JPH03261609A - Synthesis of oxide superconductor by mocvd method - Google Patents

Synthesis of oxide superconductor by mocvd method

Info

Publication number
JPH03261609A
JPH03261609A JP2059926A JP5992690A JPH03261609A JP H03261609 A JPH03261609 A JP H03261609A JP 2059926 A JP2059926 A JP 2059926A JP 5992690 A JP5992690 A JP 5992690A JP H03261609 A JPH03261609 A JP H03261609A
Authority
JP
Japan
Prior art keywords
raw material
synthesis
reaction
heating
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2059926A
Other languages
Japanese (ja)
Inventor
Hidefusa Uchikawa
英興 内川
Shigeru Matsuno
繁 松野
Kiyoshi Yoshizaki
吉崎 浄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP2059926A priority Critical patent/JPH03261609A/en
Publication of JPH03261609A publication Critical patent/JPH03261609A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To improve characteristics of synthesized superconductor and to synthesize a thick superconductor at high rate, by bringing an organometallic raw material into contact with vapor of a ligand thereof during a process of heating or transporting the raw material. CONSTITUTION:For example, YBa2Cu3O7-x is synthesized on a MgO substrate by using a CVD device having five raw material heating lines. In the synthesis, a hexafluoroacetylacetone derivative of Y, Ba or Cu is used as the raw material and vapor of hexafluorcaoetylaceton evolved by heating is sent to a specimen chamber charged with the raw material. The raw material heating temperature as a synthesis condition is 150 deg.C in Y, 200 deg.C in Ba or 145 deg.C in Cu and the reaction is carried out by using Ar as a carrier gas and oxygen as a reaction gas under 9 Torr pressure in a reaction furnace at 850 deg.C substrate temperature for 30 minutes. After the reaction, YBa2Cu3O7-x is naturally cooled in an oxygen flow to room temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、有機金属化学気相蒸着(MOCVD ’)
法を用いた酸化物超電導体の合成方法に間するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to metal organic chemical vapor deposition (MOCVD')
This paper introduces a method for synthesizing oxide superconductors using the method.

[従来の技術] 最近、液体窒素温度(77K)以上で超電導状態を示す
Y−Ba−Cu−0系やB1−5r−Cc−Cu−0の
酸化物超電導体を各種の方法で作製することが盛んに行
われてきた。その中で有機金属(MO)化合物原料を用
いるMOCVD法は一般に合成速度が速い、連続合成が
可能、自由な形状物上に合成できる、厚膜状に1戒でき
るなどの利点を有することから、酸化物超電導体のデバ
イス化および線材化に有力な手法と見られ、広く検討さ
れている。しかし、実際に従来のMOCVD法を用いた
場合、米国の応用物理字詰(Applied Phys
ics Letters)54巻、380〜382ペー
ジ(1989年1月)および日本の応用物理字詰(Ja
panese Journal or Applied
 Physics Letters)27巻、1265
〜1267  ページ(1988年7月)にあるように
、原料の加熱温度を高く(特にBa等の希土類原料では
280〜300℃)設定しなければ合成を行うことがで
きなかった。これは、米国の応用物理字詰(Appli
ed Physics Letters) 53巻、1
750〜1752ページ(1988年10月)に指摘さ
れているように、代表的なMO原料は一般に非常に気化
しにくいことに起因するものであった。
[Prior Art] Recently, various methods have been used to produce Y-Ba-Cu-0 and B1-5r-Cc-Cu-0 oxide superconductors that exhibit a superconducting state above liquid nitrogen temperature (77 K). has been actively carried out. Among these, the MOCVD method, which uses organometallic (MO) compound raw materials, generally has advantages such as fast synthesis speed, continuous synthesis, ability to synthesize on freely shaped objects, and ability to form thick films. It is seen as a promising method for making oxide superconductors into devices and wires, and is being widely studied. However, when the conventional MOCVD method is actually used,
ics Letters), volume 54, pages 380-382 (January 1989) and Japanese Journal of Applied Physics (January 1989).
Panese Journal or Applied
Physics Letters) Volume 27, 1265
As shown on page 1267 (July 1988), synthesis could not be carried out unless the heating temperature of the raw materials was set at a high temperature (particularly 280 to 300°C for rare earth raw materials such as Ba). This is the American Applied Physics Jitsuzume (Appli
ed Physics Letters) Volume 53, 1
As noted on pages 750-1752 (October 1988), typical MO raw materials were generally very difficult to vaporize.

