作製条件を適正に選ぶことにより、
液体窒素温度、O磁場下では100万A/cm”以上の
高い臨界電流密度を有する薄膜が得られるようになって
きている。
In either method, by appropriately selecting the production conditions,
It has become possible to obtain thin films having high critical current densities of 1 million A/cm'' or more at liquid nitrogen temperatures and in an O magnetic field.

[発明が解決しようとする課題] しかしながら、超電導電磁石などの応用には数テスラ以
上の強い磁場下で10万A/cm2以上の電流を流せる
材料が求められており、これまで得られた薄膜は磁場下
、特に、Cu−0面に垂直に磁場を印加した場合に大き
な電流が流せないことが問題となっている。
[Problem to be solved by the invention] However, for applications such as superconducting electromagnets, a material that can flow a current of 100,000 A/cm2 or more under a strong magnetic field of several Tesla or more is required, and the thin films obtained so far are A problem is that a large current cannot flow under a magnetic field, particularly when a magnetic field is applied perpendicular to the Cu-0 plane.

この原因は、酸化物超電導体の単結晶を用いた実験結果
から、磁場下で電流の印加による磁束の移動を十分に抑
制できていないためと考えられている。磁場下で磁束の
移動を抑制するためには適切なビン止め中心を超電導体
内に導入することが必要である。非超電導体の微粒子や
、薄膜では電流方向に平行な微少なりラックなどがビン
止め中心になると考えられているが、そのような薄膜を
制御して作製する方法は未だ確立されていない。本発明
の目的は、酸化物超電導体の薄膜内に、非超電導体の微
粒子を分散させる方法を提供することである。
The reason for this is thought to be that the movement of magnetic flux due to the application of current under a magnetic field cannot be sufficiently suppressed, based on experimental results using a single crystal of an oxide superconductor. In order to suppress the movement of magnetic flux under a magnetic field, it is necessary to introduce a suitable binning center into the superconductor. It is thought that fine particles of non-superconducting materials or small racks parallel to the current direction in the case of thin films are the center of binding, but a method for controlling the production of such thin films has not yet been established. An object of the present invention is to provide a method for dispersing fine particles of a non-superconductor within a thin film of an oxide superconductor.

[課題を解決するための手段] 本発明は、酸化物超電導体薄膜を気相から製造する方法
において、成膜時に導入する気体中に非超電導体の微粒
子を混合して供給し、超電導体薄膜中に非超電導体の微
粒子を分散させながら成膜することを特徴とする酸化物
超電導体薄膜の製造方法を提供するものである。
[Means for Solving the Problems] The present invention provides a method for producing an oxide superconductor thin film from a gas phase, in which fine particles of a non-superconductor are mixed and supplied into the gas introduced during film formation, and the superconductor thin film is The present invention provides a method for producing an oxide superconductor thin film, which is characterized in that the film is formed while fine particles of a non-superconductor are dispersed therein.

酸化物超電導薄膜の製造方法においては、通常成膜時に
酸化するための酸素や、プラズマを発生するためや気化
した原料を反応容器に運ぶためのアルゴンなどの気体を
導入しながら製膜する。本発明においては、導入する気
体中に非超電導体の微粒子を混合浮遊させて供給し、基
体上に超電導体構成元素と同時に堆積させ、非超電導粒
子を均一に超電導体薄膜内に分散させる。したがって、
製膜方法は各種のPVD法、CVD法を問わず適用可能
である。
In the manufacturing method of oxide superconducting thin films, the film is usually formed while introducing gases such as oxygen for oxidation and argon for generating plasma and transporting vaporized raw materials to a reaction vessel. In the present invention, fine particles of a non-superconductor are mixed and suspended in the introduced gas, deposited on the substrate simultaneously with the superconductor constituent elements, and the non-superconductor particles are uniformly dispersed within the superconductor thin film. therefore,
The film forming method can be applied regardless of various PVD methods or CVD methods.

