JPH0456090B2 - - Google Patents

Info

Publication number
JPH0456090B2
JPH0456090B2 JP61292955A JP29295586A JPH0456090B2 JP H0456090 B2 JPH0456090 B2 JP H0456090B2 JP 61292955 A JP61292955 A JP 61292955A JP 29295586 A JP29295586 A JP 29295586A JP H0456090 B2 JPH0456090 B2 JP H0456090B2
Authority
JP
Japan
Prior art keywords
ultra
straight line
low carbon
crown
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61292955A
Other languages
Japanese (ja)
Other versions
JPS63145721A (en
Inventor
Hironobu Oono
Yasuhiro Yamaguchi
Juji Shimoyama
Takeo Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61292955A priority Critical patent/JPS63145721A/en
Priority to CA000548081A priority patent/CA1280190C/en
Priority to DE8787114304T priority patent/DE3768418D1/en
Priority to US07/102,875 priority patent/US4878961A/en
Priority to BR8705047A priority patent/BR8705047A/en
Priority to EP87114304A priority patent/EP0265700B1/en
Priority to AU79210/87A priority patent/AU598035B2/en
Priority to KR1019870010959A priority patent/KR950006693B1/en
Priority to ES87114304T priority patent/ES2021319B3/en
Publication of JPS63145721A publication Critical patent/JPS63145721A/en
Publication of JPH0456090B2 publication Critical patent/JPH0456090B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、特に極薄の極低炭素鋼の軟質なス
トリツプを焼鈍するにあたり、ハースロールのサ
ーマルクラウンの変動に応じてストリツプの張力
を制御することにより、ストリツプの蛇行やヒー
トバツクリングを防止した極薄の極低炭素鋼板の
連続焼鈍方法に関する。 〔従来の技術〕 ブリキ原板やTFS(テインフリースチール)原
板のような極薄の表面処理鋼板(板厚0.35mm以
下)は、その要求される加工度に応じて、T1〜
T6と言うように、硬度によつて分類されている。
このTは調質度を表し、数字が大きいほど硬質の
材料である事を示している。 この内、従来連続焼鈍によつて生産されてきた
のは、主としてT4以上の硬質剤であり、T3以下
の軟質剤はほとんどなかつた。これは、連続焼鈍
においては鋼板が加熱されている時間がバツチ式
焼鈍に比べて非常に短い為、鋼中の固溶炭素量を
充分低くできず、要求される軟質度が得られなか
つた為である。又、T3以下の鋼板は、用途上非
時効性である事が要求される事が多いが、これに
対しても同じ理由により、連続焼鈍では充分な材
質を得る事ができなかつた。 しかし、近年上記のような連続焼鈍における欠
点を克服する手段として、炭素量が100ppm以下
の極低炭素鋼板を連続焼鈍して、軟質かつ非時効
性のブリキ原板、TFS原板を得ることが試みら
れている。これによると、これまで連続焼鈍では
得られなかつた、軟質かつ非時効性のブリキ原
板、TFS原板を高能率、低コストで生産する事
ができる。 しかし、極低炭素鋼は、低炭素鋼に比べて再結
晶温度が高く、かつ再結晶後の硬度が低いと言う
性質をもつている。この為に、ヒートバツクルと
呼ばれる炉内での鋼帯の幅方向への座屈がおこり
やすい。従つて、薄物の極低炭素鋼を連続焼鈍す
る上で、このヒートバツクルを防ぐ事が重要にな
る。 一方、連続焼鈍炉の炉内ロールには鋼板の蛇行
を防ぐ為に、テーパがつけられている(ロールク
ラウン)。このテーパは、通板中の鋼板をロール
中央部へ寄せる力(センタリングフオース)を生
じさせ、鋼板を真直ぐに通す為のものである。こ
のテーパの大きさを表わすパラメータとしてTc
がある。これはロールの中心と鋼板端部における
ロールの径差を表す。ロールクラウンTcが大き
いほど又鋼板に与える張力Tが大きいほど、セン
タリングフオースは大きくなり、蛇行に対して有
利になる。 しかし、センタリングフオースが大きくなりす
ぎると、即ちロールクラウンTc、張力Tが大き
くなりすぎると、鋼板の幅方向で不均一圧縮応力
が発生しやすくなり、ヒートバツクルがおこりや
すくなる。つまり、蛇行の発生を防止しつつ、ヒ
ートバツクルを発生させない為には、ロールクラ
ウンTcと張力Tを同時に最適な範囲に制御する
必要がある。 この時注意しなければならないのは、ロールの
サーマルクラウンの影響である。即ち、連続焼鈍
炉内で使われているロールは、熱による変形の
為、ロール製作時とはクラウンが異なつている。
これをサーマルクラウンと呼び、連続焼鈍炉の安
定操業に大きな影響を及ぼす要因となつている。 サーマルクラウンは、ロールの幅方向の中心部
の温度が鋼帯温度にほぼ等しくなるのに対し、板
端部のロール温度は炉温の影響を強く受ける事に
よりおこる。ラインスピードが急に変化する時の
ように、板温が速く変動する時は、ロールの幅方
向中心部の温度もそれに応じて変動する。これに
対し、炉温はそれほど速くは変化しないので、板
端部のロール温度もそれぞれ変化しない。このロ
ールの幅方向における温度の応答性の差サーマル
クラウンの変動をひきおこす。従つて、サーマル
クラウンを考慮した正味のロールクラウンTcnet
に応じて張力Tを蛇行とヒートバツクルを防止で
