JPH0452315B2 - - Google Patents

Info

Publication number
JPH0452315B2
JPH0452315B2 JP58215240A JP21524083A JPH0452315B2 JP H0452315 B2 JPH0452315 B2 JP H0452315B2 JP 58215240 A JP58215240 A JP 58215240A JP 21524083 A JP21524083 A JP 21524083A JP H0452315 B2 JPH0452315 B2 JP H0452315B2
Authority
JP
Japan
Prior art keywords
heavy
oil
temperature
solvent
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58215240A
Other languages
Japanese (ja)
Other versions
JPS60106886A (en
Inventor
Shigeo Yoshii
Hisaji Matsui
Takeshi Toyoda
Sadaji Nakahori
Masahito Kaneko
Hirotoshi Horizoe
Takafumi Shimada
Hikokusu Kajimoto
Fumio Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP21524083A priority Critical patent/JPS60106886A/en
Publication of JPS60106886A publication Critical patent/JPS60106886A/en
Publication of JPH0452315B2 publication Critical patent/JPH0452315B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、重質油の熱分解改質(以下特に必要
でない限り熱改質という)方法に関する。 近年石油製品の需要動向は、灯油、軽油及びA
重油までのいわゆる中間3品の消費が増加する傾
向にある。これに対し、輸入原油は、ますます重
質化する傾向にある為、油種間の需給ギヤツプの
解消が大きな課題となつている。この為、重質油
の改質による軽質油生成の研究が行なわれてい
る。 例えば、原料油を常圧又は加圧下に一定時間加
熱保持することによつて原料油の炭素鎖を熱的に
切断し、軽質化を行なう方法がある。しかしなが
ら、この熱分解方法においては、軽質化反応とと
もに軽質化反応も進行する為に、反応装置内にコ
ークスが生成し(以下コーキングという)、反応
装置の運転を長期間継続することが出来ないとい
う問題点がある。このコーキング現象を防止する
手段として、種々の試みがなされており、その一
つとして、2つの槽型反応器において両槽を交互
に運転することにより、ガソリン留分とコークス
とを併産する方法がある。この方法においても、
槽型反応器を交互に運転する為製品にばらつきを
生ずる、槽内に堆積したコークスを回分操作によ
り除去する必要がある等の欠点がある。又、この
2つの槽型反応器を使用する重質油の熱改質法の
改良法として、槽内滞留時間を制御することによ
り少量の油分とピツチとを得る方法も知られてい
るが、この場合には、ピツチを多量に生成する為
あまり経済的でない、回分操作を必要とするので
運転が煩雑である、装置コストが高い等の欠点が
ある。 上記各方法の欠点を解消すべく、重質油に炭素
質固体粒子を添加して加圧・加熱することにより
その熱改質を行ない、反応生成物を減圧蒸留する
ことによりピツチ及び油分を回収する方法も公知
である(特公昭52−35681号公報、特公昭54−
16961号公報等参照)。しかしながら、これ等の方
法は、本来重質油からピツチ及びコークスを製造
することを目的としている為、原料としての重質
油の性状にもよるが、ピツチ及びコークスの収率
は、原料重質油重量の30%〜50%のオーダーにも
達するものの、油分の収率は比較的低い。即ち、
これ等の方法においては、油分の分離回収を減圧
蒸留により行なつているが、処理液の熱分解、重
縮合等による変質を防止する必要上、蒸留温度に
は限界があり、工業的規模の装置では、常圧換算
で約450〜540℃が上限である。従つて、沸点が約
450〜540℃以上の成分は、固型分とともに蒸留残
渣として取り出される為、有効に利用されるにい
たつていない。 上記の熱改質反応生成物を遠心分離機、フイル
ター、液体サイクロン等により処理して、固型分
等を機械的に除去する方法も知られている。しか
しながら、これ等の方法では重金属成分(V,
Ni等)、固型分、超重質成分等を選択的に分離・
除去することが困難であり、回収された液状物中
に残存するこれ等の成分特に重金属成分が引続く
重質油改質及び精製処理工程における触媒被毒の
原因となつている。又、有用成分である軽油質の
一部が残渣に随伴して失われ、プロセス全体の有
用成分の収率低下をもたらすという欠点もある。
更に、遠心分離等の機械的分離方法は、工業的規
模の大量処理には適していないことも難点であ
る。 本発明者は、重質油に炭素質固体粒子を添加
し、加圧・加熱することにより得られる反応生成
物の有用性をより高めるべく種々研究を重ねた結
果、熱改質反応生成物からガス及び軽質油を回収
した重質な残渣油(以下重質残油という)に特定
の溶剤を加え、重力沈降処理を行なう場合には、
重金属成分、固型分及び超重質成分が選択的に分
離・除去されること、蒸留では回収出来なかつた
沸点450〜540℃以上の成分のうち軽質な液状成分
も容易に回収し得るので、油分収率が著るしく改
善されること等を見出した。そして更に上記重力
沈降処理により回収される液状物に溶剤を加えて
再度重力沈降処理を行なう場合には、軽質溶解物
と重質溶解物とが分離収得されること、該軽質溶
解物は、コンラドソンカーボン残渣(以下CCR
という)及び硫黄分の含有量が低いので、良質な
燃料油として極めて有用であること、該重質溶解
物は実質的に重金属及び固形分を含有せず且つそ
のCCR量も熱改質処理の原料重質油のCCR量に
近いので、これを循環して原料重質油に添加混合
することにより、油分の得率が向上すること等を
も見出した。 すなわち、本発明は、下記の方法に係るもので
ある: () 重質油に炭素質固体粒子を添加して加
