JPH04506224A - microporous membrane - Google Patents

microporous membrane

Info

Publication number
JPH04506224A
JPH04506224A JP2508643A JP50864390A JPH04506224A JP H04506224 A JPH04506224 A JP H04506224A JP 2508643 A JP2508643 A JP 2508643A JP 50864390 A JP50864390 A JP 50864390A JP H04506224 A JPH04506224 A JP H04506224A
Authority
JP
Japan
Prior art keywords
membrane
extractable
polymer
weight
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2508643A
Other languages
Japanese (ja)
Inventor
ドーリング,マイケル ジョージ ランド
バーカー,デヴィッド ジョン
ジェンティルコーレ,ジョヴァンニ
Original Assignee
シマ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シマ リミテッド filed Critical シマ リミテッド
Publication of JPH04506224A publication Critical patent/JPH04506224A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • C08J2201/0464Elimination of a polymeric phase using water or inorganic fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ミ り ロ 細 孔 腹 膜」 この発明はミクロ細孔重合体膜、その製法、その製造に使われる重合体組成物、 およびそれを使用する電気化学的電池に関する。[Detailed description of the invention] Miriro pore belly film" This invention relates to a microporous polymer membrane, a method for producing the same, a polymer composition used for producing the same, and regarding electrochemical cells using the same.

及」例背飛 特許明細書箱US−’A−3859402号(ビントリフ(Bintliffl  )は、空気から一素を吐き出すことのできる電極の製造に有用である均一なミ クロ細孔性をもつと主張される薄いミクロ細孔フルオロカーボン重合体シート材 料の製造を記載している。フルオロカーボン重合体粒子を金属塩細孔形成剤粒子 と混合し、得られる混合物をシート材料に形成し、たとえばシートを水に浸漬す ることによって金属塩細孔形成剤(たとえばギ酸カルシウム、塩化ナトリウム、 または炭酸ナトリウムである)を除去する。この重合体はポリテトラフルオロエ チレン、ポリトリフルオロエチレン、ポリ(フッ化ビニル)、ポリ(フッ化ビニ リデン)、ポリトリフルオロクロロエチレン、およびその共重合体であることが できる。``Example fly'' Patent specification box US-'A-3859402 (Bintliffl ) is a homogeneous microorganism that is useful in the production of electrodes that can expel a single element from the air. Thin microporous fluorocarbon polymer sheet material claimed to be chromoporous It describes the manufacturing of the food. Fluorocarbon polymer particles with metal salt pore former particles and forming the resulting mixture into a sheet material, e.g. by dipping the sheet in water. metal salt pore formers (e.g. calcium formate, sodium chloride, or sodium carbonate). This polymer is polytetrafluoroe Tyrene, polytrifluoroethylene, poly(vinyl fluoride), poly(vinyl fluoride) polytrifluorochloroethylene), polytrifluorochloroethylene, and its copolymers. can.

特許明細書第US−A−4613441号(コウノ(lohnol ら、アサヒ (Asabilに譲渡された)は、 35 dyne/cm以下の臨界表面張力 をもつ熱可塑性樹脂を互に連結する細孔の三次元網目構造をもつ膜にする方法を 記載している。上記網目構造は、細孔が表面から裏面へと膜を通し実質上直線的 にのびる貫通細孔構造とは対照的である。連結細孔をを含む網目構造は、同一厚 さの貫通細孔膜に比べ、長い通路長と高い多孔度をもち、実際の細孔径は表面に 露出しな細孔径よりはるかに小さい、初期の多孔度は水酸化ナトリウム水溶液に 溶かした微粉シリカを使って膜内に形成され、平均細孔径0.05〜1μと多孔 度30〜70%をもつ構造を与える。ついでこの膜を少なくとも1方向に空間延 伸して多孔度を増し、同時に機械強度を改善する。1実施例では、エチレン/テ トラフルオロエチレン共重合体[Tefzel 200 )を、厚さ75μ、平 均細孔径0.55μ、多孔度85%、ASTM D−762A法で測定し60秒 /100cc Zooμの空気通気率をもつ細孔膜に形成する。しかし、上記A STM試験は水銀多孔度肝を使って行われ、それを通る空気流を支配する材料の 細孔間の相互連結の真の姿を与えない。Patent Specification No. US-A-4613441 (lohnol et al., Asahi (assigned to Asabil) has a critical surface tension of less than 35 dyne/cm We developed a method to make a thermoplastic resin into a membrane with a three-dimensional network structure of interconnected pores. It is listed. The above network structure has pores that run virtually straight through the membrane from the front surface to the back surface. This is in contrast to the through-hole structure that extends over the entire length. The network structure containing connected pores has the same thickness. Compared to other through-pore membranes, it has a longer passage length and higher porosity, with the actual pore diameter being smaller than the surface. The initial porosity, which is much smaller than the exposed pore size, is The membrane is formed using melted fine powdered silica, and has a porous structure with an average pore diameter of 0.05 to 1μ. It gives a structure with 30-70% degree. This membrane is then spatially expanded in at least one direction. It stretches to increase porosity and improve mechanical strength at the same time. In one embodiment, ethylene/te Trifluoroethylene copolymer [Tefzel 200] was 75μ thick and flat. Uniform pore diameter 0.55μ, porosity 85%, measured by ASTM D-762A method for 60 seconds /100cc Formed into a microporous membrane with an air permeability of Zooμ. However, the above A The STM test is performed using a mercury porous liver, which determines the amount of material that governs the air flow through it. It does not give a true picture of the interconnections between pores.

エチレン/テトラフルオロエチレン共重合体fTefzell $5よびエチレ ン/クロロトリフルオロエチレン共重合体f)lalarlのリチウム電池の化 学的悪環境に対する耐性が特許明細書第tJs−A−4405694号(ゲーペ ル(Goebellら)に記載されているが、導電性ジャンパー素子用の非細孔 材料の絶縁性スリーブの関係においてのみ記載されているにすぎない。Ethylene/tetrafluoroethylene copolymer fTefzell $5 and ethylene /chlorotrifluoroethylene copolymer f) lalarl lithium battery production Resistance to adverse academic environments is demonstrated by Patent Specification No. tJs-A-4405694 (Gape described in Goebell et al., a non-porous method for conductive jumper elements. It is only mentioned in connection with an insulating sleeve of material.

