JPH0455601A - Automatic control method for load distribution of boiler - Google Patents

Automatic control method for load distribution of boiler

Info

Publication number
JPH0455601A
JPH0455601A JP16277590A JP16277590A JPH0455601A JP H0455601 A JPH0455601 A JP H0455601A JP 16277590 A JP16277590 A JP 16277590A JP 16277590 A JP16277590 A JP 16277590A JP H0455601 A JPH0455601 A JP H0455601A
Authority
JP
Japan
Prior art keywords
boiler
load
fixed
pressure
boilers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16277590A
Other languages
Japanese (ja)
Inventor
Satoru Fujimoto
悟 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16277590A priority Critical patent/JPH0455601A/en
Publication of JPH0455601A publication Critical patent/JPH0455601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To enable an automatic and high efficient follow-up to be attained even for a load variation exceeding an adjusting range per one boiler by a method wherein the load is preferentially distributed from a high efficient boiler to improve an entire efficiency, boiler having the highest efficiency is applied as a fixed boiler and then a subsequent high efficient boiler is applied as a pressure adjusting boiler and other boilers are applied as sub-adjusting boiler. CONSTITUTION:A load distribution of each of boilers 1 to 3 is set to have a high load distribution and to have a low load distribution for a low efficient boiler. It is assumed now that a load Q1 of the first boiler 1 is set as Q11 (= Q1max), a load Q2 of the second boiler 2 is set to Q21 (provided Q2max>Q21>Q2 min) and a load Q3 of the third boiler 3 is set to Q31 (provided Q3max>Q31 Q3 min). At this time, the first boiler 1 is applied as fixed boiler and controlled under 'a flow rate mode', so that a steam flow rate adjusting meter 17 is selected, the second boiler 2 is set to 'a pressure mode' as a pressure adjusting boiler and the steam pressure adjusting meter 26 and the third boiler 3 are operated as a sub-adjusting boiler and under 'a flow rate mode'.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、複数の効率の異なるボイラを並列に運転する
際のポ・イラ間の負荷配分自動Ill in方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an automatic Illin method for distributing loads between boilers when a plurality of boilers with different efficiencies are operated in parallel.

〈従来の技術〉 従来、複数のボイラを並列に運転して蒸気を発生させる
場合、各ボイラの負荷調整は藤気圧力鯛節器からの制御
信号をそれぞれのボイラに負荷配分して燃料iJi量の
設定を変更する方法がある(例えば新版ボイラ便覧1日
木ボイラ協会曙、昭和45年発行、 P、523参照)
<Conventional technology> Conventionally, when multiple boilers were operated in parallel to generate steam, the load adjustment of each boiler was done by distributing the control signal from the Fujiki Pressure Taibushi to each boiler to adjust the amount of fuel iJi. There is a way to change the settings (for example, see the new edition of Boiler Handbook, 1st Thursday Boiler Association Akebono, published in 1971, p. 523).
.

その負荷配分の具体的な手段として従来用いられている
のは、特定の1個のボイラを茶気圧力を設定値に保つよ
うに蒸気発生量を自動変更する圧力調整化とし、他のボ
イラは負荷を一定に運転する固定缶とし、圧力調整化の
負荷調整範囲を超える負荷変動が生じた場合には、圧力
低下の警報を発生させることによりオペレータが固定缶
の蒸気発生量を調整するのが一般的であった。
Conventionally, a specific means of load distribution has been used to adjust the steam generation amount automatically to maintain the steam pressure of one specific boiler at a set value, while other boilers The fixed tank is operated at a constant load, and if the load changes beyond the load adjustment range of pressure regulation, the operator can adjust the steam generation amount of the fixed tank by generating a pressure drop alarm. It was common.

〈発明が解決しようとする諜頭〉 しかしながら、上記した従来の負荷配分手段を用いて、
製鉄所などのように負荷変動の大きなプラントでボイラ
の負荷を調整する場合には、必ずしも効率的な負荷配分
が行えているとは言えなかった。
<The intelligence that the invention attempts to solve> However, using the above-mentioned conventional load distribution means,
When adjusting boiler loads in plants with large load fluctuations, such as steel mills, it has not always been possible to achieve efficient load distribution.