きる範囲に制御する事が必要である。 しかし、これまで極薄の極低炭素材における
TcnetとTの最適範囲について充分な知見は得ら
れていなかつた。 〔発明が解決しようとする問題点〕 連続焼鈍炉は加熱帯、均熱帯と徐冷帯、急冷帯
等により構成されていることから、炉のセクシヨ
ンによつて炉温が異なり、従つて各セクシヨンに
おけるハースロールの、温度によつて増減するサ
ーマルクラウンも異なるため、ストリツプが加熱
されて強度が低下したときにサーマルクラウンが
大きくなり且つ蛇行修正能力が大きくなりすぎる
と、ストリツプのヒートバツクリングやしぼり等
が生じたり、逆に冷却帯において冷却れてサーマ
ルクラウンが負に作用し正味クラウン量が小さく
なりすぎるとストリツプの蛇行が生じるといつた
問題がある。しかも、このサーマルクラウンの変
動は炉の各セクシヨンにおけるストリツプのライ
ンスピードの変動によつても生じるが、このよう
な変動に対応して、特にl/d=1500〜6700の範
囲にはる極薄の極低炭素鋼のような柔軟なストリ
ツプのヒートバツクリングを防止するための、容
易且つ効果的な方法は従来においては見られなか
つた。 この発明は、このような従来の状況にかんがみ
てなされたものであつて、変動するハースロール
のサーマルクラウン量に基づいてストリツプの張
力を所定範囲内に制御することにより、上記問題
点を解決することを目的としている。 〔問題点を解決するための手段〕 この発明は、極薄の極低炭素鋼板(C≦0.01重
量%)の連続焼鈍に際し、連続焼鈍炉の加熱帯及
び冷却帯において、ハースロールのサーマルクラ
ウンを考慮した正味のクラウンに応じて前期極低
炭素鋼板の張力を、単位張力をyKg/mm2正味クラ
ウン量をxmmで表す時に、前期鋼板のうちTi,
Nb等の炭窒化物形成元素を添加しない鋼板は、
y1=−0.5x+3なる直線と、y3=−0.2x+0.5なる
直線と直線x=−1及びy4=0.25によつて画成さ
れる範囲内に、また前期鋼板のうちTi,Nb等の
炭窒化物形成元素を添加した鋼板は、y2=y1
0.5なる直線とy3=−0.2x+0.5なる直線と直線x
=−1及びy4=0.25によつて画成される範囲内
に、それぞれ制御して連続焼鈍する方法とするも
のである。正味のクラウン量は例えば式により
計算される。 x=D1{1+α(TR1−TR0)} −D2{1+α(TR2−TR0)} …… D1:幅方向中心におけるロール径 D2:鋼帯の幅端部が巻きついている部分のロ
ール径 TR1:ロールの幅方向中心部の温度 TR2:鋼帯の幅端部が巻きついている部分のロ
ール温度 TR0:製作時のロール温度 α:ロールの線膨張率 以下、最適範囲に関する知見を得るに至つた理
由について述べる。
[Industrial Field of Application] This invention is particularly applicable to annealing ultra-thin soft strips of ultra-low carbon steel by controlling the tension of the strip in accordance with fluctuations in the thermal crown of the hearth roll. This invention relates to a continuous annealing method for ultra-thin ultra-low carbon steel sheets that prevents heat buckling. [Conventional technology] Ultra-thin surface-treated steel sheets (thickness 0.35 mm or less), such as tinplate sheets and TFS (tain-free steel) sheets, can be processed from T1 to T1 depending on the required degree of processing.
It is classified by hardness, such as T6.
This T represents the degree of tempering, and the larger the number, the harder the material. Among these, what has conventionally been produced by continuous annealing is mainly hard agents of T4 or higher, and almost no soft agents of T3 or lower. This is because in continuous annealing, the time during which the steel plate is heated is much shorter than in batch annealing, so the amount of solid solute carbon in the steel cannot be lowered sufficiently, and the required degree of softness cannot be obtained. It is. In addition, steel plates with T3 or lower are often required to be non-aging due to their uses, but for the same reason, continuous annealing has not been able to obtain sufficient material quality. However, in recent years, as a means of overcoming the drawbacks of continuous annealing as described above, attempts have been made to continuously anneale ultra-low carbon steel sheets with a carbon content of 100 ppm or less to obtain soft and non-aging tin plate and TFS plates. ing. According to this, it is possible to produce soft