圧・加熱することにより熱分解改質を行なう工
程、 () 熱分解改質反応生成物をガス、軽質油及
び重質残油に分離する工程、 () 上記重質残油に常温で液体であり且つ臨
界温度が350℃以下であるパラフイン化合物及
び単環ナフテン化合物からなる群から選ばれた
少なくとも一種を溶剤として重質残油重量の2
〜12倍量加え、温度100〜350℃、圧力溶剤の臨
界圧力以上の条件下に一次重力沈降処理を行な
うことにより重金属及び固形分を実質的に含ま
ない油分を回収する工程、 () 上記回収液状物に常温で液体であり且つ
臨界温度が350℃以下であるパラフイン化合物
及び単環ナフテン化合物からなる群から選ばれ
た少なくとも一種を溶剤として回収液状物重量
の2〜12倍量加え、一次重力沈降処理時の温度
よりも高い温度下または一次重力沈降処理時の
圧力よりも低い圧力下に二次重力沈降処理を行
なうことにより軽質溶解物と重質溶解物とに分
離する工程、及び () 上記重質溶解物を前記()の工程に循
環して重質油に添加する工程 を備えたことを特徴とする重質油の熱分解改質方
法。 以下図面に示すフローチヤートを参照しつつ、
本発明を更に詳細に説明する。 第1図において、ライン1からの原料重質油
は、ライン3からの炭素質固体粒子と混合されて
ライン5から熱改質装置7に供給され、加圧・加
熱下に熱改質反応に供される。重質油としては蒸
圧蒸留残渣、真空蒸留残渣(アスフアルト)、天
然アスフアルト、ビチユーメン等が例示される。
炭素質固体粒子としては、石炭粉、コークス粉、
黒鉛粉、炭化樹脂粉、活性炭、カーボンブラツク
等が例示される。炭素質固体粒子の粒度は100〜
400メツシユ程度とすることが好ましい。重質油
と炭素質固体粒子の混合割合は、通常前者100重
量部に対し後者1〜10重量部程度であり、より好
ましくは前者100重量部に対し後者1〜3重量部
程度である。熱改質装置7内での加圧・加熱条件
は、通常温度350〜600℃程度、圧力5Kg/cm2・G
以上、時間1分〜30時間程度である。温度が350
℃未満の場合には、熱改質反応が十分に進行しな
いのに対し、600℃を上回る場合には、ガス及び
コークスの生成量が増大して軽質油分の収率が低
下するのみならず、コークス生成量の増大による
被処理物スラリーの粘度上昇により連続操業が困
難となる。反応時間は、反応温度との関連におい
て定められるが、1分未満では、原料重質油の熱
改質が十分に進行せず、一方30時間を上回る場合
には、ガス及びコークスの生成量が増大するので
好ましくない。圧力は、重質油が、所定温度下に
液状で存在するに必要な程度とすれば良い。 熱改質装置7で得られた熱改質反応生成物は、
ライン9から気液分離装置11に送られ、ライン
13からのガス及び軽質油とライン15からの液
状成分とに分離される。該ガス中にはヘテロ化合
物の分解により生成したNH3及びH2Sが含まれ
ている。液状成分は、更にライン15を経て減圧
蒸留装置17に送られ、ライン19からの軽質油
とライン21からの重質残油とに分離される。減
圧蒸留装置17内の温度は、液状成分の熱分解、
重縮合等による変質を防止する為に、常圧換算で
450〜540℃程度を上限とすることが好ましい。こ
こで得られる重質残油は、油分、レジン、アスフ
アルテン、固形分等からなつている。アスフアル
テンは、N,S等のヘテロ原子や重金属の含有量
が油分及びレジンよりも高い高分子成分である。
又、固形分は原料重質油成分の重縮合により生成
したメソフエースが炭素質固体粒子に合体して形
成されたものである。 ライン21からの重質残油は、ライン23から
溶剤を添加され、ライン25を経て一次重力沈降
処理装置27に送られる。溶剤としては、取扱い
やすさの観点から、常温で液体であり且つその臨
界温度が350℃以下であるパラフイン化合物及び
単環ナフテン化合物を使用する。第1表に本発明
で使用される主な溶剤を示す。これ等の溶剤は、
単独で若しくは2種以上の混合物として使用され
る。
The present invention relates to a method for thermal decomposition reforming (hereinafter referred to as thermal reforming unless otherwise required) of heavy oil. Recent trends in demand for petroleum products include kerosene, diesel oil, and
Consumption of the so-called three intermediate products up to heavy oil is on the rise. In contrast, imported crude oil tends to become heavier and heavier, so eliminating the supply-demand gap between oil types has become a major issue. For this reason, research is being conducted on producing light oil by reforming heavy oil. For example, there is a method in which the carbon chains of the raw material oil are thermally cut by heating and holding the raw material oil under normal pressure or increased pressure for a certain period of time to lighten the raw material oil. However, in this thermal decomposition method, since the lightening reaction also proceeds along with the lightening reaction, coke is generated in the reactor (hereinafter referred to as coking), making it impossible to continue operating the reactor for a long period of time. There is a problem. Various attempts have been made to prevent this coking phenomenon, one of which is a method of co-producing gasoline fraction and coke by operating two tank-type reactors alternately. There is. Also in this method,