すなわち、製鉄所における7気の負荷変動には例えば第
3図に示すように、短期的な負荷変動範囲Aと長期的な
負荷変動範囲Bとがあり、周期の小さい負荷変動範囲A
での負荷調整は圧力調整化のみで調整し得るが、周期の
長い負荷変動範囲Bでの負荷調整は固定缶の負荷を調整
する必要があり、これらの負荷配分を最適でかつ自動的
に行おうとすると、非常に複雑な制御方式を採用せざる
を得ないなどの理由から技術的にも経済的にも実現が困
難であった。
In other words, as shown in Figure 3, for example, the seven-dimensional load fluctuation at a steelworks has a short-term load fluctuation range A and a long-term load fluctuation range B, and a load fluctuation range A with a small period.
The load can be adjusted only by pressure adjustment, but the load adjustment in load fluctuation range B, which has a long period, requires adjusting the load of the fixed tank, and it is necessary to perform these load distributions optimally and automatically. However, this was technically and economically difficult to achieve, as it would require the adoption of a very complex control system.

本発明は、上記のような従来技術の有する課題を解決す
べくしてなされたものであって、簡易的な方法でかつ高
効率の自動運転をなし得るボイラの負荷配分自動制御方
法を提供することを目的とする。
The present invention has been made in order to solve the problems of the prior art as described above, and an object of the present invention is to provide an automatic boiler load distribution control method that can perform automatic operation with high efficiency in a simple manner. With the goal.

〈課題を解決するための手段〉 本発明は、複数の効率の異なるボイラを並列に運転しな
から蒸気を発生させる際に、それらの負荷配分を自動的
に制御する方法であって、効率の高いボイラへの負荷配
分を高くし、効率の低いボイラの負荷を低く抑える配分
とし、効率の最も高いボイラを固定缶として、次に効率
の高いボイラを圧力調整化として、他を副調整缶として
それぞれ運転するとともに、前記圧力調整化の負荷が下
限に到達したときは前記固定缶の負荷を下げて前記圧力
調整化の負荷を上げるように制御し、さらに負荷が低下
するときは前記圧力調整化を固定缶に、また前記固定缶
を圧力調整化にそれぞれ切り換えて制御し、一方、前記
圧力調整化の負荷が上限に到達したときは前記副調整缶
の負荷を上げるように制御し、さらに負荷が上昇すると
きは前記圧力調整化を固定缶に、また前記副調整缶を圧
力調整化にそれぞれ切り換えて運転するようにしたこと
を特徴とするボイラの負荷配分自動制御1方法である。
<Means for Solving the Problems> The present invention is a method for automatically controlling the load distribution of a plurality of boilers with different efficiencies when operating them in parallel to generate steam. The load distribution is increased to the high boiler and the load is kept low to the low efficiency boiler.The most efficient boiler is used as a fixed boiler, the next most efficient boiler is used as a pressure regulating boiler, and the others are used as sub regulating boilers. At the same time, when the load of the pressure adjustment reaches the lower limit, the load of the fixed can is lowered and the load of the pressure adjustment is increased, and when the load further decreases, the load of the pressure adjustment is controlled. is switched to a fixed can, and the fixed can is switched to pressure regulation. On the other hand, when the load of the pressure regulation reaches the upper limit, the load of the sub-regulation can is increased, and further the load is 1 is a method for automatic load distribution control of a boiler, characterized in that when the pressure rises, the pressure regulating can is switched to a fixed can, and the sub-regulating can is switched to a pressure regulating can.

〈作 用〉 本発明によれば、効率の高いボイラから優先的に負荷を
配分して全体の効率を高めるように運転し、かつ効率の
最も高いボイラを固定缶として、次に効率の高いボイラ
を圧力調整化として、他を副調整缶としたので、ボイラ
1缶あたりの調整範囲を超える負荷変動にも自動的にか
つ高効率で追従させることができる。
<Operation> According to the present invention, the load is distributed preferentially to the boiler with the highest efficiency to increase the overall efficiency, and the boiler with the highest efficiency is used as a fixed boiler, and the boiler with the next highest efficiency is operated. Since one of the boilers is used for pressure adjustment and the other is used as an auxiliary adjustment can, it is possible to automatically and highly efficiently follow load fluctuations that exceed the adjustment range for each boiler.

〈実施例〉 以下に、本発明の実施例について、図面を参照して詳し
く説明する。
<Examples> Examples of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明方法に係るボイラの負荷配分自動制御
装置の概要を示す構成図であり、ボイラ3缶を並列運転
する場合の例示である。
FIG. 1 is a block diagram showing an outline of an automatic boiler load distribution control device according to the method of the present invention, and is an example of a case where three boilers are operated in parallel.