我々の特許明細書画EP−A−0188114号は1反覆単位が−(C−H2− )−と−(C工X2Il) −4式中、各Xは独立にフッ素または塩素を表わし 、nとmの値は1より大で6より小さい)であるハロポリマーからなり、多孔度 が少なくとも20容量%である重合体膜を記載し、請求している。l実施例では 、 Tefzelを炭酸リチウムおよびポリエチレンオキシドと配合し、押出し 、抽出可能成分を抽出後ASTM D2873−70により測定し多孔度45% をもつ膜を得た。In our patent specification drawing EP-A-0188114, one repeat unit is -(C-H2- ) - and - (C , n and m values are greater than 1 and less than 6), and the porosity is is at least 20% by volume. l In the example , Tefzel is blended with lithium carbonate and polyethylene oxide and extruded , the porosity was 45% as measured by ASTM D2873-70 after extractable components were extracted. A membrane with .

我々の同時係属中の英国特許出願第8813932.4号は、EP−A−018 8114に報告されているよりも高い水準の多孔度を有し、細孔形成物質の除去 後延伸することなしに高い流体透過率をもつ膜の製造を記載し、請求している。Our co-pending UK Patent Application No. 8813932.4 is EP-A-018 8114 and the removal of pore-forming substances. The production of membranes with high fluid permeability without post-stretching is described and claimed.

上記ハロポリマーと混合して、融解するどきハロポリマーと非相容性でハロポリ マーより低い粘度をもつ抽出可能重合体の存在が、抽出可能塩を一層高い割合で 押出膜中に組み込みすることを可能にし、一層高い多孔度が得られることを開示 している。上記出願は次の特徴をもつ、上記ハロポリマーからなる重合体膜を開 示している。When mixed with the above halopolymer and melted, the halopolymer is incompatible with the halopolymer. The presence of an extractable polymer with a lower viscosity than the polymer allows extractable salts to be extracted in higher proportions. Discloses that it can be incorporated into extruded membranes to obtain higher porosity. are doing. The above application discloses a polymer film made of the above halopolymer having the following characteristics: It shows.

(a) 当該膜は、第1にハロポリマー、へロポリマー100重量部当り150 重量部以上の抽出可能塩、ハロポリマー100重量部当り80重量部以下の抽出 可能重合体の混合物を融解加工し、ただし上記抽出可能重合体はハロポリマーと 共に融解するどきハロポリマーとは完全に均一に混合せずハロポリマーより低い 粘度をもち、そこで融解加工で得られた膜の表面は抽出可能重合体に冨んでおり 、第2に少なくとも若干の抽出可能塩を抽出して膜を多孔性にし、少な(とも若 干の抽出可能重合体を抽出して膜に表面多孔度を与えてつくられ、(b) 膜は 50容量%以上の多孔度をもつ。(a) The membrane first contains a halopolymer, 150 parts by weight per 100 parts by weight of the halopolymer. More than 80 parts by weight of extractable salt, less than 80 parts by weight per 100 parts by weight of halopolymer melt processing a mixture of extractable polymers, with the exception that the extractable polymer is a halopolymer; When melting together, the halopolymer and the halopolymer do not mix completely homogeneously and are lower than the halopolymer. viscosity, so the surface of the film obtained by melt processing is rich in extractable polymers. , secondly, at least some of the extractable salts are extracted to make the membrane porous; (b) the membrane is made by extracting a dry extractable polymer to impart surface porosity to the membrane; It has a porosity of 50% by volume or more.

好ましくは、上記膜は共重合体、たとえば単量体単位としてエチレンおよびテト ラフルオロエチレンからなる共重合体からなるが、クロロエチレン類およびフル オロクロロエチレン類も単量体単位として使われた。別の形では、膜はプロピレ ン、ブチレン、そのハロゲン化類似体のような比較的長い長鎖単量体単位からな る共重合体からなる。この発明に使う特に好ましいハロポリマーは商品名Tef ze1およびHalarとして販売されているものであった。Preferably, the membrane is a copolymer, such as ethylene and tetrene as monomer units. It consists of a copolymer made of lafluoroethylene, but it contains chloroethylene and fluoroethylene. Olochloroethylenes were also used as monomeric units. In another form, the membrane is propylene consisting of relatively long long-chain monomeric units such as butylene, butylene, and its halogenated analogues. It consists of a copolymer. A particularly preferred halopolymer used in this invention has the trade name Tef These were sold as ze1 and Halar.

「膜」の用語は非繊維性自己支持シートを意味するのに使う、ミクロ細孔膜は、 細孔形態および/または配列の詳細が顕微鏡検査によってのみ識別できる細孔膜 である。好ましくは、膜中の細孔または開口は光学顕微鏡を使ってみられるもの より小さく、電子顕微鏡を使って細孔構造の詳細を明らかにできるものである。The term "membrane" is used to mean a non-fibrous self-supporting sheet; microporous membranes are Pore membranes in which details of pore morphology and/or arrangement can only be discerned by microscopic examination It is. Preferably, the pores or openings in the membrane are those that can be seen using a light microscope. It is smaller and allows the details of the pore structure to be revealed using an electron microscope.

一般に細孔の実質的数の最大寸法は、ASTM D−2873−70による水銀 インストルージョン多孔度計で測定し5μ−以下、好ましくは2μm以下である 。Generally, the maximum dimension of a substantial number of pores is Measured with an intrusion porosimeter, it is 5 μm or less, preferably 2 μm or less. .

膜の多孔度は密度で測定し、有利には55%以上、好ましくは約60〜70%ま たはそれ以上である。The porosity of the membrane is measured by density and is advantageously greater than 55%, preferably about 60-70%. or more.