and non-aging tin plate and TFS plate with high efficiency and low cost, which has not been possible until now through continuous annealing. However, ultra-low carbon steel has properties such that its recrystallization temperature is higher and its hardness after recrystallization is lower than that of low carbon steel. For this reason, buckling of the steel strip in the width direction within the furnace, called a heat buckle, is likely to occur. Therefore, it is important to prevent heat buckling when continuously annealing thin ultra-low carbon steel. On the other hand, the rolls in the continuous annealing furnace are tapered (roll crown) to prevent the steel sheet from meandering. This taper is used to generate a force (centering force) that pulls the steel plate toward the center of the roll during threading, so that the steel plate passes straight through. Tc is a parameter representing the magnitude of this taper.
There is. This represents the difference in diameter of the roll between the center of the roll and the end of the steel plate. The larger the roll crown Tc and the larger the tension T applied to the steel plate, the larger the centering force becomes, which is advantageous against meandering. However, if the centering force becomes too large, that is, if the roll crown Tc and tension T become too large, non-uniform compressive stress tends to occur in the width direction of the steel plate, and heat buckles are likely to occur. In other words, in order to prevent the occurrence of meandering and heat buckles, it is necessary to simultaneously control the roll crown Tc and the tension T within an optimal range. What you need to be careful about at this time is the effect of the roll's thermal crown. That is, the roll used in a continuous annealing furnace has a crown that is different from that when the roll was manufactured due to deformation due to heat.
This is called a thermal crown, and is a factor that greatly affects the stable operation of continuous annealing furnaces. Thermal crown occurs because the temperature at the center in the width direction of the roll is almost equal to the steel strip temperature, whereas the roll temperature at the end of the sheet is strongly influenced by the furnace temperature. When the plate temperature changes quickly, such as when the line speed changes suddenly, the temperature at the center of the roll in the width direction also changes accordingly. On the other hand, since the furnace temperature does not change so quickly, the roll temperature at the end of the plate also does not change. This difference in temperature response in the width direction of the roll causes fluctuations in the thermal crown. Therefore, the net roll crown Tcnet considering the thermal crown
Accordingly, it is necessary to control the tension T within a range that can prevent meandering and heat buckling. However, until now, ultra-thin ultra-low carbon materials