図において、1は効率の最も高い第1のボイラで、2は
第1のボイラに次いで効率の高い第2のボイラ、3は最
も効率の低い第3のボイラである。
In the figure, 1 is the first boiler with the highest efficiency, 2 is the second boiler with the second highest efficiency after the first boiler, and 3 is the third boiler with the lowest efficiency.

これらの第1〜3のボイラ1〜3には、それぞれ、純水
を供給する給水管11.21,31、燃料を供給する燃
料管12.22.32が接続され、発生した蒸気はそれ
ぞれ蒸気管13.23.33を介して蒸気ヘッダ4を介
して送給管5によって外部に送給される。
Water supply pipes 11.21 and 31 for supplying pure water and fuel pipes 12.22.32 for supplying fuel are connected to these first to third boilers 1 to 3, respectively, and the generated steam is converted into steam. Via pipes 13.23.33 it is fed to the outside via steam header 4 by feed pipe 5.

この蒸気ヘンダ4には、蒸気圧力を検出する蒸気圧力検
出器6が取付けられ、一方、各燃料管1222、32に
は燃料流量を制御する燃料調節弁14.24゜34が、
また、蒸気管13.23.33には蒸気の発生流量を測
定する蒸気流量検出器15.25.35がそれぞれ取付
けられる。
A steam pressure detector 6 for detecting steam pressure is attached to the steam hender 4, while a fuel control valve 14.24° 34 for controlling the fuel flow rate is attached to each fuel pipe 1222, 32.
Further, steam flow rate detectors 15, 25, and 35 are attached to each of the steam pipes 13, 23, and 33 to measure the generated flow rate of steam.

蒸気圧力検出器6で検出された蒸気圧力信号は第1〜3
のボイラl〜3に設けられた各1気圧力調節計16.2
6.36にそれぞれ入力され、また各蒸気流量検出器1
5.25.35で検出された蒸気流量信号は各蒸気流量
調節計17.27.37にそれぞれ入力される。
The steam pressure signals detected by the steam pressure detector 6 are
1 atm pressure regulator 16.2 installed in boilers 1 to 3 of
6.36 respectively, and each steam flow rate detector 1
The steam flow rate signals detected at 5.25.35 are input to each steam flow rate controller 17.27.37, respectively.

これら蒸気圧力!Ii1節計16.26.36および蒸
気流を調節計17.27.37から出力される調節信号
は、切換装置7に取付けられた切換スイッチ18.28
38で切り換えられて“圧力モード”または°゛流流量
モード色して選択され、燃料i11節弁14.24.3
4を制御するのであるが、これら切換スイッチ1828
、38の切換動作は負荷配分制御装置8から切換装置7
に出力される切換信号S0によって行われる。
These steam pressures! The adjustment signal output from the Ii1 meter 16.26.36 and the steam flow controller 17.27.37 is transmitted to the changeover switch 18.28 attached to the changeover device 7.
38 to select "pressure mode" or "flow rate mode", fuel i11 control valve 14.24.3
4, these changeover switches 1828
, 38 is the switching operation from the load distribution control device 8 to the switching device 7.
This is done by the switching signal S0 outputted to.

なお、負荷配分制御装置!l!8においては、各蒸気流
量検出器15.25.35で検出された蒸気流量信号が
入力されるとともに、各蒸気流量=周節計17.27゜
37に対する設定(ash 、St、S、がそれぞれ出
力される。
In addition, load distribution control device! l! 8, the steam flow rate signals detected by the steam flow rate detectors 15, 25, and 35 are input, and the settings (ash, St, S, respectively) for each steam flow rate = period meter 17.27°37 are input. Output.

つぎに、このように構成されたボイラの並列運転の操作
について説明する。
Next, the operation of parallel operation of the boiler configured in this way will be explained.