微粒子として用いる非超電導体としては超電導体構成元
素との反応性が低く、かつ、基板温度で溶融しないこと
が好ましい。この観点から、非超電導体としてはA、B
O,(AはMg、 Ca、Sr、Baからなる群から選
ばれた1種以上、BはSn、Si、 Ce、 Ti、 
Zrからなる群から選ばれた1種以上、1≦X≦2.3
≦y≦4)の組成式で表される化合物を用いることが好
ましい。
It is preferable that the non-superconductor used as the fine particles has low reactivity with the superconductor constituent elements and does not melt at the substrate temperature. From this point of view, A and B are non-superconductors.
O, (A is one or more selected from the group consisting of Mg, Ca, Sr, Ba, B is Sn, Si, Ce, Ti,
One or more species selected from the group consisting of Zr, 1≦X≦2.3
It is preferable to use a compound represented by a composition formula of ≦y≦4).

微粒子をガス中に混合浮遊させるには種々の方法を用い
ることができる。例えば、非超電導体の前駆体の水溶液
をガス中に噴霧し、このガスを熱分解炉に通して非超電
導体の固体微粒子を生成させた後、超電導体製膜装置に
導入する方法を用いることができる。また、微粒子を超
音波や回転式混合器あるいは気体をバブルさせてガス中
に浮遊させる装置を用いてもよい。これらの装置を用い
る際には粗粒子を除くため、サイクロンの様な粗粒を分
溜する装置を用いることが望ましい。
Various methods can be used to mix and suspend fine particles in a gas. For example, a method may be used in which an aqueous solution of a non-superconductor precursor is sprayed into a gas, the gas is passed through a pyrolysis furnace to generate solid fine particles of a non-superconductor, and then introduced into a superconductor film forming apparatus. I can do it. Further, it is also possible to use ultrasonic waves, a rotary mixer, or a device that causes gas to bubble and suspend the particles in the gas. When using these devices, in order to remove coarse particles, it is desirable to use a device that fractionates coarse particles, such as a cyclone.

[実施例] 実施例1 第1図に示すCVD成膜装置を使用した。原料としてY
 、 Ba、 Cuのジピバロイルメタン錯体を使用し
、原料蒸発器をそれぞれ120 、240.110℃に
加熱し、各蒸発器にアルゴンガスをそれぞれ50sec
m (sccm :標準状態の気体に換算して1 cc
/分)の流量で流して気化した原料を反応容器へ導入し
た。一方、平均粒径100Å以下のBa5nOi粉末を
粉末混合器に入れスターラーで撹拌して粉末を浮遊させ
ところに酸素ガスを導入して酸素ガス中に該粉末を混合
した。この混合ガスをサイクロンに通し粗粒を分級した
後、140secmの流量で反応管に導入した。
[Examples] Example 1 A CVD film forming apparatus shown in FIG. 1 was used. Y as a raw material
Using dipivaloylmethane complexes of , Ba, and Cu, the raw material evaporators were heated to 120 °C, 240 °C, and 110 °C, respectively, and argon gas was supplied to each evaporator for 50 sec.
m (sccm: 1 cc converted to standard gas
/min) to introduce the vaporized raw material into the reaction vessel. On the other hand, Ba5nOi powder having an average particle size of 100 Å or less was placed in a powder mixer and stirred with a stirrer to suspend the powder, and oxygen gas was introduced thereto to mix the powder in the oxygen gas. This mixed gas was passed through a cyclone to classify coarse particles, and then introduced into the reaction tube at a flow rate of 140 seconds.

基板として[100]面を研磨した5rTiOx結晶基
板を、高周波誘導により850 ’Cに加熱した白金サ
セプター上に置いて、上記ガスを導入しながら圧力24
mmHg、成膜速度0.2μm/hの速度で2時間成膜
した。成膜後1気圧の酸素を反応管に満たし、10℃/
hの速度で白金サセプタを冷却し、100℃まで温度が
低下したところで基板を取り出した。
As a substrate, a 5rTiOx crystal substrate with a polished [100] plane was placed on a platinum susceptor heated to 850'C by high frequency induction, and the above gas was introduced at a pressure of 24°C.
The film was formed for 2 hours at mmHg and a film formation rate of 0.2 μm/h. After film formation, the reaction tube was filled with 1 atm of oxygen and heated at 10℃/
The platinum susceptor was cooled at a rate of h, and the substrate was taken out when the temperature dropped to 100°C.