Sufficient knowledge has not been obtained regarding the optimal range of Tcnet and T. [Problems to be Solved by the Invention] Since a continuous annealing furnace is composed of a heating zone, a soaking zone, a slow cooling zone, a rapid cooling zone, etc., the furnace temperature differs depending on the section of the furnace. The thermal crown of the hearth roll in the strip increases and decreases depending on the temperature, so when the strip is heated and its strength decreases, the thermal crown becomes large and the meandering correction ability becomes too large, causing heat backing and wringing of the strip. Otherwise, if the thermal crown is negatively affected by cooling in the cooling zone and the net crown amount becomes too small, the strip may meander. Furthermore, variations in thermal crown are also caused by variations in the line speed of the strip in each section of the furnace. Heretofore, there has been no easy and effective method for preventing heat buckling of flexible strips such as ultra-low carbon steels. The present invention was made in view of the conventional situation, and solves the above problems by controlling the tension of the strip within a predetermined range based on the varying thermal crown amount of the hearth roll. The purpose is to [Means for Solving the Problems] This invention provides thermal crowns of hearth rolls in the heating zone and cooling zone of a continuous annealing furnace during continuous annealing of ultra-thin ultra-low carbon steel sheets (C≦0.01% by weight). The tension of the early ultra-low carbon steel plate is determined according to the considered net crown, and when the unit tension is expressed as yKg/ mm2 and the net crown amount is expressed as xmm, Ti,
Steel sheets without carbonitride-forming elements such as Nb are
Within the range defined by the straight line y 1 = -0.5x + 3, the straight line y 3 = -0.2x + 0.5, and the straight lines x = -1 and y 4 = 0.25, Ti, Nb of the early steel plate Steel sheets to which carbonitride-forming elements such as y 2 = y 1
A straight line that is 0.5, a straight line that is y 3 = −0.2x + 0.5, and a straight line that is x
This is a method of controlling and continuously annealing within the range defined by = -1 and y 4 = 0.25. The net amount of crown is calculated, for example, by the formula. x=D 1 {1+α(T R1 −T R0 )} −D 2 {1+α(T R2 −T R0 )} …… D 1 : Roll diameter at the center in the width direction D 2 : The width end of the steel strip is wrapped around T R1 : Temperature at the center of the roll in the width direction T R2 : Roll temperature at the part where the width end of the steel strip is wrapped T R0 : Roll temperature during production α : Coefficient of linear expansion of the roll This section describes the reasons why we came to know about the optimal range.