■ まず、各ボイラ1〜3の負荷配分を効率の高いボイ
ラは高く、効率の低いボイラの負荷を低く設定する。い
ま、第1のボイラ1の負荷QをQ、1(=Q1max)
とし、第2のボイラ2の負荷Q2をQ、、(ただし、Q
zmax> Qtl > Qzmin)、また第3のボ
イラ3の負荷Q、をQ3. (ただし、IJ+max>
Q3.、 Q3min)  とすると、第2図(alに
示すように、Q++>Qtl>Qff+とじて配分され
ることになる。
(1) First, load distribution among the boilers 1 to 3 is set such that the load of the boiler with high efficiency is high, and the load of the boiler with low efficiency is set low. Now, the load Q of the first boiler 1 is Q, 1 (=Q1max)
Let the load Q2 of the second boiler 2 be Q, (however, Q
zmax>Qtl>Qzmin), and the load Q of the third boiler 3 is set as Q3. (However, IJ+max>
Q3. , Q3min), the distribution will be as follows: Q++>Qtl>Qff+, as shown in FIG. 2 (al).

このとき、第1のボイラ1は固定缶として゛流量モード
“で制御されるから、切換装置7の切換スイッチ18は
蒸気流量ml!l!I+計17側が選択される。また、
第2のボイラ2は圧力禰整缶として゛圧力モード”とさ
れ、切換スイッチ2日で葵気圧力!11節針26側が選
択される。さらに、残りの第3のボイラ3は副調整缶と
して°゛゛量モード”で運転される。
At this time, since the first boiler 1 is controlled as a fixed boiler in the "flow rate mode", the changeover switch 18 of the switching device 7 is selected to the steam flow rate ml!l!I+total 17 side.
The second boiler 2 is set to the "pressure mode" as a pressure regulating tank, and the Aoi pressure! It is operated in "quantity mode".

■ つぎに、圧力訓整缶である第2のボイラ2の負荷Q
 t +が小さい方向に変動してついにQ、minに等
しくなると、第1のボイラ1の′gL荷Q + +を第
2図(b)に示すように、ステップ状にΔQだけ制御し
てQ、、(ただし、Q、、>Q+*in)になるように
減量して、第2のボイラ2の負荷Q2を制御可能な状態
であるQ2□(> Q 2w1n)に保つように運転す
る。
■ Next, the load Q of the second boiler 2, which is a pressure training tank
When t + changes in the smaller direction and finally becomes equal to Q, min, the 'gL load Q + + of the first boiler 1 is controlled by ΔQ in steps as shown in Fig. 2(b). , , (however, Q, , > Q+*in), and the operation is performed so that the load Q2 of the second boiler 2 is maintained at Q2□ (> Q 2w1n), which is a controllable state.

なお、その後、第2のボイラ2の負荷Q2がある一定の
時間において下がらない場合は、第1のボイラエの負荷
Q、をステップ状にQvaxまで戻していく。
Note that if the load Q2 of the second boiler 2 does not decrease after a certain period of time, the load Q of the first boiler 2 is returned to Qvax in steps.

■ また、第2のボイラ2の負荷Q、がさらに低下して
最低負荷Q ff1m1nに等しいQ、になった状態に
おいて、第1のボイラ1の負荷Q + tがさらに低下
してQ +i (”;Qllllin)に到達した時点
では、第2のボイラ2を最低負荷Q 2m1nの状態で
副鯛整缶に切り換えて゛流量モード”で運転するととも
に、第1のボイラlを圧力調整部として“圧力モード”
で制御するようにする。このとき、第3のボイラ3は最
低負荷Q3!(#Q3mtn)の状態での固定缶として
運転される(第2回(C)参照)。
■ Also, in a state where the load Q of the second boiler 2 further decreases to Q equal to the minimum load Qff1m1n, the load Q + t of the first boiler 1 further decreases and becomes Q +i (” ;Qllllin), the second boiler 2 is switched to the sub-temperature control tank with the minimum load Q2m1n and operated in the "flow rate mode", and the first boiler 1 is operated in the "pressure mode" as a pressure regulator. ”
to control it. At this time, the third boiler 3 has the lowest load Q3! (#Q3mtn) is operated as a fixed can (see Part 2 (C)).

■ 一方、第1のボイラ1が固定缶の状態で、圧力調整
部である第2のボイラ2の負荷Q!1が大きい方向に変
動してついにQ 1w+axに等しくなると、第3のボ
イラ3の負荷Q3を第2図(dlに示すように、ステッ
プ状にΔQだけ制御してQ ss(ただし、Q3+si
n< Q33< Qffmax)になるように増量して
、第2のボイラ2の負荷Q2を制御可能な状態であるQ
 tz (< Q tzax)に保つように運転する。
■ On the other hand, when the first boiler 1 is a fixed can, the load Q of the second boiler 2, which is the pressure adjustment section! 1 fluctuates in the larger direction and finally becomes equal to Q1w+ax, the load Q3 of the third boiler 3 is controlled by ΔQ in a stepwise manner as shown in FIG.
Q is in a state where the load Q2 of the second boiler 2 can be controlled by increasing the amount so that n<Q33< Qffmax).
Operate to maintain tz (< Q tzax).