[発明が解決しようとする課H] 以上のような従来のMOCVD法による酸化物超電導体
の合成方法は、原料の難気化性に伴ってCVD反応部へ
多量の原料を安定に輸送することが不可能であるため、
良好な特性を有する酸化物N電導体の高速合成ならびに
厚膜合成ができないという大きな問題点があった。さら
に、従来の方法では合成(反応)時間を連続的に長くし
て膜厚を厚くした場合にも、その厚膜は組成が不均質に
なるために超電導性を示さない、臨界温度が低い、臨界
電流密度が小さいなどの欠点が避けられなかった。
[Problem H to be solved by the invention] In the conventional method for synthesizing oxide superconductors using the MOCVD method as described above, it is difficult to stably transport a large amount of raw materials to the CVD reaction section due to the difficulty of vaporization of the raw materials. Because it is impossible
There was a major problem in that high-speed synthesis and thick film synthesis of oxide N conductors with good properties were not possible. Furthermore, in conventional methods, even when the synthesis (reaction) time is continuously lengthened to increase the film thickness, the thick film does not exhibit superconductivity because the composition becomes heterogeneous, and the critical temperature is low. Disadvantages such as low critical current density were unavoidable.

この発明はかかる問題点を解消するためになされたもの
で、MO原料を多量に、がっ、安定に反応部へ輸送する
ことができるとともに、合成した超電導体が良好な特性
を示すこと、さらにはこれにより酸化物超電導体の高速
合成および厚膜合成を行うことができるN0CYD法に
よる酸化物超電導体の合成方法を得ることを目的とする
This invention was made to solve these problems, and it is possible to transport a large amount of MO raw material to the reaction part in a stable manner, and the synthesized superconductor shows good characteristics. The object of the present invention is to obtain a method for synthesizing oxide superconductors by the N0CYD method, which enables high-speed synthesis and thick film synthesis of oxide superconductors.

[課題を解決するための手段] この発明に係るMOCVD法による酸化物超電導体の合
成方法は、MO原料中もしくは原料加熱工程、輸送工程
の少なくともいずれか一つの場合に、MO原料にMO原
料を形成する配位子の蒸気を接触させる工程を有する。
[Means for Solving the Problems] The method for synthesizing an oxide superconductor by the MOCVD method according to the present invention includes adding an MO raw material to the MO raw material in at least one of the MO raw material, the raw material heating step, and the transportation step. The method includes the step of contacting the vapor of the ligand to be formed.

[作 用] この発明においては、MO原料に接触させるM O! 
jlを形成する配位子蒸気の作用の詳細については不明
であるが、原料に配位子蒸気が作用することによって、
低温加熱においてもMO原料が多Iに気化され、かつ、
安定に反応部へ送り込まれるという働きをなすものと考
えられる。
[Function] In this invention, MO! which is brought into contact with the MO raw material!
The details of the action of the ligand vapor to form jl are unknown, but due to the action of the ligand vapor on the raw material,
MO raw material is vaporized to a large amount even when heated at low temperature, and
It is thought that the function is to be stably sent to the reaction part.

[実施例] (実施例■) 5つの原料加熱系統を有する通常のCVD装置を用い、
この発明の方法によるイツトリウム系酸化物超電導体で
あるYBII2CLI30.−8を酸化マグネシウム基
板上に合成する実験を行った。原料としては、Y、Ba
、Cuのヘキサフルオロアセチルアセトン誘導体を用い
、加熱して発生したヘキサフルオロアセチルアセトン蒸
気を、原料を入れた試料室に流入させた1合成条件とし
ては、原料の加熱温度をY 、 150℃、B a ;
 200℃、Cu;145℃に設定し、キャリアガスは
アルゴン、反応ガスは酸素で反応部(炉)内圧力は9 
Torr、基板温度は850℃に保持して30分間反応
を行った6反応後、酸素気流中で室温まで自然放冷を行
ったところ、膜厚2,3ミクロンのこの発明の合成方法
による酸化物膜が得られた。この酸化物膜について、X
線回折により結晶性および配向性を調査し、四端子法に
より臨界温度ならびに77Kにおけるゼロ磁界下の臨界
電流密度を測定した。また、蛍光X線分析による基板へ
の堆積量結果からの場合の合成速度を計算で求めた。
[Example] (Example ■) Using a normal CVD apparatus having five raw material heating systems,
YBII2CLI30, a yttrium-based oxide superconductor produced by the method of the present invention. An experiment was conducted to synthesize -8 on a magnesium oxide substrate. Raw materials include Y, Ba
, the hexafluoroacetylacetone derivative of Cu was used, and the hexafluoroacetylacetone vapor generated by heating was flowed into the sample chamber containing the raw material. 1 Synthesis conditions were as follows: heating temperature of the raw material was Y, 150°C, B a ;
200℃, Cu; set at 145℃, carrier gas is argon, reaction gas is oxygen, and the pressure inside the reaction section (furnace) is 9.
Torr, the substrate temperature was maintained at 850°C and the reaction was carried out for 30 minutes. After the reaction, the oxide was naturally cooled to room temperature in an oxygen stream, and the film thickness was 2.3 microns. A membrane was obtained. Regarding this oxide film,
The crystallinity and orientation were investigated by line diffraction, and the critical temperature and critical current density under zero magnetic field at 77 K were measured by the four-probe method. In addition, the synthesis rate was calculated based on the amount of deposition on the substrate determined by fluorescent X-ray analysis.