〔作用〕[Effect]

極薄の極低炭素鋼を連続焼鈍するに当たり、サ
ーマルクラウンを考慮した正味のロールクラウン
と張力を、成分系に応じてTi,Nb等の炭窒化物
形成元素を添加した場合と、これを添加しない場
合とに分けて、第1図に示される最適範囲内に制
御する事により、蛇行やヒートバツクルが発生し
ない安定した通板性を得る。第1図において右上
がりの斜線の領域が前期添加物を添加しない場合
の領域であり、左上がりの斜線の領域が前期添加
物を添加した場合の領域である。 例えば、通板中の極低炭素鋼の鋼帯のラインス
ピードを何等かの原因により、低下させざるを得
なくなつた時には、炉の加熱帯においては鋼帯温
度が上昇し、サーマルクラウンが増大する為、張
力を同じ値に保つているとヒートバツクルが発生
しやすくなる。この時、ラインスピードの低下に
起因するサーマルクラウン量を式から推定し、
この推定値に基づいて鋼帯の張力を前期の最適範
囲に入るように制御する事によりヒートバツクル
の発生を防止する。又、炉の冷却帯においては、
ラインスピードが低下するとストリツプ温度が低
下しサーマルクラウンが減少する為、同じ張力で
は蛇行が発生しやすくなる。この時も同様にサー
マルクラウン量を推定し、この推定値に基づいて
鋼帯の張力を前期の最適範囲に入るように制御す
る事により蛇行の発生を防止する。 〔実施例〕 Ti,Nb等の無添加極低炭素鋼と、Ti,Nbの
添加極低炭素鋼を連続して流した時の冷却帯前半
のハースロールにおける温度挙動を第4図に示
す。Ti,Nb添加極低炭素鋼は、再結晶させる為
に必要な板温が約100℃高くなつている。この時
初期ロールクラウンがD1=700mm、D2=699.7mm
の時の正味ロールクラウンと張力の関係を第1図
中のA,B,Cで示す。Aが最初の操業条件であ
るが、鋼種が変更された時に張力を同じ値に保つ
ているとBのようにヒートバツクル発生限界張力
を超えてしまう。この場合、Cで示すように、蛇
行をおこさない範囲で張力を下げる事により、こ
の危険を避ける事ができる。 〔発明の効果〕 このように、この発明の方法を取る事により、
これまで約20%程度であつた極薄の極低炭素鋼の
ヒートバツクルの発生率を1%以下に下げる事が
できた。
When continuously annealing ultra-thin ultra-low carbon steel, the net roll crown and tension, taking thermal crown into consideration, are determined depending on the composition system, with and without the addition of carbonitride-forming elements such as Ti and Nb. By controlling within the optimum range shown in Fig. 1, stable threading performance without meandering or heat buckling can be obtained. In FIG. 1, the diagonally lined area going upward to the right is the area when the pre-form additive is not added, and the area shaded upward to the left is the area when the pre-form additive is added. For example, when the line speed of an ultra-low carbon steel strip during threading has to be reduced for some reason, the temperature of the strip increases in the heating zone of the furnace, causing an increase in thermal crown. Therefore, if the tension is kept at the same value, heat buckles are likely to occur. At this time, the amount of thermal crown caused by the decrease in line speed is estimated from the formula,
The generation of heat buckles is prevented by controlling the tension of the steel strip to fall within the optimum range in the previous period based on this estimated value. Also, in the cooling zone of the furnace,
As the line speed decreases, the strip temperature decreases and the thermal crown decreases, so meandering is more likely to occur at the same tension. At this time as well, the amount of thermal crown is estimated in the same way, and the tension of the steel strip is controlled based on this estimated value to be within the optimum range in the previous period, thereby preventing the occurrence of meandering. [Example] Figure 4 shows the temperature behavior in the hearth roll in the first half of the cooling zone when ultra-low carbon steel without additives such as Ti and Nb and ultra-low carbon steel with added Ti and Nb were continuously flowed. For ultra-low carbon steel with Ti and Nb additions, the plate temperature required for recrystallization is approximately 100°C higher. At this time, the initial roll crown is D 1 = 700mm, D 2 = 699.7mm
The relationship between the net roll crown and tension at the time is shown by A, B, and C in Fig. 1. A is the initial operating condition, but if the tension is kept at the same value when the steel type is changed, the tension exceeds the limit for heat buckle generation as shown in B. In this case, as shown in C, this danger can be avoided by lowering the tension within a range that does not cause meandering. [Effect of the invention] In this way, by adopting the method of this invention,
We have been able to reduce the incidence of heat buckles in ultra-thin, ultra-low carbon steel from about 20% to less than 1%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサーマルクラウンを含む正味のロール
クラウン量に対する、極低炭素鋼板の最適張力範
囲を示す図、第2図はハースロールの外形図、第
3図はサーマルクラウンの影響を模式的に表した
説明図、第4図はTi,Nb等を添加しない極低炭
素鋼から添加した極低炭素鋼へと連続して連続焼
鈍した時の、冷却帯前半における温度挙動を示す
説明図である。 S……極低炭素鋼帯。
Figure 1 is a diagram showing the optimum tension range of ultra-low carbon steel plate with respect to the net roll crown amount including thermal crown, Figure 2 is an outline diagram of a hearth roll, and Figure 3 is a schematic diagram showing the influence of thermal crown. FIG. 4 is an explanatory diagram showing the temperature behavior in the first half of the cooling zone when an ultra-low carbon steel without the addition of Ti, Nb, etc. is successively annealed to an ultra-low carbon steel with the addition of Ti, Nb, etc. S...Ultra low carbon steel strip.