なお、その後、第2のボイラ2の負荷Q、がある一定の
時間において上がらない場合は、第3のボイラ3の負荷
Q、をステップ状にQ3+winまで戻していく。
Note that if the load Q of the second boiler 2 does not increase after a certain period of time, the load Q of the third boiler 3 is returned to Q3+win in steps.

■ また、第3のボイラ3の負荷Qjがさらに上昇して
最大負荷Q 311axに近いQ zaに到達した時点
では、第2のボイラ2は最大負荷Q 1llaXの状態
で副謂整缶に切り換えて°“流量モード”で運転すると
ともに、第3のボイラ3を圧力調整部として“圧力モー
ド”で制御するようにする。
■ Also, when the load Qj of the third boiler 3 further increases and reaches Qza, which is close to the maximum load Q311ax, the second boiler 2 switches to the so-called regulated boiler at the maximum load Q111ax. ° While operating in "flow mode", the third boiler 3 is controlled in "pressure mode" as a pressure regulator.

そして、第1のボイラ1を最大負荷Q、、(’=iQw
ax)の状態での固定缶とする(第2図(e)参照)。
Then, the first boiler 1 is set to the maximum load Q, ('=iQw
ax) (see Fig. 2(e)).

なお、上記実施例において、並列運転するボイラの台数
を3缶として説明したが、4缶以上の場合であっても本
発明の方法を適用し得ることが可能である。
In addition, in the said Example, although the number of boilers operated in parallel was explained as three boilers, it is possible to apply the method of this invention even when there are four or more boilers.

〈発明の効果〉 以上説明したように、本発明によれば、複数のボイラの
並列運転において簡易なロジックを用いて負荷配分を行
うようにしたので、ボイラの効率の向上を図ることがで
き、ランニングコストの低減などに寄与する。
<Effects of the Invention> As explained above, according to the present invention, load distribution is performed using simple logic in parallel operation of a plurality of boilers, so that the efficiency of the boilers can be improved. This contributes to reducing running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に係るボイラの負荷配分自動制御装
置の概要を示す構成図、第2図は本発明の操作状態の説
明図、第3図は製鉄所における蒸気の負荷変動例を示す
特性図である。 25、35・・・蒸気流量検出器、  16,26.3
6・・・蒸気圧力調節計、  17,27.37・・・
藤気流量調節旧18、28.38・・・切換スイッチ。
Fig. 1 is a block diagram showing an overview of the boiler load distribution automatic control device according to the method of the present invention, Fig. 2 is an explanatory diagram of the operating state of the present invention, and Fig. 3 shows an example of steam load fluctuation in a steelworks. It is a characteristic diagram. 25, 35... Steam flow rate detector, 16, 26.3
6...Steam pressure controller, 17,27.37...
Fujiki flow rate adjustment old 18, 28.38... changeover switch.

Claims (1)