There are disadvantages such as the fact that the tank reactors are operated alternately, which causes variations in the product, and that the coke deposited in the tank must be removed by batch operations. Furthermore, as an improved method of thermal reforming of heavy oil using these two tank-type reactors, a method is known in which a small amount of oil and pitch can be obtained by controlling the residence time in the tank. In this case, there are drawbacks such as the production of a large amount of pitch, which is not very economical, the operation required in batches, which is complicated, and the equipment cost high. In order to eliminate the drawbacks of each of the above methods, carbonaceous solid particles are added to heavy oil, which is then pressurized and heated to thermally reform it, and the reaction product is distilled under reduced pressure to recover pitch and oil. The method of
(See Publication No. 16961, etc.) However, since these methods are originally intended to produce pituti and coke from heavy oil, the yield of pituti and coke depends on the properties of the heavy oil as a raw material, but the yield of pituti and coke depends on the raw material heavy oil. Although it reaches the order of 30% to 50% of the oil weight, the yield of oil is relatively low. That is,
In these methods, the oil content is separated and recovered by vacuum distillation, but there is a limit to the distillation temperature due to the need to prevent deterioration of the treated liquid due to thermal decomposition, polycondensation, etc. The upper limit for the device is approximately 450 to 540°C in terms of normal pressure. Therefore, the boiling point is approximately
Components with a temperature of 450 to 540°C or higher are taken out as a distillation residue along with the solid content, so they cannot be used effectively. A method is also known in which the above-mentioned thermal reforming reaction product is treated with a centrifuge, a filter, a hydrocyclone, etc. to mechanically remove solid components and the like. However, in these methods, heavy metal components (V,
selectively separates Ni, etc.), solid components, super heavy components, etc.
These components, especially heavy metal components, which are difficult to remove and remain in the recovered liquid matter are the cause of catalyst poisoning in subsequent heavy oil reforming and refining processing steps. Another disadvantage is that a part of the light oil, which is a useful component, is lost along with the residue, resulting in a decrease in the yield of useful components in the entire process.