Claims (1)

【特許請求の範囲】[Claims] 1 極薄の極低炭素鋼板の連続焼鈍に際し、連続
焼鈍炉の加熱帯及び冷却帯において、ハースロー
ルのサーマルクラウンを考慮した正味のクラウン
に応じて、前期極低炭素鋼板の張力を、単位張力
をyKg/mm2正味クラウン量をxmmで表す時に、前
期鋼板のうちTi,Nb等の炭窒化物形成元素を添
加しない鋼板は、y1=0.5x+3なる直線と、y3
−0.2x+0.5なる直線と直線x=−1及びy4=0.25
によつて画成される範囲内に、また前期鋼板のう
ちTi,Nb等の炭窒化物形成元素を添加した鋼板
は、y2=y1−0.5なる直線とy3=−0.2x+0.5なる
直線と直線x=−1及びy4=0.25によつて画成さ
れる範囲内に、それぞれ制御して連続焼鈍するこ
とを特徴とする極低炭素鋼板の連続焼鈍方法。
1. During continuous annealing of ultra-thin ultra-low carbon steel plates, in the heating zone and cooling zone of the continuous annealing furnace, the tension of the early ultra-low carbon steel plates is adjusted to the unit tension according to the net crown considering the thermal crown of the hearth roll. yKg/mm 2 When expressing the net crown amount in xmm, among the early steel plates, steel plates without carbonitride forming elements such as Ti and Nb have a straight line of y 1 = 0.5x + 3, and y 3 =
-0.2x+0.5 straight line and straight line x=-1 and y 4 =0.25
Within the range defined by , steel sheets to which carbonitride-forming elements such as Ti and Nb are added among the earlier steel sheets have a straight line of y 2 = y 1 -0.5 and a straight line of y 3 = -0.2x + 0.5. 1. A continuous annealing method for an ultra-low carbon steel sheet, characterized in that continuous annealing is performed in a controlled manner within the range defined by the straight line and the straight lines x = -1 and y 4 = 0.25.
JP61292955A 1986-09-30 1986-12-09 Continuous annealing method for very low carbon steel strip Granted JPS63145721A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP61292955A JPS63145721A (en) 1986-12-09 1986-12-09 Continuous annealing method for very low carbon steel strip
CA000548081A CA1280190C (en) 1986-09-30 1987-09-29 Method and system for controlling tension to be exerted on metal strip in continuous annealing furnace
DE8787114304T DE3768418D1 (en) 1986-09-30 1987-09-30 METHOD AND DEVICE FOR REGULATING THE BELT TRAIN IN CONTINUOUS GLUING HEATERS.
US07/102,875 US4878961A (en) 1986-09-30 1987-09-30 Method and system for controlling tension to be exerted on metal strip in continuous annealing furnace
BR8705047A BR8705047A (en) 1986-09-30 1987-09-30 SYSTEM AND METHOD FOR CONTROL OF THE VOLTAGE TO BE EXERCISED ON A METALLIC STRIP IN A CONTINUOUS RECOVERY OVEN
EP87114304A EP0265700B1 (en) 1986-09-30 1987-09-30 Method and system for controlling tension to be exerted on metal strip in continuous annealing furnace
AU79210/87A AU598035B2 (en) 1986-09-30 1987-09-30 Method and system for controlling tension to be exerted on metal strip in continuous annealing furnace
KR1019870010959A KR950006693B1 (en) 1986-09-30 1987-09-30 Method and apparatus for controlling tension to be exerted on metal strip in continous annealing furnace
ES87114304T ES2021319B3 (en) 1986-09-30 1987-09-30 METHOD AND SYSTEM TO CONTROL THE TENSION APPLIED ON THE METAL BELT IN A CONTINUOUS ANNEALING OVEN.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61292955A JPS63145721A (en) 1986-12-09 1986-12-09 Continuous annealing method for very low carbon steel strip