比較のため、上記と同一の原料および合成条件を用いて
ヘキサフルオロアセチルアセトン蒸気の流入を行わない
従来のMOCVD法により、同−組戒め酸化物超電導体
の合成を行ったところ、YとCUについては基板上への
堆積が認められたが、Baについては堆積がほとんど認
められず、200℃の加熱では十分な気化が生じないこ
とが判明した。
For comparison, the same type of oxide superconductor was synthesized by the conventional MOCVD method without the inflow of hexafluoroacetylacetone vapor using the same raw materials and synthesis conditions as above, and as for Y and CU, Although deposition on the substrate was observed, almost no deposition of Ba was observed, and it was found that sufficient vaporization did not occur with heating at 200°C.

そこで、従来方法については原料の加熱温度をY、1f
f□℃、B a ; 290℃、Cu ; 150℃に
設定し直して合成を行い、この発明の方法の場合と同様
に、反応後酸素気流中で室温まで自然放冷を行って0゜
3ミクロンの厚さの膜を得た。この膜についても同様に
、膜質および超電導特性を行った。これらの結果を第1
表に示す。
Therefore, for the conventional method, the heating temperature of the raw material is Y, 1f.
f□℃, B a ; 290℃, Cu; Synthesis was carried out with the settings reset to 150℃, and as in the case of the method of this invention, after the reaction, the mixture was naturally cooled to room temperature in an oxygen stream to 0℃. A micron thick film was obtained. The film quality and superconductivity properties of this film were similarly evaluated. These results are the first
Shown in the table.

第1表 膜厚(IIIll)合成速度(lJll/時〉配向性臨
界温度(k)臨界電流密度(^/c−2)本発明 の方法  2.3   4.6      C軸   
85     6.3X10’第1表から明らかなよう
に、この発明の方法によれば、低温加熱に拘わらず、従
来の合成方法よりも合成速度が約7倍以上速くなると同
時に、臨界温度および臨界電流特性が従来の方法による
膜と比べるとはるかに良好となる。
First surface film thickness (IIIll) Synthesis rate (lJll/hour) Orientation critical temperature (k) Critical current density (^/c-2) Method of the present invention 2.3 4.6 C axis
856.3 The properties are much better than those produced by conventional methods.

(実施例 ■) 実施例!と同一のCVD装置を用い、Y、BaおよびC
uのジピバロイルメタン誘導体を原料として用い、これ
らをそれぞれ120℃、190℃、120℃に加熱しな
がら、これらの中に、キャリアガスのアルゴンと共にジ
ピバロイルメタンの蒸気を流入させて接触させた。その
池の条件は実施例[と全く同様にして、この発明の方法
によるイツトリウム系酸化物超電導体の合成を行った。
(Example ■) Example! Y, Ba and C using the same CVD equipment as
Using the dipivaloylmethane derivatives u as raw materials, while heating them to 120°C, 190°C, and 120°C, respectively, dipivaloylmethane vapor was flowed into them together with argon as a carrier gas. brought into contact. A yttrium-based oxide superconductor was synthesized by the method of the present invention using the same conditions as in Example [1].

目的組成も実施例■と同様である。比較のため、ジピバ
ロイルメタンを添加しない従来の方法による合成も行っ
た。ただし、実施例Iと同様の理由により、各MO原料
の設定温度はそれぞれこの発明の場合よりも高い145
℃、290℃、140℃に保持した。上記2つのサンプ
ルの特性を第2表に示す。
The target composition is also the same as in Example (2). For comparison, synthesis was also performed using a conventional method without adding dipivaloylmethane. However, for the same reason as in Example I, the set temperature of each MO raw material is 145 higher than in the case of this invention.
℃, 290℃, and 140℃. The characteristics of the above two samples are shown in Table 2.