Another drawback is that mechanical separation methods such as centrifugation are not suitable for industrial-scale large-scale processing. The present inventor has conducted various studies to further increase the usefulness of reaction products obtained by adding carbonaceous solid particles to heavy oil and applying pressure and heating. When adding a specific solvent to heavy residual oil (hereinafter referred to as heavy residual oil) from which gas and light oil have been recovered and performing gravity sedimentation treatment,
Heavy metal components, solid components, and ultra-heavy components are selectively separated and removed, and among components with a boiling point of 450 to 540°C or higher that cannot be recovered by distillation, light liquid components can also be easily recovered. It was found that the yield was significantly improved. Furthermore, when a solvent is added to the liquid material recovered by the gravity sedimentation process and the gravity sedimentation process is performed again, a light dissolved substance and a heavy dissolved substance are separated and collected, and the light dissolved substance is Carbon Residue (CCR)
) and sulfur content, making it extremely useful as a high-quality fuel oil.The heavy melt contains virtually no heavy metals or solids, and its CCR content is lower than that of thermal reforming treatment. Since the CCR content is close to that of the raw material heavy oil, we have also discovered that by circulating it and adding it to the raw material heavy oil, the oil yield can be improved. That is, the present invention relates to the following method: () A step of adding carbonaceous solid particles to heavy oil and performing pyrolytic reforming by pressurizing and heating the oil; () Pyrolytic reforming A step of separating the reaction product into gas, light oil, and heavy residual oil; () A group consisting of paraffin compounds and monocyclic naphthenic compounds that are liquid at room temperature and have a critical temperature of 350°C or less in the heavy residual oil; 2 of the weight of heavy residual oil using at least one selected from
A process of recovering oil that is substantially free of heavy metals and solids by adding ~12 times the amount and performing primary gravity sedimentation treatment at a temperature of 100 to 350°C and a pressure above the critical pressure of the solvent, () The above recovery At least one selected from the group consisting of paraffin compounds and monocyclic naphthenic compounds that are liquid at room temperature and have a critical temperature of 350°C or less is added to the liquid as a solvent in an amount 2 to 12 times the weight of the recovered liquid, and the primary gravity A step of separating light dissolved matter and heavy dissolved matter by performing secondary gravity sedimentation treatment at a temperature higher than the temperature during sedimentation treatment or under a pressure lower than the pressure during primary gravity sedimentation treatment, and () A method for thermal decomposition reforming of heavy oil, comprising a step of circulating the heavy melt into the step () and adding it to the heavy oil. While referring to the flowchart shown in the drawing below,
The present invention will be explained in more detail. In Fig. 1, raw heavy oil from line 1 is mixed with carbonaceous solid particles from line 3 and supplied from line 5 to thermal reformer 7, where it undergoes a thermal reforming reaction under pressure and heat. Served. Examples of the heavy oil include steam distillation residue, vacuum distillation residue (asphalt), natural asphalt, and bitumen.
Carbonaceous solid particles include coal powder, coke powder,
Examples include graphite powder, carbonized resin powder, activated carbon, and carbon black. The particle size of carbonaceous solid particles is 100~
It is preferable to set it to about 400 meshes. The mixing ratio of heavy oil and carbonaceous solid particles is usually about 1 to 10 parts by weight of the latter to 100 parts by weight of the former, and more preferably about 1 to 3 parts by weight of the latter to 100 parts by weight of the former. The pressurization and heating conditions in the thermal reformer 7 are usually about 350 to 600℃ and a pressure of 5Kg/cm 2 G.
Above, the time is about 1 minute to 30 hours. temperature is 350
If the temperature is less than 600°C, the thermal reforming reaction will not proceed sufficiently, whereas if it exceeds 600°C, not only will the amount of gas and coke produced increase, but the yield of light oil will decrease. Continuous operation becomes difficult due to an increase in the viscosity of the slurry of the processed material due to an increase in the amount of coke produced. The reaction time is determined in relation to the reaction temperature, but if it is less than 1 minute, the thermal reforming of the raw material heavy oil will not proceed sufficiently, while if it exceeds 30 hours, the amount of gas and coke produced will decrease. This is not preferable because it increases the amount. The pressure may be set to a level necessary for the heavy oil to exist in liquid form at a predetermined temperature. The thermal reforming reaction product obtained in the thermal reforming device 7 is
It is sent from line 9 to gas-liquid separator 11 and separated into gas and light oil from line 13 and liquid components from line 15. The gas contains NH 3 and H 2 S produced by decomposition of the hetero compound. The liquid component is further sent to a vacuum distillation unit 17 via line 15 and separated into light oil from line 19 and heavy residual oil from line 21. The temperature inside the vacuum distillation device 17 is controlled by thermal decomposition of the liquid component,
In order to prevent deterioration due to polycondensation, etc.,
The upper limit is preferably about 450 to 540°C. The heavy residual oil obtained here consists of oil, resin, asphaltenes, solids, etc. Asphaltene is a polymeric component that has a higher content of heteroatoms such as N and S and heavy metals than oil and resin.
Moreover, the solid content is formed by mesophase produced by polycondensation of the raw material heavy oil component, which is combined with carbonaceous solid particles. The heavy residual oil from line 21 is added with a solvent from line 23 and sent via line 25 to primary gravity settling unit 27 . As the solvent, from the viewpoint of ease of handling, paraffin compounds and monocyclic naphthene compounds that are liquid at room temperature and have a critical temperature of 350° C. or lower are used. Table 1 shows the main solvents used in the present invention. These solvents are
They may be used alone or as a mixture of two or more.

