JPH0451152A - Formation of photoresist pattern - Google Patents

Formation of photoresist pattern

Info

Publication number
JPH0451152A
JPH0451152A JP16019990A JP16019990A JPH0451152A JP H0451152 A JPH0451152 A JP H0451152A JP 16019990 A JP16019990 A JP 16019990A JP 16019990 A JP16019990 A JP 16019990A JP H0451152 A JPH0451152 A JP H0451152A
Authority
JP
Japan
Prior art keywords
emitting layer
photoresist
light emitting
fluorescent light
photoresist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16019990A
Other languages
Japanese (ja)
Inventor
Atsushi Komatsu
小松 敦史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16019990A priority Critical patent/JPH0451152A/en
Publication of JPH0451152A publication Critical patent/JPH0451152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To form photoresist patterns which are entirely free from drop-out defects even if steps exist on an underlying substrate by forming a fluorescent light emitting layer under a photoresist film. CONSTITUTION:The surface of a silicon substrate 1 formed with the steps is spin coated with the fluorescent light emitting layer 2 and after this layer is dried, the photoresist film 3 is formed thereon by the spin coating method. The desired patterns are then exposed and transferred via a photomask 5. The light intensity of exposing light 6 arriving at the part A of the low step is smaller than in the part B of the high step and cannot, therefore, attain the threshold exposure at which the removal by development is possible, but the fluorescent light emitting layer 2 is made to emit light by the exposing light 6 arriving at this layer to expose the photoresist film 3 and, therefore, the threshold exposure necessary for the development is eventually finally attained. The development processing by an org. alkali is then executed to remove the exposed parts 4 of the photoresist. Even the part A of the low step is exposed by the light emitted by the fluorescent light emitting layer 2 in this way and, therefore, the generation of the residual resist is obviated and the patterns free from the drop-out defects are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフォトレジストパターンの形成方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for forming a photoresist pattern.

〔従来の技術〕[Conventional technology]

半導体装置の微細化を実施するにあたっては、フォトレ
ジストパターンの微細化が必要である。
In order to miniaturize semiconductor devices, it is necessary to miniaturize photoresist patterns.

従来の高解像のフォトレジストパターンを得る方法とし
ては、単層のフォトレジストの成分組成や化学構造等を
変える事により解像性を高めてゆく方法がある。
As a conventional method for obtaining a high-resolution photoresist pattern, there is a method of increasing the resolution by changing the component composition, chemical structure, etc. of a single-layer photoresist.

例えば、ノボラック樹脂内のヒドロキシ基く−OH基)
のパラ、メタ、オルトの配行性の混合比を変える事で、
高解像性を高めている。
For example, hydroxy groups (-OH groups) in novolac resins)
By changing the mixing ratio of para, meta, and ortho orientation of
Improves high resolution.

一般に高解像のフォトレジストパターンを形成する場合
、露光光と半導体装置の下地のシリコン基板IAからの
反射光との間に生じる干渉により定在波が形成される。
Generally, when forming a high-resolution photoresist pattern, a standing wave is formed due to interference between exposure light and reflected light from the silicon substrate IA underlying the semiconductor device.

この為第2図に示す様に、その光強度分布に応じてパタ
ーニングされたフォトレジスト膜3の横方向に突出した
レジスト残り3Aが発生し、フォトレジストパターンの
解像性を低下させる。最近ではパターン転写後熱処理を
加えることで、定在波の影響を緩和させ高解像性を達成
している報告もある。
For this reason, as shown in FIG. 2, resist residues 3A protrude in the lateral direction of the patterned photoresist film 3 according to the light intensity distribution, which deteriorates the resolution of the photoresist pattern. Recently, there have been reports that by adding heat treatment after pattern transfer, the effects of standing waves are alleviated and high resolution is achieved.