抽出可能重合体を使って得られた英国特許第8813932.4号の膜の重要な 利点はその高い表面多孔度である。高度に充填した重合体を融解加工したとき、 生成物が重合体に富んだ皮をもつ傾向がある。最もふつうの用途に対しては上記 のことは利点であった。それは、生成成型物品における滑らかな表面仕上を保持 しつつ、比較的粗い充填剤粒子の導入によって、一層高価でない重合体組成物を 使えるからである。しかし、融解加工、ついで充填剤の除去によりミクロ細孔膜 をつくるのに高充填組成物を使う場合、重合体の表面皮は明らかに欠点であった 。An important feature of the membrane of UK Patent No. 8813932.4 obtained using extractable polymers The advantage is its high surface porosity. When a highly filled polymer is melt processed, The product tends to have a polymer-rich skin. The above for the most common uses. That was an advantage. It retains a smooth surface finish in the molded articles it produces However, the introduction of relatively coarse filler particles allows for less expensive polymer compositions. This is because it can be used. However, by melt processing and subsequent filler removal, microporous membranes can be produced. The surface skin of the polymer was an obvious disadvantage when using highly filled compositions to make .

表面皮は抽出液が充填剤粒子に近寄るのを妨害し、その溶解速度を減らし、完全 な溶解が可能でないかも知れない、別の問題は膜が不均一であり、その性質が比 較的非多孔性表面層によって決定されることである。膜を形成するため高充填フ ルオロカーボン重合体の融解加工中ハロポリマ〜と非相容性であり、膜の主表面 に移動し、均一性ハロポリマーの皮の形成を妨げる抽出可能重合体によって、上 記の困難が減少され克服された。抽出可能な塩と重合体を、除去しようとする塩 の性質に依存してそのための溶剤、たとえば水性の酸またはアルカリに膜を浸漬 することにより除去するときは、膜の本体内の細孔構造を膜の反対面と連結して いる高多孔性表面が得られた。The surface skin prevents the extract from accessing the filler particles, reducing its rate of dissolution and ensuring complete Another problem that may not be possible is that the film is non-uniform and its properties are This is determined by the relatively non-porous surface layer. A highly filled film is used to form a film. During melt processing of the fluorocarbon polymer, it is incompatible with the halopolymer and the main surface of the membrane by extractable polymers that move and prevent the formation of a homogeneous halopolymer skin. The difficulties described have been reduced and overcome. Salts to remove extractable salts and polymers Soaking the membrane in a solvent, e.g. an aqueous acid or alkali, depending on the nature of the When removing by A highly porous surface was obtained.

上記発明の膜の主表面の細孔構造の性質は添付図面1および2から明らかであり 、これらは抽出可能重合体としてのポリエチレンオキシドの存在および不在でつ くった同様の膜の主表面の顕微鏡写真である1図1の膜はその表面を通し多数の 細孔または空隙10をもつことがみられ、一方図2の膜は一層少ない空隙10と 顕微鏡写真で影としてみえる。ハロポリマーの薄い皮層によってふさがれている ので、空隙に発達していない膜表面下のくぼみである多数の領域12をもつ。The nature of the pore structure on the main surface of the membrane of the above invention is clear from the attached drawings 1 and 2. , these depend on the presence and absence of polyethylene oxide as an extractable polymer. The membrane in Figure 1 is a micrograph of the main surface of a similar membrane. It is seen that the membrane of FIG. 2 has fewer pores or voids 10. It appears as a shadow in a microscopic photograph. occluded by a thin layer of halopolymer Therefore, there are many regions 12 that are depressions under the membrane surface that have not developed into voids.

この外観における差異は性能の差に相当し、図1の膜は12〜15Ωc訳2の抵 抗率をもち、一方図2の膜の抵抗率は同一条件で同一セルで測定し55−60Ω Cl12であった。This difference in appearance corresponds to a difference in performance, and the membrane in Figure 1 has a resistance of 12 to 15Ω On the other hand, the resistivity of the film in Figure 2 was measured in the same cell under the same conditions and was 55-60Ω. It was Cl12.

上記英国特許出願はさらに、ヤバレーター、y細孔構造の形成後未延伸で上記ハ ロポリマーからなる重合体膜からなる電気化学的W池を提供した。この電池は2 個の電気的に隔離されたターミナルをも一つ容器からなることができ、上記容器 はそのなか番゛1ターミナルに連結したアノード、他のターミナルに連結し、た カソード、液体電解質、電解質に溶けたイオン化性重質、アノードとカソードの 間に置かれこれらと接触しているセパレーターをもつ。The above-mentioned British patent application further provides that the above-mentioned H. The present invention provides an electrochemical W pond consisting of a polymer membrane consisting of a polypolymer. This battery is 2 A number of electrically isolated terminals may also be comprised of a single container; Among them, there is an anode connected to the first terminal, an anode connected to the other terminal, and an anode connected to the first terminal. cathode, liquid electrolyte, ionizable heavy substance dissolved in electrolyte, anode and cathode They have a separator placed between them and in contact with them.

上記英国特許出願はさらに、プラスチック物質と、一つCプ、膿の本体に組み込 まれ他は優先的的に(しかしかならずしも完全ではなく)膜の表面Iご移動する 少なくとも2種の添加剤との混合物を膜に融解加工し、少なくとも若干の上記1 つの添加剤を抽出して膜を多孔性にし、少なくとも若干のL2他の添加剤を抽出 して表面多孔度を与えることからなる多孔性膜の製法を提供しており、生成膜は 50容量%以上の多孔度をもつ。The above UK patent application furthermore incorporates a plastic material into the body of the pus. Rarely, others preferentially (but not necessarily completely) migrate to the surface of the membrane. Melt processing the mixture with at least two additives into a membrane, including at least some of the additives described above. Extract one additive to make the membrane porous and extract at least some L2 other additives. We provide a method for producing porous membranes by imparting surface porosity through It has a porosity of 50% by volume or more.

′Migltζぬ この発明の目的は、高い多孔度または一層大きな細孔径の膜への別の経路、また は英国特許出願第8813932.4号に開示のものより高い多孔度をもつ膜へ の経路を提供するにある。'Migltζnu It is an object of this invention to provide an alternative route to membranes with high porosity or larger pore size; to a membrane with a higher porosity than that disclosed in UK Patent Application No. 8813932.4. to provide a route.