【表】 一次重力沈降処理時の温度は、被処理液(重質
残油と溶剤との混合物)の粘度及び比重を低下さ
せて固液分離を効率良く行なう為に100℃以上と
し、且つ被処理液の熱分解及び重縮合によるコー
キング反応を防止する為に350℃以下とする。圧
力は、溶剤を安定して均一相に保持する為に、当
該溶剤の臨界圧力以上とすべきである。重質残油
に対する溶剤の添加量は、前者1重量に対し通常
後者2〜12重量部程度である。溶剤添加量が少な
い場合には、被処理液の粘度が十分に低下せず且
つ重質残油に対する溶解能が十分に発揮されず、
一方溶剤添加量が多過ぎる場合には、装置コスト
が増大する。一次重力沈降処理装置27内では重
質残油中の固形分のほぼ全量及びアスフアルテン
のより重質な成分が、溶剤に溶解することなく合
体及び凝集し、固体粒子径を増大させる。周知の
如く、重力沈降においては、粒子の沈降速度は、
粒子径の2乗に比例するので、本発明によれば、
固形分及び超重質成分を実質的に含まない液状物
が上澄液として回収される。又、V,Ni等の重
金属は、固形分及び超重質成分に選択的に含有さ
れ、回収液状物は、重金属をも実質的に含有して
いないことが判明した。 一次重力沈降処理装置27で回収された液状物
は、ライン29を通り、必要に応じライン31か
ら溶剤を添加されて、二次重力沈降処理装置33
に送られる。ライン31から供給される二次重力
沈降処理用の溶剤及び使用量は、一次重力沈降処
理用溶剤と同様で良く、温度を一次重力沈降処理
より高くするか又は圧力を一次重力沈降処理より
低くすると良い。この二次重力沈降処理により、
上記回収液状物は、上澄液としての軽質溶解物と
沈降物としての重質溶解物とに分離される。 軽質溶解物は、ライン37を経て蒸留装置39
に供給され、ライン51から溶剤が回収され、一
方軽質油はライン53から系外に取り出され、
CCR及び硫黄含有量の低い良質の燃料油等とし
て利用される。 重質溶解物は、ライン55を経て蒸留装置57
に供給され、ライン59からの溶剤と重質回収物
とに分離される。重質回収物は、ライン41を経
てライン1に循環し、原料重質油とともに熱改質
に供する。重質溶解物を原料重質油に循環混合す
る本発明によれば、循環を全く行なわない場合に
比して、軽質溶解物を含む全油分の取得率が原料
重質油基準で25%以上増大する。 重力沈降処理装置27内で沈降した固形分及び
重金属を含む残渣は、ライン43を経て蒸留装置
45に送られ、ライン47からの溶剤とライン4
9からの固体残渣とに分離される。ライン47,
51及び59から回収された溶剤は、ライン23
及びライン31に循環し、再使用することが出来
る。 実施例 1 アラビアンヘビーアスフアルト100重量部に
74μm以下のキーストン炭粉末(残留炭素88.2重
量%)5.3重量部を添加して内容量1の攪拌機
付オートクレーブに仕込み、20Kg/cm2・G、410
℃の条件下に5時間保持した。この際ガス10重量
部が発生した。 オートクレーブ中に残存する反応生成物を減圧
下(5mmHg)に留出温度が250℃となるまで蒸
留して、軽質油分40重量部を得た。 次いで、上記の重質残油1重量部にヘキサン:
シクロヘキサン=1:3(重量比)の混合溶剤
(臨界圧力39.09Kg/cm2)6重量部を加え、内容積
3.5の攪拌機付オートクレーブに仕込み、温度
210℃、圧力40Kg/cm2・Gで抽出後15分間静置し
て上澄液を回収した。上澄液は、重金属及び固形
分を実質的に含まない液状物との合計で32.5重量
部を含んでいた。 次いで、上記で得られた上澄液を温度290℃、
圧力35Kg/cm2・Gの条件下に上記と同様の重力沈
降処理を再度行なうことにより軽質溶解物と重質
溶解物とに分離した。 次いで、上記で得た重質溶解物24.4重量部と前
記と同様のアラビアンヘビーアスフアルト75.6重
量部とからなる混合物を前記と同様の熱改質反応
処理に供した後、蒸留した。ガス発生量は、9.2
重量部、軽質油分生成量は38.6重量部であつた。 本実施例における油分取得率は、 40+32.5×0.25/100−32.5×0.75×100=63.6% にも達した。 尚、本実施例における原料重質油たるアラビア
ンヘビーアスフアルト、熱改質反応により得られ
た重質残油、二次重力沈降により得られた軽質溶
解物及び重質溶解物の性状を一括して第2表に示
す。
[Table] The temperature during the primary gravity sedimentation treatment is set at 100°C or higher in order to reduce the viscosity and specific gravity of the liquid to be treated (a mixture of heavy residual oil and solvent) and to perform solid-liquid separation efficiently. The temperature should be 350℃ or less to prevent coking reactions caused by thermal decomposition and polycondensation of the treatment liquid. The pressure should be greater than or equal to the critical pressure of the solvent in order to stably maintain the solvent in a homogeneous phase. The amount of solvent added to the heavy residual oil is usually about 2 to 12 parts by weight per 1 weight of the former. If the amount of solvent added is small, the viscosity of the liquid to be treated will not be sufficiently reduced and the ability to dissolve heavy residual oil will not be fully demonstrated.