Publications (2)

Publication Number Publication Date
JPS63145721A JPS63145721A (en) 1988-06-17
JPH0456090B2 true JPH0456090B2 (en) 1992-09-07

Family

ID=17788588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292955A Granted JPS63145721A (en) 1986-09-30 1986-12-09 Continuous annealing method for very low carbon steel strip

Country Status (1)

Country Link
JP (1) JPS63145721A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133008A (en) * 1976-04-30 1977-11-08 Nippon Kokan Kk <Nkk> Intrafurnace roll for process line
JPS52136812A (en) * 1976-05-13 1977-11-15 Nippon Kokan Kk <Nkk> Roll for process line
JPS5310311A (en) * 1976-07-16 1978-01-30 Nippon Kokan Kk <Nkk> Rolls inside furnace for process line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133008A (en) * 1976-04-30 1977-11-08 Nippon Kokan Kk <Nkk> Intrafurnace roll for process line
JPS52136812A (en) * 1976-05-13 1977-11-15 Nippon Kokan Kk <Nkk> Roll for process line
JPS5310311A (en) * 1976-07-16 1978-01-30 Nippon Kokan Kk <Nkk> Rolls inside furnace for process line

Also Published As

Publication number Publication date
JPS63145721A (en) 1988-06-17

Similar Documents

Publication Publication Date Title
JPH0456090B2 (en)
JPS63103056A (en) Manufacture of pure titanium sheet
JP2000026921A (en) Manufacture of stock sheet for surface treated steel sheet for can by continuous annealing
KR100448517B1 (en) Method for continuous annealing ferritic stainless hot rolled steel
JP2000248335A (en) Low yield ratio type fire resistant hot rolled steel sheet and steel pipe excellent in toughness and their production
JP2003073741A (en) Method for manufacturing ferritic stainless steels sheet superior in workability
JP2000080417A (en) Manufacture of hot rolled austenitic stainless steel strip
JPS60262915A (en) Method for preventing surface cracking of continuous cast billet
JPH0665746B2 (en) Method for manufacturing titanium hot-rolled sheet
JPS6263619A (en) Manufacture of soft nonaging steel sheet
JPH06328214A (en) Method for preventing season cracking of ferritic stainless steel
JPS6354048B2 (en)
JPH11256234A (en) Production of high delta ferritic stainless wire rod
JPH0321610B2 (en)
JPS61204325A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistance and strength-elongation balance
KR100276291B1 (en) The manufacturing method for cold rolling steel sheet with excellent thickness precision
JPH0217614B2 (en)
JPH02138416A (en) Production of stainless steel sheet having excellent strength and corrosion resistance by controlled hot rolling
JPS61261435A (en) Production of thin steel sheet for working having excellent ridging resistance and tensile rigidity
JPH0339420A (en) Production of gamma-alpha duplex stainless steel sheet having coarse graining-prevented weld zone
JPH0154412B2 (en)
JPS5818412B2 (en) Continuous annealing furnace
JPH0333768B2 (en)
JPS62192537A (en) Manufacture of cold rolled austenitic stainless steel sheet or strip
JPS61204337A (en) Manufacture of steel sheet for working having superior ridging resistance and bulgeability