第  2  表 膜厚(μ−)合成速度(μIl/時)配向性臨界温度(
k)臨界電流密度(A/Cm”)本発明 の方法7.6    15.2      C軸   
90     8.5xfO’第2表から、実施例■の
場合と同様に、この発明の方法による酸化物超電導体は
、従来の合成方法によるものよりも、低温加熱であるに
もかかわらず合成速度が6倍以上速くなると同時に、臨
界温度および臨界電流特性が従来の方法によるものより
吃はるかに良好となることが明らかである。
2nd Surface film thickness (μ-) Synthesis rate (μIl/hr) Orientation critical temperature (
k) Critical current density (A/Cm”) Method of the invention 7.6 15.2 C-axis
90 8.5xfO' Table 2 shows that, as in the case of Example ①, the oxide superconductor produced by the method of the present invention has a higher synthesis rate than that produced by the conventional synthesis method despite the low temperature heating. It is clear that it is more than 6 times faster and at the same time the critical temperature and critical current characteristics are much better than with the conventional method.

実施例Iおよび■において、従来方法による酸化物超電
導体の合成速度が低い理由は、MO原料が気化しに<<
、かつ、安定に輸送されにくいことに起因するものと考
えられる。そして、これら従来方法によるサンプルの超
電導特性が良好でない主な原因は、C軸配向しているに
もかかわらず、各原料の不安定輸送に起因する合成膜中
における組戒め不均質性であると推定される。
In Examples I and 2, the reason why the synthesis rate of the oxide superconductor by the conventional method is low is that the MO raw material is not vaporized.
This is thought to be due to the fact that it is difficult to transport stably. The main reason why the superconducting properties of the samples obtained using these conventional methods are not good is due to the heterogeneity of the composition in the synthesized film due to the unstable transport of each raw material, despite the C-axis orientation. Presumed.

この発明で用いるMO原料の配位子蒸気のMO原料に対
する効果は明らかでないが、配位子の分子構造中に存在
する酸素原子とMOJlI料が気化し易くなるような沸
点の低い付加物を生成すると推察される。
Although the effect of the ligand vapor of the MO raw material used in this invention on the MO raw material is not clear, it forms an adduct with a low boiling point that facilitates vaporization of the oxygen atoms present in the molecular structure of the ligand and the MOJlI material. Then it is inferred.

さらに、この発明では、使用するMO原料の配位子蒸気
をCVD反応前であればどのような形でMO原料と接触
させてもよい0例えば、上記実施例のように原料中に流
入させてもよく、キャリアガスとともに原料中に流入お
よび接触させてもよい、また、この接触は任意の2通り
以上の方法を使用してもよい。
Furthermore, in the present invention, the ligand vapor of the MO raw material to be used may be brought into contact with the MO raw material in any form before the CVD reaction. Alternatively, the raw material may be introduced into the raw material together with a carrier gas and brought into contact with the raw material, and this contact may be carried out using any two or more methods.

また、この発明で用いるMO原料としては、金属のアセ
チルアセトネート、ジピバロイルメタネート、アルコキ
シド、ヘキサフルオロアセチルアセトネート、ペンタフ
ルオロプロパノイルピバロイルメタネート、シクロペン
タジェニルおよびそれらの誘導体ならびに他の有機金x
B体をも使用可能である。同時に、それらの原料を使用
することに伴って、その配位子であるアセチルアセトン
、ジピバロイルメタン、アルコール、ヘキサフルオロア
セチルアセトン、ペンタフルオロプロバノイルビパイル
メタン、シクロペンタン等の配位子の蒸気を用いること
ができる。
In addition, the MO raw materials used in this invention include metal acetylacetonate, dipivaloyl methanate, alkoxide, hexafluoroacetylacetonate, pentafluoropropanoyl pivaloyl methanate, cyclopentagenyl, and derivatives thereof. as well as other organic golds
B-form can also be used. At the same time, along with the use of those raw materials, the vapors of the ligands such as acetylacetone, dipivaloylmethane, alcohol, hexafluoroacetylacetone, pentafluoroprobanoyl bipylmethane, cyclopentane, etc. can be used.

[発明の効果] 以上のように、この発明によれば、MO原料中もしくは
原料加熱工程、輸送工程の少なくともいずれか一つの場
合に、MOj原料にその配位子の蒸気を接触させること
により、MO原料を多量に、かつ、安定に反応部へ輸送
することができるとともに、合成した超電導体が良好な
特性を示す、さらには、これにより酸化物超電導体の高
速合成および厚膜合成を行うことができるなどの効果が
ある。
[Effects of the Invention] As described above, according to the present invention, by bringing the vapor of the ligand into contact with the MOj raw material in the MO raw material or during at least one of the raw material heating step and the transportation step, A large amount of MO raw material can be stably transported to the reaction section, and the synthesized superconductor exhibits good properties.Furthermore, this enables high-speed synthesis and thick film synthesis of oxide superconductors. There are effects such as being able to.