On the other hand, if the amount of solvent added is too large, the equipment cost increases. In the primary gravity sedimentation treatment device 27, almost all of the solid content in the heavy residual oil and heavier components of asphaltene coalesce and aggregate without being dissolved in the solvent, increasing the solid particle size. As is well known, in gravity sedimentation, the sedimentation velocity of particles is
Since it is proportional to the square of the particle diameter, according to the present invention,
A liquid material substantially free of solids and superheavy components is recovered as a supernatant liquid. It was also found that heavy metals such as V and Ni were selectively contained in the solid content and super heavy components, and that the recovered liquid material did not substantially contain any heavy metals. The liquid recovered in the primary gravity sedimentation treatment device 27 passes through a line 29, where a solvent is added from a line 31 as necessary, and the liquid is transferred to a secondary gravity sedimentation treatment device 33.
sent to. The solvent and amount used for the secondary gravity sedimentation process supplied from line 31 may be the same as the solvent for the primary gravity sedimentation process, and the temperature may be higher than the primary gravity sedimentation process or the pressure may be lower than the primary gravity sedimentation process. good. Through this secondary gravity sedimentation process,
The recovered liquid material is separated into a light dissolved substance as a supernatant liquid and a heavy dissolved substance as a sediment. The light melt passes through line 37 to distillation unit 39
The solvent is recovered from line 51, while the light oil is taken out of the system from line 53.
Used as CCR and high quality fuel oil with low sulfur content. The heavy melt passes through line 55 to distillation device 57
and is separated into the solvent from line 59 and the heavy recycle material. The heavy recovered material is circulated through line 41 to line 1, and is subjected to thermal reforming together with raw material heavy oil. According to the present invention, which circulates and mixes heavy dissolved substances into raw material heavy oil, the acquisition rate of the total oil content including light dissolved substances is 25% or more based on the raw material heavy oil compared to the case where no circulation is performed at all. increase The residue containing solids and heavy metals settled in the gravity sedimentation treatment device 27 is sent to the distillation device 45 via line 43, and the solvent from line 47 and the residue containing heavy metals are sent to distillation device 45 through line 43.
9 and the solid residue from 9. line 47,
The solvent recovered from 51 and 59 is transferred to line 23
and can be recycled to line 31 and reused. Example 1 100 parts by weight of Arabian heavy asphalt
Add 5.3 parts by weight of keystone charcoal powder (residual carbon 88.2% by weight) of 74 μm or less and charge it into an autoclave with a stirrer with an internal capacity of 1, 20Kg/cm 2・G, 410
It was maintained at ℃ for 5 hours. At this time, 10 parts by weight of gas was generated. The reaction product remaining in the autoclave was distilled under reduced pressure (5 mmHg) until the distillation temperature reached 250°C to obtain 40 parts by weight of light oil. Next, 1 part by weight of the above heavy residual oil was added with hexane:
Add 6 parts by weight of a mixed solvent of cyclohexane = 1:3 (weight ratio) (critical pressure 39.09Kg/cm 2 ), and
3.5 in an autoclave with a stirrer, and the temperature
After extraction at 210° C. and a pressure of 40 kg/cm 2 ·G, the mixture was allowed to stand for 15 minutes and the supernatant liquid was collected. The supernatant liquid contained a total of 32.5 parts by weight of liquid material substantially free of heavy metals and solids. Next, the supernatant obtained above was heated to a temperature of 290°C.
The same gravitational sedimentation treatment as above was carried out again under a pressure of 35 kg/cm 2 ·G to separate the light lysate and the heavy lysate. Next, a mixture consisting of 24.4 parts by weight of the heavy melt obtained above and 75.6 parts by weight of the same Arabian heavy asphalt as above was subjected to the same thermal reforming reaction treatment as above, and then distilled. Gas generation amount is 9.2
The amount of light oil produced was 38.6 parts by weight. The oil content acquisition rate in this example reached 40+32.5×0.25/100−32.5×0.75×100=63.6%. In addition, the properties of Arabian heavy asphalt as the raw material heavy oil in this example, the heavy residual oil obtained by the thermal reforming reaction, the light melt and the heavy melt obtained by secondary gravity sedimentation are collectively summarized. Shown in Table 2.