成膜した膜をX線回折装置で調べたところC軸が膜面に
垂直に配向したYBa−Cu、O,結晶とBa5nOx
結晶の混合回折図が得られた。さらに膜の組成を蛍光X
線を用いて定量分析したところ、Y:Ba:Cu:Sn
の原子比は1.00:2.15:3.02:0.17で
あった。この膜の組織を透過型電子顕微鏡で観察したと
ころ、マトリックス中に粒径100人程鹿の粒子が均一
に分散しているのが確認された。
Examination of the formed film using an X-ray diffraction device revealed that the C-axis was oriented perpendicular to the film surface, YBa-Cu, O, crystal and Ba5nOx.
A mixed diffractogram of the crystals was obtained. Furthermore, the composition of the film was determined using fluorescent X
Quantitative analysis using lines revealed that Y:Ba:Cu:Sn
The atomic ratio of was 1.00:2.15:3.02:0.17. When the structure of this film was observed using a transmission electron microscope, it was confirmed that deer particles with a particle size of about 100 were uniformly dispersed in the matrix.

この試料を幅500μmにバターニングして直流四端子
法を用い77K、5テスラの磁場化で臨界電流密度を測
定したところ、190,000 A/am”であった。
This sample was patterned to a width of 500 μm, and the critical current density was measured using a DC four-terminal method in a magnetic field of 77 K and 5 Tesla, and found to be 190,000 A/am.

測定時に磁場は膜面に垂直に印加した。During the measurement, the magnetic field was applied perpendicular to the film surface.

比較例1 酸素ガスを粉末混合器、サイクロンを通さずに直接反応
管に導入した以外は実施例1と同様にして成膜した。
Comparative Example 1 A film was formed in the same manner as in Example 1, except that oxygen gas was introduced directly into the reaction tube without passing through a powder mixer or cyclone.

得られた膜をX線回折装置で調べたところC軸が膜面に
垂直に配向したYBaiCu30y結晶の単−回折図が
得られた。得られた膜の原子比、Y:Ba:Cu+Sn
は1.00:1.99:3.03:0.00であった。
When the obtained film was examined using an X-ray diffractometer, a single diffraction pattern of YBaiCu30y crystal in which the C axis was oriented perpendicular to the film surface was obtained. Atomic ratio of the obtained film, Y:Ba:Cu+Sn
was 1.00:1.99:3.03:0.00.

臨界電流密度(77K、5テスラ)を実施例1と同様に
測定したところ、9000 A/cm”であった。
The critical current density (77K, 5 Tesla) was measured in the same manner as in Example 1 and found to be 9000 A/cm''.

実施例2 第2図に示す反応蒸着装置を使用した。原料としてBi
、 Sr、 Ca、Cuの金属を使用し、原料蒸発源(
クヌーセンセル)をそれぞれ780.830゜890 
、1200℃に加熱した。一方、硝酸カルシウムと硝酸
ジルコニルの混合水溶液を超音波噴霧器に入れ超音波で
微小な霧状の水滴を生成させて酸素ガス中に浮遊させた
。この酸素ガスを管状炉に導き1100℃で熱分解して
CaZr0□の微粒子を酸素ガス中に生成させ、サイク
ロンに通して粗粒を分級した後10105eの流量で真
空容器に導入した。
Example 2 A reactive vapor deposition apparatus shown in FIG. 2 was used. Bi as a raw material
, Sr, Ca, and Cu metals are used as the raw material evaporation source (
Knudsen cell) respectively 780.830°890
, heated to 1200°C. On the other hand, a mixed aqueous solution of calcium nitrate and zirconyl nitrate was placed in an ultrasonic atomizer and ultrasonic waves were used to generate fine water droplets that were suspended in oxygen gas. This oxygen gas was introduced into a tube furnace and thermally decomposed at 1100° C. to produce fine particles of CaZr0□ in the oxygen gas, passed through a cyclone to classify coarse particles, and then introduced into a vacuum vessel at a flow rate of 10105e.