単層レジストプロセスに対し、2層及び3層の多層レジ
ストパターン形成プロセスがある。これは02プラズマ
処理によりパターン形成している為、定在波の影響が無
視でき高解像性が達成でき、下地段差の影響もない。
In contrast to the single-layer resist process, there are two-layer and three-layer multilayer resist pattern forming processes. Since this pattern is formed by 02 plasma processing, the influence of standing waves can be ignored, high resolution can be achieved, and there is no influence of ground level differences.

また露光装置では、現在縮少投影露光装置が主に使用さ
れており、大開口レンズを用いる事で、高解像性を達成
している。
Currently, reduction projection exposure devices are mainly used as exposure devices, and high resolution is achieved by using large aperture lenses.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の高解像のレジストパターンを得る技術で
、単層のフォトレジスト膜を使用して下地段差上にパタ
ーン形成する場合、定在波の影響を緩和しても、深さ方
向の光強度の差からレジスト残りが発生する。特に、コ
ンタクトホールの開口時はフォトレジスト膜下部での光
強度が極めて小さくなる為、抜は不良が発生しやすい。
With the conventional technology for obtaining high-resolution resist patterns described above, when forming a pattern on a step surface using a single layer of photoresist film, even if the influence of standing waves is alleviated, the light in the depth direction Resist residue occurs due to the difference in strength. In particular, when a contact hole is opened, the light intensity at the bottom of the photoresist film becomes extremely low, so defects are likely to occur.

抜は不良は、半導体装置の製造歩留りを大きく低下させ
るとになる。
Defective punching greatly reduces the manufacturing yield of semiconductor devices.

多層レジストプロセスの場合、深さ方向の光強度の差に
影響はないが、形成プロセスが複雑である。まな02プ
ラズマエツチングを行う為スループットの低下か大きく
、量産製造には適さないという欠点がある。
In the case of a multilayer resist process, the difference in light intensity in the depth direction is not affected, but the formation process is complicated. Since Mana 02 plasma etching is performed, the throughput is greatly reduced, and there is a drawback that it is not suitable for mass production.

上述した従来のフォトレジストパターンの形成方法に対
し、本発明は半導体基板とフォトレジスト膜の間に蛍光
発光層を形成する為、下地基板の段差により光強度が小
さくなっても蛍光発光層の発光で限界露光量まで露光す
ることができる。これにより、レジスI〜抜は不良を防
止できるという相違点を有する。
In contrast to the conventional photoresist pattern formation method described above, the present invention forms a fluorescent layer between a semiconductor substrate and a photoresist film, so even if the light intensity is reduced due to a step difference in the underlying substrate, the fluorescent layer does not emit light. It is possible to expose up to the limit exposure amount. This has the difference that resist I~ can prevent defects.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のフォトレジストパターンの形成方法は、半導体
基板上に蛍光発光層を形成する工程と、前記蛍光発光層
の上にフォトレジスト膜を形成する工程と、前記フォト
レジスト膜に所望のパターンを露光し転写する工程と、
前記フォトレジスト膜のパターン露光部を現像により取
り除く工程とを含んで構成される。
The method for forming a photoresist pattern of the present invention includes a step of forming a fluorescent light emitting layer on a semiconductor substrate, a step of forming a photoresist film on the fluorescent light emitting layer, and a step of exposing the photoresist film to a desired pattern. and a step of transferring the image.
The method includes the step of removing the pattern-exposed portion of the photoresist film by development.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(C)は本発明の一実施例を説明するた
めの半導体チップの断面図である。
FIGS. 1A to 1C are cross-sectional views of a semiconductor chip for explaining an embodiment of the present invention.

ます、第1図(a>に示すように、段差の形成されたシ
リコン基板1上に蛍光発光層2を0.1〜0,2μmの
厚さを持って回転塗布し、約120℃で乾燥後、厚さ1
.0μmのフォトレジスト膜3を回転塗布法で形成する
First, as shown in Figure 1 (a), a fluorescent light emitting layer 2 is spin-coated onto a silicon substrate 1 with a step formed thereon to a thickness of 0.1 to 0.2 μm, and dried at about 120°C. After, thickness 1
.. A 0 μm photoresist film 3 is formed by spin coating.