抽出可能重合体の分子量が、得られる重合体膜の平均細孔径、表面多孔度、トー トシティ−(tortuosi tyl因子(細孔長さと膜厚との比)に影響を 与え、新規横通の膜を製造できることが見出された。The molecular weight of the extractable polymer depends on the average pore size, surface porosity, and tortuosity of the resulting polymer membrane. influence on the tortuosity factor (ratio of pore length to membrane thickness). It has been found that it is possible to produce novel transversal membranes.

この発明は、(a)反覆単位が−(C−H2−)−および−IC,、X2.)  −(式中、Xは独立にフッ素または塩素を表わし、nとmの値は1より大で6よ り小である)であるハロポリマーと、(b)少なくとも1種の抽出可能塩とハロ ポリマーに実質上不溶の少なくとも1種の抽出可能重合体とからなる重合体組成 物の膜を用意し、ついで少なくとも若干の抽出可能成分を抽出して膜を多孔性に することからなる、20%以上の(好ましくは50%以上の)容量多孔度をもつ 重合体膜の製法を提供する。ただし、抽出可能成分は100万以下の分子量の物 質である7上記分子量は、以下で引用する他の分子量と同様に、たとえばレオロ ジー測定で得られる重量平均分子量である。This invention provides that (a) the repeating unit is -(C-H2-)- and -IC,, X2. ) -(In the formula, X independently represents fluorine or chlorine, and the values of n and m are greater than 1 and 6. (b) at least one extractable salt and a halopolymer which is at least one extractable polymer substantially insoluble in the polymer; preparing a membrane of a substance and then extracting at least some of the extractable components to make the membrane porous. having a volumetric porosity of 20% or more (preferably 50% or more) A method for producing a polymer membrane is provided. However, extractable components have a molecular weight of 1 million or less. The above molecular weights, as well as the other molecular weights cited below, are This is the weight average molecular weight obtained by Zee measurement.

コノ発明ハ、反覆単位力(Cn H211)−および−(CIlx211)−( 式中、各Xは独立にフッ′f:または塩素を表わし、nJ3よびmの値はlより 大で6より小である)であるハロポリマーからなる重合体膜を提供し、上記膜は まずハロポリマー、抽出可能塩、抽出可能重合体を融解加工し、第2に少なくと も若干の抽出可能塩を抽出して膜を多孔性にし、少なくとも若干の上記重合体を 抽出して膜に表面多孔性を与える結果生成され、ただし抽出可能重合体は100 万以下の分子量をもつ。This invention is repeated unit force (Cn H211)- and -(CIlx211)-( In the formula, each X independently represents f: or chlorine, and the values of nJ3 and m are from l. is at most less than 6), the membrane comprising: First, the halopolymer, extractable salt, and extractable polymer are melt processed, and second, at least also extracts some extractable salts to make the membrane porous and at least some of the above polymers. produced as a result of extraction to impart surface porosity to the membrane, with the exception of 100% of the extractable polymer. It has a molecular weight of less than 10,000.

この発明はさらに、上記膜からなるセパレーターを有する電気化学的電池、特に しかし独占的ではないがリチウムアノードと分極電解質を有する電池を提供する 。The invention further provides an electrochemical cell having a separator made of the above membrane, particularly but not exclusively provides batteries with lithium anodes and polarized electrolytes .

へロポリマー100重量部当り、抽出可能塩150重量部以上と抽出可能重合体 80重量部以下からなる融解加工した混合物中に、抽出可能重合体として、室温 で固体であり100万以下、特に100.000−500.000の、特に約3 00.000の分子量をもつ低分子量ポリアルキレンオキシドハロポリマーまた は共重合体の使用は、さらに新規な膜構造を提供する。150 parts by weight or more of extractable salt and extractable polymer per 100 parts by weight of Helopolymer As an extractable polymer in a melt-processed mixture comprising up to 80 parts by weight, at room temperature solid and less than 1 million, especially 100,000-500,000, especially about 3 A low molecular weight polyalkylene oxide halopolymer with a molecular weight of 0.00000 or The use of copolymers provides further novel membrane structures.

そこで、この発明は反覆単位が=(CIIH2−)−およU−(C−X2−)  4式中、各Xは独立にフッ素または塩素を表わし、nとmの値は1より大で6よ り小である)であるハロポリマーからなり、30容量%以上(好ましくは55容 量%以上、特に60〜70′4量%)の多孔度を有し、(i) 0.7us以上 (好ましくは1.0uta以上、特に約1.5μm)の平均細孔径;および/ま たは (ii) 30%以上(好ましくは35%以上、特に約SO%)の表面多孔度、 !3よび/または fiiil 2.5以下の、特に約1.5のトートシティ−因子、をもっ重合体 膜を提供する。Therefore, in this invention, the repeating units are =(CIIH2-)- and U-(C-X2-) In formula 4, each X independently represents fluorine or chlorine, and the values of n and m are greater than 1 and greater than 6. 30% by volume or more (preferably 55% by volume) (i) 0.7 us or more; (preferably 1.0 uta or more, especially about 1.5 μm); and/or Taha (ii) a surface porosity of 30% or more (preferably 35% or more, especially about SO%); ! 3 and/or Polymers with a totcity factor of less than 2.5, especially about 1.5 Provide membrane.

上記で定義したハロポリマーのミクロ細孔膜は、電池セパレーター、電解膜のよ うな種々の高性能用途、および呼吸できる織物、包装、医学用のような少ない需 要用途に使うのに有利な化学的および物理的性質をもつ。The halopolymer microporous membrane defined above can be used as a battery separator, electrolyte membrane, etc. for a variety of high-performance applications such as breathable textiles, packaging, and medical applications. It has chemical and physical properties that make it useful for various applications.

この発明のミクロ細孔膜の重要な利点は高温用途で使用できることである。An important advantage of the microporous membrane of this invention is its ability to be used in high temperature applications.