基板として[100]面を研磨した5rTi03結晶基
板を、白金ヒーターにより650℃に加熱し、上記ガス
を導入しながら圧力4 X 10−’torr、成膜速
度0.2μm/hの速度で、高周波誘導コイルにより基
板近傍にプラズマを発生しながら2時間成膜した。成膜
後、酸素ガスを超音波噴霧器、管状炉、サイクロンを通
さず、直接真空容器に導入し、プラズマを発生した状態
でlO℃/hの速度で冷却した。基板温度が100℃ま
で温度が低下したところで基板を取り出した。
As a substrate, a 5rTi03 crystal substrate with a polished [100] plane was heated to 650°C with a platinum heater, and the above gas was introduced while high frequency was applied at a pressure of 4 x 10-'torr and a film formation rate of 0.2 μm/h. The film was formed for 2 hours while generating plasma near the substrate using an induction coil. After film formation, oxygen gas was directly introduced into the vacuum container without passing through an ultrasonic atomizer, a tube furnace, or a cyclone, and the film was cooled at a rate of 10° C./h while generating plasma. When the substrate temperature decreased to 100° C., the substrate was taken out.

成膜した膜をX線回折装置で調べたところC軸が膜面に
垂直に配向したBi25rzCaCuzO,結晶とCa
rry3結晶の混合回折図が得られた。さらに膜の組成
を蛍光Xllを用いて定量分析したところ、Bi:Sr
+Ca:Cu:Zrの原子比は2.00:2.03:1
.09:2.01:0.10であった。この膜の組織を
透過型電子顕微鏡で観察したところ、マトリックス中に
粒径100人程鹿の粒子が均一に分散しているのが確認
された。
Examination of the formed film using an X-ray diffraction device revealed that the C-axis was oriented perpendicular to the film surface, Bi25rzCaCuzO, crystals and Ca.
A mixed diffractogram of rry3 crystals was obtained. Furthermore, when the composition of the film was quantitatively analyzed using fluorescence Xll, it was found that Bi:Sr
+The atomic ratio of Ca:Cu:Zr is 2.00:2.03:1
.. It was 09:2.01:0.10. When the structure of this film was observed using a transmission electron microscope, it was confirmed that deer particles with a particle size of about 100 were uniformly dispersed in the matrix.

この試料を幅500μmにバターニングして直流四端子
法を用い77に、2テスラの磁場化で臨界電流密度を測
定したところ、110,000 A/cm”であった。
This sample was patterned to a width of 500 μm, and the critical current density was measured using a DC four-probe method with a magnetic field of 2 Tesla, and found to be 110,000 A/cm.

測定時に磁場は膜面に垂直に印加した。During the measurement, the magnetic field was applied perpendicular to the film surface.

比較例2 酸素ガスを超音波噴霧器、管状炉、サイクロンを通さず
に直接真空容器に導入した以外は実施例2と同様にして
成膜した。
Comparative Example 2 A film was formed in the same manner as in Example 2, except that oxygen gas was directly introduced into the vacuum container without passing through an ultrasonic atomizer, a tube furnace, or a cyclone.

得られた膜をX線回折装置で調べたところC軸が膜面に
垂直に配向したBix5raCaCuzO,結晶の単一
回折図が得られた。得られた膜の原子比Bi:Sr:C
a:Cu:Zrは2.00+2.02:0.99:2.
02:0.00であった。臨界電流密度(77に、 2
テスラ)を実施例2と同様に測定したところ、4000
 A/cm”であった。
When the obtained film was examined using an X-ray diffractometer, a single diffraction pattern of Bix5raCaCuzO crystal in which the C axis was oriented perpendicular to the film surface was obtained. Atomic ratio of the obtained film Bi:Sr:C
a:Cu:Zr is 2.00+2.02:0.99:2.
It was 02:0.00. Critical current density (77, 2
Tesla) was measured in the same manner as in Example 2 and found to be 4000
A/cm".