ここでの蛍光発光層2は、蛍光増白剤を水溶液とし塗布
したものである。本実施例で使用した蛍光増白剤は、商
品名Leucophor R,BiankophorB
 、 Leucophor B 、 Tinopal 
WG 、 Tinopa! A Nのものである。蛍光
増白剤水溶液の濃度は、成膜時の露光光波長436 n
m及び365 nmに対する反射率で調整した。各蛍光
増白剤の蛍光発光波長ピークは、339nm、  34
7nm、  347nm。
The fluorescent light emitting layer 2 here is formed by applying a fluorescent whitening agent as an aqueous solution. The optical brighteners used in this example were commercially available under the trade names of Leucophor R and Biankophor B.
, Leucophor B , Tinopal
WG, Tinopa! It belongs to AN. The concentration of the optical brightener aqueous solution is determined by the exposure light wavelength of 436 nm during film formation.
The reflectance was adjusted for m and 365 nm. The fluorescence emission wavelength peak of each fluorescent whitening agent is 339 nm, 34
7nm, 347nm.

363nm、 410nmであった。The wavelengths were 363 nm and 410 nm.

次に第1図(b)に示すように、所望のパターンをフォ
トマスク5を介して露光し転写する。段差が低い部分A
に到達する露光光6の光強度は段差が高い部分Bに比較
して小さく、現像除去可能となる限界露光量に達するこ
とができない。しかし、蛍光発光層2は、到達した露光
光6により発光し、フォトレジストM3を露光する為、
最終的に現像に必要な限界露光量に達することになる。
Next, as shown in FIG. 1(b), a desired pattern is exposed and transferred through a photomask 5. Part A with low step
The light intensity of the exposure light 6 that reaches the area B is lower than that at the part B where the difference in level is high, and cannot reach the limit exposure amount that enables removal by development. However, since the fluorescent light emitting layer 2 emits light due to the reaching exposure light 6 and exposes the photoresist M3,
Eventually, the critical exposure amount required for development will be reached.

次に第1図(C)に示すように、60秒間有機アルカリ
による現像処理を行ない、フォトレジスト露光部4を除
去する。
Next, as shown in FIG. 1(C), a development process using an organic alkali is performed for 60 seconds to remove the photoresist exposed area 4.

本実施例によれば、段差が低い部分Aでも蛍光発光層2
の発光で露光されるため、レジスト残りの発生はなくな
り、抜は不良のないパターンを形成することができた。
According to this embodiment, even in the portion A where the level difference is low, the fluorescent light emitting layer 2
Because the resist was exposed to light, there was no residual resist, and a pattern with no defects could be formed.

なお上記実施例では蛍光増白剤の水溶液を用いた場合に
ついて説明したが、ポリビニルアルコール溶液に蛍光増
白剤を分散させたものを用いて蛍光発光層を形成しても
よい。
In the above embodiments, an aqueous solution of a fluorescent whitening agent is used, but the fluorescent light emitting layer may be formed using a polyvinyl alcohol solution in which a fluorescent brightening agent is dispersed.