たとえば、Tefzelの膜は、寸法または多孔度の著しい変化なしに少なくと も約150℃までの温度で使用できる。この発明の膜のすぐれた高温性能は、高 温用、たとえば従来使われたミクロ細孔膜が機能できない高温電気化学的電池で 使用できる。For example, Tefzel's membranes have at least It can also be used at temperatures up to about 150°C. The excellent high temperature performance of the membrane of this invention For warm applications, such as high-temperature electrochemical cells where conventionally used microporous membranes cannot function. Can be used.

この発明によれば、電気化学的電池のアノードとしてふつう使われる反応性金属 、たとえば周期律表の■族、II族金属に対し化学的に安定な膜を製造できる。According to the invention, reactive metals commonly used as anodes in electrochemical cells For example, it is possible to produce a film that is chemically stable against metals of group Ⅰ and group II of the periodic table.

第1に、よく知られたハロゲン化重合体、ポリ(フッ化ビニリデン)(PVF2 1、ポリテトラフルオロエチレン(PTFE)のリチウムおよびナトリウム(少 なくとも)に対する反応性、および第2に膜の高い表面積対バルク比およびした がってリチウムおよび電解質との接触に有効なその高い割合の見地からは、上記 の膜の性質は驚くべきものである。First, the well-known halogenated polymer, poly(vinylidene fluoride) (PVF2) 1. Lithium and sodium (small amount) of polytetrafluoroethylene (PTFE) secondly, the membrane's high surface area-to-bulk ratio and Therefore, in view of lithium and its high proportion available for contact with the electrolyte, the above The properties of the film are surprising.

この発明の膜はまた、たとえば電気化学的電池、電解そう、他の用途に見出され る多くの腐食性液に対し化学的に安定であり得る。そこでこの発明の好ましい膜 は、酸およびアルカリおよび周期律表(the Condensed Chem ical Dictionary。The membranes of this invention may also find use in other applications, such as electrochemical cells, electrolytic batteries, etc. It can be chemically stable to many corrosive liquids. Therefore, the preferred membrane of this invention are acids and alkalis and the periodic table (the Condensed Chem ical Dictionary.

9版、Van Norstrand Re1nhold、1977年に出版され ているような)のVA、VIA族の元素のオキシバリド、たとえば塩化チオニル 、塩化スルフリルおよび塩化ホスホリルのような反応性液に対し不活性である。Published in 9th edition, Van Norstrand Re1nhold, 1977. oxyvalides of elements of groups VA and VIA (such as , sulfuryl chloride and phosphoryl chloride.

そこで、比較的厚い弱い不織ガラス繊維マットの使用が従来さけがたかった多く の用途に、この膜を使用できる。この膜は電池に組み込まれるセパレータとして 使うとき著しい利点をもつ、高い多孔度にもかかわらず、膜は驚くほど強く、取 扱い容易である。上記用途の例は、所定の標準寸法の電池でリチウム/塩化チオ ニル電池のセパレーターである。一層長い巻回された電極材料とセパレーターを 電池の有効内部寸法にとりつけることができ、所定の電流出力に対し一層低い電 流密度を使用でき、一層高い材料の利用度が得られる。Therefore, the use of comparatively thick and weak non-woven glass fiber mats has hitherto been unavoidable. This membrane can be used for the following applications. This membrane is used as a separator incorporated into batteries. Despite the high porosity, which has significant advantages in use, the membrane is surprisingly strong and difficult to remove. Easy to handle. An example of the above application is a lithium/thiochloride battery in a given standard size battery. This is a separator for batteries. Longer wound electrode material and separator Can be mounted to the effective internal dimensions of the battery and provides lower current for a given current output. Flow densities can be used, resulting in higher material utilization.

したがって、この発明は別の面では、セパレーターがミクロ多孔性で上記のハロ ポリマーからなる電気化学的電池を提供する。Therefore, another aspect of the invention provides that the separator is microporous and An electrochemical cell comprising a polymer is provided.

さらに別の面では、この発明は (a) 反覆単位が−(C−82−)−および−(C−X2−) C式中、各x は独立にフッ素または塩素であり、nとmの値は1より大で6より小である)で あるハロポリマーの第1成分と、ハロポリマー100重量部当り150重量部以 上の抽出可能塩およびハロポリマー100重量部当り80重量部以下で共に融解 するどきハロポリマーより低い粘性でハロポリマーと非相容性であり100万以 下の分子量のポリアルキレンオキシドである抽出可能重合体の第2成分とを混合 し、 (b) 上記混合物を押出し、抽出可能重合体が表面に移動している膜を形成し 、(c) 少な(とも若干の抽出可能塩を抽出して、連結細孔を含む、三次元網 目構造に膜を変換し、少なくとも若干の抽出可能重合体を抽出して膜の主表面を 通し開いている細孔数を増加さすことからなる、20%容量以上の多孔度をもつ 重合体膜の製造方法を提供する。In yet another aspect, this invention (a) The repeating unit is -(C-82-)- and -(C-X2-) in the C formula, each x are independently fluorine or chlorine, and the values of n and m are greater than 1 and less than 6). a first component of a halopolymer and 150 parts by weight or more per 100 parts by weight of the halopolymer; The above extractable salt and molten together at 80 parts by weight or less per 100 parts by weight of halopolymer. It has a lower viscosity than the sudden halopolymer, is incompatible with the halopolymer, and has a viscosity of more than 1 million yen. Mixed with a second component of the extractable polymer, which is a polyalkylene oxide of molecular weight below death, (b) extruding the above mixture to form a film in which the extractable polymer has migrated to the surface; , (c) a three-dimensional network containing connected pores, extracting some extractable salts. Transform the membrane into an eye structure and extract at least some extractable polymer from the main surface of the membrane. Having a porosity of 20% or more by volume, which consists of increasing the number of open pores. A method of manufacturing a polymer membrane is provided.

上記方法によりハロポリマーのミクロ細孔膜を便利に製造できる。抽出可能成分 の注意深い選択により、上記多孔度が得られる。Microporous halopolymer membranes can be conveniently produced by the above method. Extractable components By careful selection of the porosity, the above porosity is obtained.