Claims (1)

【特許請求の範囲】[Claims]  有機金属(MO)原料中および原料加熱工程、原料輸
送工程の少なくともいずれかの場合に、前記MO原料に
、そのMO原料を形成する配位子の蒸気を接触させる工
程を有するMOCVD法による酸化物超電導体の合成方
法。
An oxide produced by an MOCVD method, which comprises a step of bringing the MO raw material into contact with the vapor of a ligand forming the MO raw material in the organic metal (MO) raw material and at least in one of the raw material heating step and the raw material transportation step. Method for synthesizing superconductors.
JP2059926A 1990-03-13 1990-03-13 Synthesis of oxide superconductor by mocvd method Pending JPH03261609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059926A JPH03261609A (en) 1990-03-13 1990-03-13 Synthesis of oxide superconductor by mocvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059926A JPH03261609A (en) 1990-03-13 1990-03-13 Synthesis of oxide superconductor by mocvd method

Publications (1)

Publication Number Publication Date
JPH03261609A true JPH03261609A (en) 1991-11-21

Family

ID=13127220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059926A Pending JPH03261609A (en) 1990-03-13 1990-03-13 Synthesis of oxide superconductor by mocvd method

Country Status (1)

Country Link
JP (1) JPH03261609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748672A (en) * 1993-05-18 1995-02-21 Air Prod And Chem Inc Chemical vapor deposition method for copper film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748672A (en) * 1993-05-18 1995-02-21 Air Prod And Chem Inc Chemical vapor deposition method for copper film

Similar Documents

Publication Publication Date Title
US5278138A (en) Aerosol chemical vapor deposition of metal oxide films
Scheel et al. Problems in epitaxial growth of high-Tc superconductors
Hinds et al. Thin films for superconducting electronics: Precursor performance issues, deposition mechanisms, and superconducting phase formation-processing strategies in the growth of Tl2Ba2CaCu2O8 films by metal-organic chemical vapor deposition
Sowa et al. Plasma-enhanced atomic layer deposition of superconducting niobium nitride
Dubourdieu et al. Solid single-source metal organic chemical vapor deposition of yttria-stabilized zirconia
Furukawa et al. Observation of Si cluster formation in SiO 2 films through annealing process using x-ray photoelectron spectroscopy and infrared techniques
JP2786200B2 (en) Raw material mixture for forming oxide superconductor thin film and method for forming oxide superconductor thin film
JPH01104774A (en) Production of thin film of oxide superconductor
Nemoto et al. Chemical vapor deposition of superconducting Bi-Sr-Ca-Cu-O films using fluorocarbon-based precursors
JPH04333572A (en) Method for gasifying mo stock for oxide superconductor
Malandrino et al. Effect of Ba Ca Cu precursor matrix on the formation and properties of superconducting Tl2Ba2Can− 1CunOx films A combined metalorganic chemical vapour deposition and thallium vapour diffusion approach
Malandrino et al. Growth of epitaxial TlBaCaCuO a-axis oriented films on LaAlO3 buffer layers grown on SrTiO3 (100) substrates
JPH03261609A (en) Synthesis of oxide superconductor by mocvd method
JPH0337101A (en) Production of oxide superconductor by mocvd method
JP2821207B2 (en) Method for synthesizing oxide superconductor by MOCVD method
Kubota et al. (110)-oriented Bi–Sr–Ca–Cu–O superconducting thin films prepared by metalorganic chemical vapor deposition
US5348631A (en) Method and apparatus for synthesizing lead β-diketonates
Schmaderer et al. High-Tc-superconductors prepared by CVD
Chen et al. Solid phase epitaxy of Bi2Sr2CaCu2O x superconducting thin films
Marks et al. MOCVD Routes to Thin Films for Superconducting Applications. Precursor Synthesis and Film Processing Issues
JP2715667B2 (en) Apparatus for producing oxide superconducting thin film and method for producing oxide superconducting single crystal thin film
JPH0489378A (en) Production of oxide superconductor by chemical vapor deposition method of organic metal
JPH0456289A (en) Manufacture of thin oxide superconductor film
Solovyov et al. A new technique for the growth of epitaxial YBCO using spray pyrolysis
Hu et al. Transmission electron microscopic characterization of metal-organic chemical vapor deposition-derived superconducting Tl2Ba2Ca1Cu2Oχ thin films on Au substrates: Evidence for Au-Cu alloy formation and texturing on a nonplanar metal substrate