【表】 比較例 1 実施例1と同様にして()重質油に炭素質固
体粒子を添加して、熱分解改質し、()熱分解
反応生成物から重質残油を分離した後、該重質残
油1重量部に実施例1で使用したものと同様のヘ
キサン/シクロヘキサン混合物6重量部を加え、
温度210℃、圧力常圧の条件下に60分間放置して、
重力沈降処理した。 次いで、全体の87%を占める上層部分を回収
し、蒸留して溶剤を除去した。 得られた液状物の性状を第3表に示す。 比較例 2 実施例1と同様にして()重質油に炭素質固
体粒子を添加して、熱分解改質し、()熱分解
反応生成物から重質残油を分離した後、該重質残
油1重量部に実施例1で使用したものと同様のヘ
キサン/シクロヘキサン混合物6重量部を加え、
温度60℃、5000rpmで60分間遠心分離処理した。 次いで、遠心分離処理物を回収し、蒸留して溶
剤を除去した。 得られた液状物の性状を第3表に示す。 第 3 表 比較例1 比較例2 V(ppm) 77 100 Ni(ppm) 24 34 CCR(重量%) 12 25 収率(%) 40 45 第3表に示す結果から明らかな様に、本発明に
よる特定の条件下に重力沈降を行わない場合に
は、重金属類の除去が十分に行われないので、最
終的に得られた重質残油を引続き改質および精製
処理などに供する場合には、触媒被毒などが著し
くなるものと推測される。
[Table] Comparative Example 1 In the same manner as in Example 1, () carbonaceous solid particles were added to heavy oil and pyrolysis reformed, and () heavy residual oil was separated from the pyrolysis reaction product. , adding 6 parts by weight of a hexane/cyclohexane mixture similar to that used in Example 1 to 1 part by weight of the heavy residual oil,
Leave it for 60 minutes at a temperature of 210℃ and normal pressure.
Gravity sedimentation was performed. Next, the upper layer portion, which accounts for 87% of the total, was collected and distilled to remove the solvent. Table 3 shows the properties of the obtained liquid. Comparative Example 2 In the same manner as in Example 1, () carbonaceous solid particles were added to heavy oil for thermal decomposition reforming, () heavy residual oil was separated from the thermal decomposition reaction product, and then the heavy oil was Add 6 parts by weight of a hexane/cyclohexane mixture similar to that used in Example 1 to 1 part by weight of quality residual oil,
Centrifugation was performed at a temperature of 60°C and 5000 rpm for 60 minutes. The centrifuged product was then collected and distilled to remove the solvent. Table 3 shows the properties of the obtained liquid. Table 3 Comparative Example 1 Comparative Example 2 V (ppm) 77 100 Ni (ppm) 24 34 CCR (wt%) 12 25 Yield (%) 40 45 As is clear from the results shown in Table 3, the present invention If gravity sedimentation is not performed under specific conditions, heavy metals will not be removed sufficiently, so if the final heavy residual oil is subsequently subjected to reforming and refining treatments, It is estimated that catalyst poisoning will become significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施態様の一例を示すフロー
チヤートである。 7……熱改質装置、11……気液分離装置、1
7……減圧蒸留装置、23……溶剤添加ライン、
27……一次重力沈降処理装置、31……溶剤添
加ライン、33……二次重力沈降処理装置、39
……蒸留装置、45……蒸留装置、57……蒸留
装置。
FIG. 1 is a flowchart showing an example of an embodiment of the present invention. 7... Thermal reformer, 11... Gas-liquid separation device, 1
7...Reduced pressure distillation device, 23...Solvent addition line,
27...Primary gravity sedimentation treatment device, 31...Solvent addition line, 33...Secondary gravity sedimentation treatment device, 39
... Distillation device, 45 ... Distillation device, 57 ... Distillation device.

Claims (1)

【特許請求の範囲】 1 () 重質油に炭素質固体粒子を添加して
加圧・加熱することにより熱分解改質を行なう
工程、 () 熱分解改質反応生成物をガス、軽質油及
び重質残油に分離する工程、 () 上記重質残油に常温で液体であり且つ臨
界温度が350℃以下であるパラフイン化合物及
び単環ナフテン化合物からなる群から選ばれた
少なくとも一種を溶剤として重質残油重量の2
〜12倍量加え、温度100〜350℃、圧力溶剤の臨
界圧力以上の条件下に一次重力沈降処理を行な
うことにより重金属及び固形分を実質的に含ま
ない油分を回収する工程、 () 上記回収液状物に常温で液体であり且つ
臨界温度が350℃以下であるパラフイン化合物
及び単環ナフテン化合物なる群から選ばれた少
なくとも一種を溶剤として回収液状物重量の2
〜12倍量加え、一次重力沈降処理時の温度より
も高い温度下または一次重力沈降処理時の圧力
よりも低い圧力下に二次重力沈降処理を行なう
ことにより軽質溶解物と重質溶解物とに分離す
る工程、及び () 上記重質溶解物を前記()の工程に循
環して重質油に添加する工程 を備えたことを特徴とする重質油の熱分解改質方
法。
[Scope of Claims] 1 () A step of adding carbonaceous solid particles to heavy oil and performing pyrolysis reforming by pressurizing and heating the mixture; () converting the pyrolysis reforming reaction product into gas or light oil; and a step of separating into heavy residual oil, () adding at least one kind selected from the group consisting of paraffin compounds and monocyclic naphthenic compounds that are liquid at room temperature and have a critical temperature of 350°C or less to the heavy residual oil as a solvent; as heavy residual oil weight 2
A process of recovering oil that is substantially free of heavy metals and solids by adding ~12 times the amount and performing primary gravity sedimentation treatment at a temperature of 100 to 350°C and a pressure above the critical pressure of the solvent, () The above recovery 2 of the weight of the recovered liquid by using at least one selected from the group consisting of paraffin compounds and monocyclic naphthenic compounds, which are liquid at room temperature and have a critical temperature of 350°C or less, as a solvent.