この発明はまた、 (a) 反覆単位が−(c、、 H2,)−および−(C1lX2.) −(式 中、各Xは独立にフッ素または塩素を表わし、nとmの値は1より大で6より小 である)であるへロボrノマー: (b) 150重量部以上の抽出可能塩:(c) ハロポリマー100重量部当 り80重量部以下の分子量100万以下をもつポリアルキレンオキシドである抽 出可能重合体からなる、上記膜の押出用の重合体組成物を提供する。This invention also (a) The repeating units are -(c,,H2,)- and -(C1lX2.)-(formula , each X independently represents fluorine or chlorine, and the values of n and m are greater than 1 and less than 6. is) is a hero nomer: (b) 150 parts by weight or more of extractable salt: (c) per 100 parts by weight of halopolymer extractable polyalkylene oxide with a molecular weight of 1 million or less and a molecular weight of 80 parts by weight or less. The present invention provides a polymer composition for extrusion of the above-mentioned membrane, comprising an extrudable polymer.

この発明はさらに、細孔構成の形成後延伸されておらず、反覆単位が−(C。The invention further provides that the pore structure is not stretched after formation and that the repeating units are -(C.

H2n)−8よび−(C工x2Ia)−(式中、各Xは独立にフッ素または塩素 を表わし、nとmの値は1より大で6より小である)であるハロポリマ〜がうな り、膜表面間に高水準のトートシティ−を与える互に連結する細孔を含む三次元 ミクロ細孔構造を有し、60容量%以上(たとえば70〜80容量%)の多孔度 を有し、15〜200μの厚さ、および膜を通る空気流が20psiで少なくと も200c+w3cr2sinす、好ましくは少な(とも900cra3cm− 2IIin−’のような高い多孔表面を有する重合体膜からセパレーターがなっ ている電気化学的電池を提供する。H2n)-8 and -(Cx2Ia)-(wherein each X is independently fluorine or chlorine , and the values of n and m are greater than 1 and less than 6). A three-dimensional structure containing interconnected pores that provides a high level of totocity between membrane surfaces. Has a microporous structure and has a porosity of 60% by volume or more (e.g. 70-80% by volume) with a thickness of 15-200μ, and an air flow through the membrane of at least 20psi. 200c+w3cr2sin, preferably less (both 900cra3cm- The separator is made of a polymer membrane with a highly porous surface such as 2IIin-'. To provide an electrochemical cell with

本発明の別の面において、重合体のブレンドを含むある櫓の高充填組成物は、テ ープに押出し、押出機ダイス型の下流に位置した加圧ローラーを通し厚さを減ら すとき、破壊し易いことがわかった。In another aspect of the invention, certain oar highly filled compositions comprising blends of polymers are The material is extruded into a mold and passed through a pressure roller located downstream of the extruder die to reduce its thickness. It was found that it was easy to destroy when

この発明の別の面によって、上記問題は押出す混合物に酸化防止剤を存在させる ことにより解決された。According to another aspect of the invention, the above problem is solved by the presence of an antioxidant in the extrusion mixture. It was resolved by this.

吐直り公待激Ω記載 抽出可能塩は、ハロポリマー100重量部当り150〜300重量部、好ましく は150〜200重量部の量で存在させることができる。抽出可能塩の少なくと も少量は抽出後腹内に残るようであり、残存塩は使用時膜が接触する他物質と化 学的に適合する必要があるがら、多孔膜の最終用途にしたがって抽出可能塩を選 択する必要がある。たとえば、膜を反応性金属アノードをもつ電気化学的電池の セパレーターとして使わうとするときは、抽出可能塩は他の電池成分と電気化学 的に相容性でなければならない、そこで塩は、アノードの金属と少なくとも同じ 電気化学的陽性の金属の塩でなければならない、たとえば、膜をリチウム電池の セパレーターとして使わうとするときは、塩はリチウム塩であるべぎである。Registration public waiting Geki Ω description The extractable salt is preferably 150 to 300 parts by weight per 100 parts by weight of halopolymer. may be present in an amount of 150 to 200 parts by weight. At least extractable salt It seems that a small amount of salt remains in the abdomen after extraction, and the remaining salt is converted into other substances that the membrane comes into contact with during use. The extractable salt should be selected according to the end use of the porous membrane, although it must be chemically compatible. You need to choose. For example, membranes can be used in electrochemical cells with reactive metal anodes. When used as a separator, extractable salts can be mixed with other battery components and electrochemically. the salt must be at least as compatible as the anode metal. The membrane must be an electrochemically positive metal salt, for example, in a lithium battery. When used as a separator, the salt is a lithium salt.

好ましいリチウム塩は特に高い分解温度をもち、フルオロカーボンの加工に必要 な温度に耐えられ、リチウム電池系と相客性である炭酸塩、および塩化物、リン 酸塩、アルミン酸塩、およびより好ましくはないが硝酸塩、硫酸塩、トリフルオ ロメチルスルホン酸塩、テトラフルオロホウ酸塩をも含む、仕上った膜において 、EP−A−0188114に比較し炭酸リチウムの増加量の効果は膜を通る空 気流量を増すこと(セパレーターの伝導度に関連する)である、たとえば、炭酸 リチウムを使う場合、最終膜の多孔度の点からは、炭酸リチウムを流体エネルギ ーミルまたは粒子コリダー内で粉砕し、6μ以上の粒度の公称上限、典型的には 15または25μの粒度の公称上限まで粉砕することが有利なことがわかった。Preferred lithium salts have particularly high decomposition temperatures and are necessary for processing fluorocarbons. carbonate, chloride, and phosphorus, which can withstand high temperatures and are compatible with lithium battery systems. acid salts, aluminates, and less preferably nitrates, sulfates, trifluorocarbons, In the finished membrane, which also contains lomethyl sulfonate and tetrafluoroborate. , compared to EP-A-0188114, the effect of increasing the amount of lithium carbonate is increasing the airflow (related to the conductivity of the separator), e.g. When using lithium, the porosity of the final membrane requires that lithium carbonate be used as a fluid energy source. - milled in a mill or particle collider to a nominal upper limit of particle size of 6μ or more, typically It has been found advantageous to grind to a nominal upper limit of particle size of 15 or 25μ.