[発明の効果] 本発明の製造方法により、酸化物超電導体中に非超電導
体の微粒子が分散した薄膜が得られる。この薄膜は、磁
場下においても、高い臨界電流密度を示す。
[Effects of the Invention] According to the manufacturing method of the present invention, a thin film in which fine particles of a non-superconductor are dispersed in an oxide superconductor can be obtained. This thin film exhibits a high critical current density even under a magnetic field.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、実施例1で用いたCVD製膜装置の構成を示す
説明図である。 図2は、実施例2で用いた反応蒸着装置の構成を示す説
明図である。
FIG. 1 is an explanatory diagram showing the configuration of the CVD film forming apparatus used in Example 1. FIG. 2 is an explanatory diagram showing the configuration of the reactive vapor deposition apparatus used in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1、酸化物超電導体薄膜を気相から製造する方法におい
て、成膜時に導入する気体中に非超電導体の微粒子を混
合して供給し、超電導体薄膜中に非超電導体の微粒子を
分散させながら成膜することを特徴とする酸化物超電導
体薄膜の製造方法。
1. In a method for producing an oxide superconductor thin film from the gas phase, non-superconductor fine particles are mixed and supplied into the gas introduced during film formation, and while the non-superconductor fine particles are dispersed in the superconductor thin film. 1. A method for producing an oxide superconductor thin film, which comprises forming a film.
JP2165670A 1990-06-26 1990-06-26 Manufacture of thin oxide superconductor film Pending JPH0456289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165670A JPH0456289A (en) 1990-06-26 1990-06-26 Manufacture of thin oxide superconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165670A JPH0456289A (en) 1990-06-26 1990-06-26 Manufacture of thin oxide superconductor film

Publications (1)

Publication Number Publication Date
JPH0456289A true JPH0456289A (en) 1992-02-24

Family

ID=15816795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165670A Pending JPH0456289A (en) 1990-06-26 1990-06-26 Manufacture of thin oxide superconductor film

Country Status (1)

Country Link
JP (1) JPH0456289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276868A (en) * 2001-03-15 2002-09-25 Noritz Corp Joint for piping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276868A (en) * 2001-03-15 2002-09-25 Noritz Corp Joint for piping

Similar Documents

Publication Publication Date Title
JPH029795A (en) Method for producing a superconductive material
WO1991003323A1 (en) Plasma deposition of superconducting thick films
Zhang et al. Phase stabilization of VO2 thin films in high vacuum
Malandrino et al. Growth of epitaxial TlBaCaCuO a-axis oriented films on LaAlO3 buffer layers grown on SrTiO3 (100) substrates
JPH0456289A (en) Manufacture of thin oxide superconductor film
Qian et al. Preparation and phase structures of Zn–Ti–O ternary compounds by atomic layer deposition
Malandrino et al. A metal-organic chemical vapor deposition approach to double-sided Tl 2 Ba 2 Ca 1 Cu 2 O 8 superconducting films on LaAlO 3 (100) substrates
Attri et al. High crystalline epitaxial thin films of NiO by plasma-enhanced ALD and their properties
Scillato et al. BiFeO3 films doped in the A or B sites: effects on the structural and morphological properties
JPH04333572A (en) Method for gasifying mo stock for oxide superconductor
JPH02106822A (en) Formation of oxide superconductor thin film
EP0487421B1 (en) Process for preparing a thin film of Bi-type oxide superconductor
WO1991005087A1 (en) Single crystal oxide substrate, superconductor device produced therefrom, and producing thereof
EP0329103B2 (en) Process for manufacturing thin film of high-Tc superconducting oxide
JPH01219016A (en) Production of thin superconducting ceramic film containing dispersed oxide
Didier et al. Growth of (YBaCuO) m/(PrBaCuO) n Superlattices by MOCVD
JPH03261609A (en) Synthesis of oxide superconductor by mocvd method
JP4752049B2 (en) Method for producing magnesium diboride
KR100338359B1 (en) A Fabrication Technique for Epitaxial Thick Films of High Temperature Superconductor by the Partial Melting Method
JP2821207B2 (en) Method for synthesizing oxide superconductor by MOCVD method
Moskal et al. Growth and electron transport characteristics of epitaxial thin strontium iridate films
JPH0465306A (en) Oxide superconductor thin film
JPS63292524A (en) Manufacture of superconductive film
Malandrino et al. MOCVD approach to perovskite based thin films: from high Tc superconductors to giant dielectric constant materials
JPH01208323A (en) Production of thin film