By adding ~12 times the amount and performing secondary gravity sedimentation treatment at a temperature higher than the temperature during the primary gravity sedimentation treatment or under a pressure lower than the pressure during the primary gravity sedimentation treatment, light and heavy lysates are separated. 1. A method for thermally decomposing and reforming heavy oil, comprising: a step of separating the heavy melt into the heavy oil; and a step of circulating the heavy melt into the step () and adding it to the heavy oil.
JP21524083A 1983-11-15 1983-11-15 Thermal reforming of heavy oil Granted JPS60106886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21524083A JPS60106886A (en) 1983-11-15 1983-11-15 Thermal reforming of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21524083A JPS60106886A (en) 1983-11-15 1983-11-15 Thermal reforming of heavy oil

Publications (2)

Publication Number Publication Date
JPS60106886A JPS60106886A (en) 1985-06-12
JPH0452315B2 true JPH0452315B2 (en) 1992-08-21

Family

ID=16669034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21524083A Granted JPS60106886A (en) 1983-11-15 1983-11-15 Thermal reforming of heavy oil

Country Status (1)

Country Link
JP (1) JPS60106886A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105885917B (en) * 2016-05-09 2018-05-15 天津海威欧能源科技有限责任公司 A kind of high-efficient treatment method and system of carbonate containing heavy oil whip
CN105885918B (en) * 2016-05-09 2018-07-06 天津大学 A kind of processing method and system of carbonate containing heavy oil whip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416961A (en) * 1977-06-09 1979-02-07 Western Electric Co Decoupling circuit
JPS54110206A (en) * 1978-02-16 1979-08-29 Agency Of Ind Science & Technol Removal of heavy metal contained in petroleum heavy oil
JPS58111891A (en) * 1981-12-25 1983-07-04 Toyo Eng Corp Thermal cracking of heavy oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416961A (en) * 1977-06-09 1979-02-07 Western Electric Co Decoupling circuit
JPS54110206A (en) * 1978-02-16 1979-08-29 Agency Of Ind Science & Technol Removal of heavy metal contained in petroleum heavy oil
JPS58111891A (en) * 1981-12-25 1983-07-04 Toyo Eng Corp Thermal cracking of heavy oil

Also Published As

Publication number Publication date
JPS60106886A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
JP5956610B2 (en) Method for producing mesophase pitch by hydrogenation of high temperature coal tar
AU2005266712B2 (en) A process for direct liquefaction of coal
JPS6112789A (en) Method for continuous thermal cracking treatment of heavy oil
EP0119273B1 (en) Process for producing pitch
JPS6149355B2 (en)
MXPA97003289A (en) Process to insulate pez mesofas
CA1102265A (en) Process of removing chemical compounds of arsenic and/or antimony
US2358573A (en) Chemical process
US3310484A (en) Thermal cracking in an oxygen free atmosphere
JPH0832887B2 (en) How to separate solid asphalt
CN110573227B (en) Physical separation of refinery purge streams
JPH0452315B2 (en)
US4257870A (en) Process for the purification of undistillable solid-containing hydrocarbon fractions produced in coal-refining
JP4154929B2 (en) Method for producing useful substances from plastic
JPH0236158B2 (en)
US4582591A (en) Process for the separation of resinous substances from coal-base heavy oils and use of the fraction obtained
JPS61197688A (en) Refining of coal-based pitch
KR101359266B1 (en) Method for Preparing of Coal Pitch
US4119525A (en) Manufacture of coke
JPS62246991A (en) Thermal cracking treatment for cracked heavy fraction
JPH0236157B2 (en)
JP6715709B2 (en) Method for producing hydrocracked oil and apparatus for producing hydrocracked oil
JPS58111891A (en) Thermal cracking of heavy oil
CN109370630B (en) Method for preparing coal-based needle coke raw material
JPS6296589A (en) Method for thermally cracking heavy oil