この比較的大きな寸法でも押出膜内に炭酸リチウムを比較的高く含めることがで き、厚さ約50μの最終膜を製造できる。驚くことに、25μ以下の最大寸法の 粒子を50u膜に組み込むことができる。しかし製造の点からは、この寸法の粒 子では60μが好ましい、空気流の増加は互に連結する細孔の寸法の増加の結果 と考えらハる8我々の初期の特許明細書第EP−A−0188114号と比較す るとき、この発明により高い多孔膜で膜を通る空気流の9倍の増加が達成され、 またCoulterボロメータ−を使い測定し平均粒度は0.11zから0.5 μに増加していた。This relatively large size also allows for a relatively high inclusion of lithium carbonate within the extruded membrane. A final membrane with a thickness of about 50μ can be produced. Surprisingly, the maximum dimension of less than 25μ Particles can be incorporated into 50u membranes. However, from a manufacturing point of view, grains of this size 60μ is preferred for children, the increased airflow is a result of the increased size of the interconnecting pores. 8 Compare with our earlier patent specification No. EP-A-0188114. A nine-fold increase in airflow through the membrane is achieved with a highly porous membrane by this invention when Also, the average particle size was measured using a Coulter bolometer and ranged from 0.11z to 0.5 It had increased to μ.

1種の溶剤に溶けるように、抽出可能な重合体と塩を選ぶのが特に好ましい。It is particularly preferred to choose extractable polymers and salts so that they are soluble in one solvent.

これは重合体と塩の抽出を一層便利にし、著しく少ない抽出で行える。便利には 、重合体と塩を水または酸水溶液のような水性溶剤に洛けるように選ぶ、しかし 、他の溶剤を選択できる。ある用途では、抽出溶剤は使用時膜が接触する液、た とえば電気化学的電池の電解質であることができる。This makes extraction of the polymer and salt more convenient and requires significantly less extraction. Conveniently , the polymer and salt are selected to be dissolved in water or an aqueous solvent such as an aqueous acid solution, but , other solvents can be selected. In some applications, the extraction solvent is a liquid that the membrane contacts during use. For example, it can be an electrolyte in an electrochemical cell.

抽出可能重合体はフルオロカーボン重合体と非相容性(すなわち両者を融解する とき実質上混合しない)で1両者が同一温度のとき融解フルオロカーボン重合体 よりも低い粘度をもつ。へロポリマー重量部当り80重量部以下の量で抽出可能 重合体を存在させるのが有利である。抽出溶剤中で、ハロポリマーの溶解度より 著しく高い溶解度をもつように選ばれる。水または他の水性ベース溶剤を溶剤と して選ぶときは、抽出可能重合体は次のリスト(これが全部ではない)から選ぶ ことができる: アルキレンオキシドのホモポリマーおよび共重合体。The extractable polymer is incompatible with the fluorocarbon polymer (i.e., it melts both The fluorocarbon polymer melts when both are at the same temperature. has a lower viscosity than Can be extracted in an amount of 80 parts by weight or less per part by weight of helopolymer Advantageously, a polymer is present. The solubility of the halopolymer in the extraction solvent Selected to have extremely high solubility. Water or other water-based solvents as solvents When selecting extractable polymers, choose from the following list (this is not exhaustive): be able to: Alkylene oxide homopolymers and copolymers.

ビニルアルコールのホモポリマーおよび共重合体:ビニルピロリドンのホモポリ マーおよび共重合体ニアクリル酸のホモポリマーおよび共重合体:メタクリル酸 のホモポリマーおよび共重合体。Homopolymers and copolymers of vinyl alcohol: Homopolymer of vinylpyrrolidone Homopolymers and copolymers of Niacrylic Acid: Methacrylic Acid Homopolymers and copolymers of.

ある橿の用途では、多糖のようなある種の天然産重合体を抽出可能溶剤とじて使 用もできる。In some applications, certain naturally occurring polymers, such as polysaccharides, are used as extractable solvents. You can also use it for business.

特に好ましい物質は、高品名Po1yoxとして販売されているもののようなエ チレンオキシド重合体である。エチレンオキシド重合体(PEO)は水溶性であ り融解加工できるから、抽出可能重合体として使うことは有利である。しかし、 ポリエチレンオキシドがETFHの押出しに使う高温、高ぜん新条件で実質上劣 化しないことは驚(べきことである、PEOの劣化は酸性媒体中で促進され、ま たTefzelのようなフルオロカーボン重合体の押出中痕跡量のHFが放出さ れ、これ力τPEOの劣化の触媒となることが予想される。抽出可能塩として使 われる炭酸リチウムもHFの酸受容体として働らき、それによってPEOを押出 機を通過するのに十分長く生き残すことができると考λられる。たとえばポリエ チレンオキシドホモポリマーの分子量は20.000〜5.000.000の範 囲であることができ、約4.000.000の分子量のものfPolyox W SR301、商品名)を便って満足な結果を得た。高多孔度材料の製造には、室 温で固体だが低分子のもの、たとえばPo1yox WSRN 750 (分子 300.000)およびPo1yox N I O(分子量100.000)を 使うのが望ましいことがある。Particularly preferred materials are those sold under the high grade name Polyox. It is a tyrene oxide polymer. Ethylene oxide polymer (PEO) is water soluble. Its use as an extractable polymer is advantageous because it can be melt processed. but, Polyethylene oxide is virtually inferior under the high temperature, high-strength conditions used in ETFH extrusion. It is surprising that the degradation of PEO is accelerated in acidic media and Trace amounts of HF are released during extrusion of fluorocarbon polymers such as Tefzel. This force is expected to act as a catalyst for the deterioration of τPEO. Used as extractable salt Lithium carbonate also acts as an acid acceptor for HF, thereby extruding PEO. It is believed that they can survive long enough to pass through the aircraft. For example, Polie The molecular weight of tyrene oxide homopolymer ranges from 20.000 to 5.000.000. fPolyox W with a molecular weight of approximately 4.000.000 Satisfactory results were obtained using SR301 (trade name). The production of highly porous materials requires Something that is solid at high temperatures but has a low molecular weight, such as Polyox WSRN 750 (molecular 300.000) and Polyox NIO (molecular weight 100.000) It may be desirable to use it.