この場合、蛍光増白剤を5〜50wt%に調整すること
で、段差被覆性が良くかつ、フォトレジストとの密着性
の良い蛍光発光層を得ることができる。
In this case, by adjusting the fluorescent whitening agent to 5 to 50 wt%, it is possible to obtain a fluorescent layer with good step coverage and good adhesion to the photoresist.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、フォトレジスト膜の下に
蛍光発光層を形成することにより、下地基板に段差が存
在しても、抜は不良のまったくないフォトレジストパタ
ーンの形成ができる。従って半導体装置の製造歩留りを
向上させることができるという効果がある。
As explained above, in the present invention, by forming a fluorescent light-emitting layer under a photoresist film, a photoresist pattern with no defects can be formed even if there is a step on the underlying substrate. Therefore, there is an effect that the manufacturing yield of semiconductor devices can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の一実施例を説明するた
めの半導体チップの断面図、第2図は従来例を説明する
ための半導体チップの断面図である。 1、IA・・・シリコン基板、2・・・蛍光発光層、3
・・・フォトレジスト膜、4・・・フォトレジスト露光
部、5・・・フォトマスク、6・・・露光光、A・・・
段差の低い部分、B・・・段差の高い部分。
1A to 1C are cross-sectional views of a semiconductor chip for explaining an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a semiconductor chip for explaining a conventional example. 1, IA... silicon substrate, 2... fluorescent light emitting layer, 3
... Photoresist film, 4... Photoresist exposure area, 5... Photomask, 6... Exposure light, A...
Low part of the step, B: High part of the step.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に蛍光発光層を形成する工程と、前記蛍
光発光層の上にフォトレジスト膜を形成する工程と、前
記フォトレジスト膜に所望のパターンを露光し転写する
工程と、前記フォトレジスト膜のパターン露光部を現像
により取り除く工程とを含むことを特徴とするフォトレ
ジストパターンの形成方法。
a step of forming a fluorescent light-emitting layer on a semiconductor substrate; a step of forming a photoresist film on the fluorescent light-emitting layer; a step of exposing and transferring a desired pattern to the photoresist film; 1. A method for forming a photoresist pattern, comprising the step of removing an exposed portion of the pattern by development.
JP16019990A 1990-06-19 1990-06-19 Formation of photoresist pattern Pending JPH0451152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16019990A JPH0451152A (en) 1990-06-19 1990-06-19 Formation of photoresist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16019990A JPH0451152A (en) 1990-06-19 1990-06-19 Formation of photoresist pattern

Publications (1)

Publication Number Publication Date
JPH0451152A true JPH0451152A (en) 1992-02-19

Family

ID=15709948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16019990A Pending JPH0451152A (en) 1990-06-19 1990-06-19 Formation of photoresist pattern

Country Status (1)

Country Link
JP (1) JPH0451152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681252A (en) * 2012-09-14 2014-03-26 台湾积体电路制造股份有限公司 Method of semiconductor integrated circuit fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681252A (en) * 2012-09-14 2014-03-26 台湾积体电路制造股份有限公司 Method of semiconductor integrated circuit fabrication

Similar Documents

Publication Publication Date Title
US7358111B2 (en) Imageable bottom anti-reflective coating for high resolution lithography
JP2003234279A (en) Forming method of resist pattern, manufacturing method of semiconductor device and forming device for resist pattern
US6833326B2 (en) Method for forming fine patterns in semiconductor device
KR100432794B1 (en) Process for the formation of wiring pattern
JPH0451152A (en) Formation of photoresist pattern
WO2007116362A1 (en) Method of manufacturing a semiconductor device
TWI747942B (en) Method of semiconductor device fabrication
CN112666798A (en) Photoetching method based on one-time exposure
US20050084793A1 (en) Methods and compositions for reducing line wide roughness
US20090111062A1 (en) Pattern Formation Method
EP0504759A1 (en) Photoresist pattern-forming process suitable for integrated circuit production
US7799512B2 (en) Method for forming ring pattern
JP2001350269A (en) Method for producing mask for solder printing
US6380077B1 (en) Method of forming contact opening
TWI286787B (en) Lithography process
KR100741912B1 (en) Method for Forming Fine Photoresist Pattern in Semiconductor Device by Using Double Exposure
JP2000040692A (en) Pattern formation method
KR100399889B1 (en) Method for forming photoresist pattern of semiconductor device
KR100358161B1 (en) Method for manufacturing semiconductor device
JPH05291130A (en) Multilayer resist method and manufacture of semiconductor device
JPH02103551A (en) Photo resist pattern forming method
JPS61131446A (en) Formation of resist pattern
JPS5984428A (en) Patterning method
JPS62165651A (en) Formation of resist pattern
JPH03244116A (en) Formation of resist layer