【特許請求の範囲】 複数の効率の異なるボイラを並列に運転しながら蒸気を
発生させる際に、それらの負荷配分を自動的に制御する
方法であって、 効率の高いボイラへの負荷配分を高くし、効率の低いボ
イラの負荷を低く抑える配分とし、効率の最も高いボイ
ラを固定缶として、次に効率の高いボイラを圧力調整缶
として、他を副調整缶としてそれぞれ運転するとともに
、 前記圧力調整缶の負荷が下限に到達したときは前記固定
缶の負荷を下げて前記圧力調整缶の負荷を上げるように
制御し、 さらに負荷が低下するときは前記圧力調整缶を固定缶に
、また前記固定缶を圧力調整缶にそれぞれ切り換えて制
御し、 一方、前記圧力調整缶の負荷が上限に到達したときは前
記副調整缶の負荷を上げるように制御し、 さらに負荷が上昇するときは前記圧力調整缶を固定缶に
、また前記副調整缶を圧力調整缶にそれぞれ切り換えて
運転するようにしたことを特徴とするボイラの負荷配分
自動制御方法。
[Claims] A method for automatically controlling the load distribution of a plurality of boilers with different efficiencies when operating them in parallel to generate steam, the method comprising: increasing the load distribution to the boiler with higher efficiency; Then, the load on the boiler with low efficiency is kept low, and the boiler with the highest efficiency is operated as a fixed boiler, the next most efficient boiler is operated as a pressure regulating boiler, and the others are operated as sub-regulating boilers. When the load on the can reaches the lower limit, the load on the fixed can is lowered and the load on the pressure regulating can is increased, and when the load further decreases, the pressure regulating can is changed to the fixed can, and the fixed can is controlled to increase the load on the fixed can. Control is performed by switching each can to a pressure regulating can, and on the other hand, when the load of the pressure regulating can reaches the upper limit, control is performed to increase the load of the sub-regulating can, and when the load further increases, the pressure regulating can is controlled. A boiler load distribution automatic control method characterized in that the boiler is operated by switching the can to a fixed can and the sub-adjusting can to a pressure regulating can.
JP16277590A 1990-06-22 1990-06-22 Automatic control method for load distribution of boiler Pending JPH0455601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16277590A JPH0455601A (en) 1990-06-22 1990-06-22 Automatic control method for load distribution of boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16277590A JPH0455601A (en) 1990-06-22 1990-06-22 Automatic control method for load distribution of boiler

Publications (1)

Publication Number Publication Date
JPH0455601A true JPH0455601A (en) 1992-02-24

Family

ID=15760986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16277590A Pending JPH0455601A (en) 1990-06-22 1990-06-22 Automatic control method for load distribution of boiler

Country Status (1)

Country Link
JP (1) JPH0455601A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329301A (en) * 1999-05-19 2000-11-30 Toshiba Corp Vapor pressure controller for vapor supply installation
JP2003222301A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Operation control method and system of process steam generation equipment for industry
JP2007024425A (en) * 2005-07-19 2007-02-01 Mitsubishi Heavy Ind Ltd Composite boiler system, and its operating method
JP2016180573A (en) * 2015-03-25 2016-10-13 三浦工業株式会社 Boiler system
JP2018105586A (en) * 2016-12-28 2018-07-05 富士電機株式会社 Steam generating system and control method for steam generating system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329301A (en) * 1999-05-19 2000-11-30 Toshiba Corp Vapor pressure controller for vapor supply installation
JP2003222301A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Operation control method and system of process steam generation equipment for industry
JP2007024425A (en) * 2005-07-19 2007-02-01 Mitsubishi Heavy Ind Ltd Composite boiler system, and its operating method
JP2016180573A (en) * 2015-03-25 2016-10-13 三浦工業株式会社 Boiler system
JP2018105586A (en) * 2016-12-28 2018-07-05 富士電機株式会社 Steam generating system and control method for steam generating system

Similar Documents

Publication Publication Date Title
KR100584836B1 (en) Feedwater Control System in Nuclear Power Plant Considering Feedwater Control Valve Pressure Drop and Control Method thereof
JPH0455601A (en) Automatic control method for load distribution of boiler
US7059132B2 (en) Steam generator feedwater control system for power plant
JP2696267B2 (en) Boiler parallel operation controller
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JP2000274603A (en) Water supply controller
JP2000249305A (en) Stem temperature controller for boiler
JPH0574758B2 (en)
JPS639638B2 (en)
RU2052711C1 (en) Method of automatic control of flow rate of feed water in steam generator
JP2731331B2 (en) Feedwater pump recirculation flow control device
JPS59138705A (en) Controller for temperature of supplied water
RU1768866C (en) Water feed regulator of steam generator
SU994783A1 (en) System for controlling heat generation turbine plant
JPH0926108A (en) Water supply control device
JPH1163481A (en) Method and apparatus for controlling pressure of fuel gas in gas fired boiler
JPH07325627A (en) Deaerator water level controller
JPS593513A (en) Flow rate controlling device
SU823750A1 (en) Automatic control system for feeding water into double-flow steam generator
JPH0318082B2 (en)
JPS5593906A (en) Controller for turbine regulating valve in pressure change operation
SU966402A1 (en) Method of controlling steam generator output
SU1451443A1 (en) Automatic system for regulating steam parameters after power-generating boiler
CA1085027A (en) Override process control system
JPH062807A (en) Water supplying control device