配合物の全重量の1〜3重量%の量で、組成物に加工助剤または可塑剤を添加す ることが有利なこともわかった。使って有利なことがわかった可塑剤は、ふつう 放射緑橋かけ増進剤として使われるシアヌル酸トリアリルおよびイソシアヌル酸 トリアリルである。膜製造の融解加工段階で遭ぐうするきびしし1加工条件下で の可塑剤としての上記化合物の効果は、塩および抽出可能重合体の抽出中膜力) ら実質上完全に除去される発見と共に、この発明のさらに驚くべき特徴である。Processing aids or plasticizers may be added to the composition in an amount of 1 to 3% by weight of the total weight of the formulation. I also found it advantageous to do so. Plasticizers that have been found to be advantageous in their use are usually Triallyl cyanurate and isocyanuric acid used as radioactive green crosslinking enhancers It is triallyl. Severe processing conditions encountered during the melt processing stage of membrane production The effect of the above compounds as plasticizers during the extraction of salts and extractable polymers (membrane forces) It is a further surprising feature of the present invention, along with the discovery that it is virtually completely eliminated.

使用できる他の加工助剤または可塑剤は高温可塑剤、たとえばReofos95  (Ciba Geigylまたは1ル酸トリトリルのようなリン酸エステル可 塑剤を含む。Other processing aids or plasticizers that can be used include high temperature plasticizers such as Reofos 95. (Phosphate esters such as Ciba Geigyl or tritolyl monoruate are possible) Contains plastics.

我々の同時係属中の英国特許出願第8813932.4号に開示のものと少なく とも等しい水準の充填剤をもつ膜の等級では、テープの破壊を最小にするために 酸化防止剤を組み込むのが望ましいことがわかった。この酸化防止剤Gま立体障 害のあるアミン型のものであることができるが、好ましくはフェノール性酸イヒ 防止剤、特に立体障害のあるフェノール性酸化防止剤である。ブチル化ヒドロキ シトルエン(BIT)で特に満足な結果が得られることを我々は見出した。必要 な酸化防止剤の割合は、酸化防止剤の正確な性質と使用する組成物に依存し変化 するが、少なくとも0.5重量%の量が望ましく、ブチル化ヒドロキシトルエン 1〜2重量%、特に約2重量%を使うとき特に良好な結果が得られることを見出 した。一層多量を添加できるが、この増加は生産または性能の利点を埋合せるこ となく費用を増す、勿論、酸化防止剤は次の抽出工程の条件下で容易に実質上完 全に除去されるように選ぶのが好ましい。As disclosed in our co-pending UK Patent Application No. 8813932.4, For membrane grades with filler levels equal to It has been found desirable to incorporate antioxidants. This antioxidant G is a steric hindrance. It can be of the harmful amine type, but is preferably a phenolic acid. inhibitors, especially sterically hindered phenolic antioxidants. butylated hydroxy We have found that particularly satisfactory results are obtained with citoluene (BIT). need The proportion of antioxidants will vary depending on the exact nature of the antioxidant and the composition used. however, an amount of at least 0.5% by weight is desirable; It has been found that particularly good results are obtained when using 1 to 2% by weight, especially about 2% by weight. did. Higher amounts can be added, but this increase may not offset any production or performance benefits. Of course, antioxidants can easily be virtually completed under the conditions of the subsequent extraction step. It is preferable to select such that it is completely removed.

双スクリュー押出機または20−ルミルのような通常の重合体配合装置を使って 、膜の成分をブレンドできる。Uは好ましくは薄いストリップまたはシートとし て形成され、融解加工技術たとえば押出によって上記形につくられるが、吹込お よび圧縮成型技術が使える別の技術の例である。融解加工技術は、一定した性質 の膜をつくることができ、また薄膜の製造を可能にするので望ましい、さらに、 融解加工技術は膜の連続製造を可能にする。膜を使用時接触する別の成分上に押 出し、または別の成分と共に押出すことができる。一旦形成したら、膜を適当な 寸法の片に切断でき、または輸送と貯蔵が容易なようにロールにすることができ る。using conventional polymer compounding equipment such as a twin-screw extruder or a 20-lumin , the components of the membrane can be blended. U is preferably a thin strip or sheet It is formed into the above shape by melt processing techniques such as extrusion, but blowing and and compression molding techniques are examples of other techniques that can be used. Melt processing technology has constant properties It is desirable because it allows the production of thin films, and furthermore, Melt processing technology allows continuous production of membranes. Press the membrane onto another component that it comes into contact with during use. It can be extruded or extruded with other ingredients. Once formed, the membrane is Can be cut into sized pieces or rolled into rolls for easy transport and storage Ru.

膜の選ばれる最終厚さは、最終用途および一般に考慮する必要のある望む強度、 たわみ性、障壁性のような因子に依存する。膜材料を150μm以下、好ましく は75μ■以下、典型的には50〜70μ嘗の厚さに製造できる。The final thickness chosen for the membrane depends on the end use and the desired strength, which generally needs to be considered. Depends on factors such as flexibility and barrier properties. The membrane material is 150 μm or less, preferably can be manufactured to thicknesses up to 75 microns, typically between 50 and 70 microns.

上記方法は、抽出可能成分の抽出前に、厚さを減らすように膜を変形する工程を 含むことができる。たとえば、膜の寸法、細孔の望まれる性質、ハロポリマーの 性質、抽出可能成分に依存して、膜を25%まで、50%まで、または80%以 上変形できる。好ましくはローラー、たとえば抽出ダイス型のラインにあるニッ プローラーを使って変形を実施するが、フィルムの延伸を含む他の技術を使用で きる。膜の変形は抽出工程の効率を増すことができ、また細孔の性質に影響を与 え得る。たとえば、膜をニップローラーを通すと、細孔のトートシティ−に影響 を与え得る。充填剤の抽出前の変形の利点は、抽出されていない充填剤が充填剤 の個々の粒子間の膜の局所的破裂の見込みを増し、そこで充填剤を抽出するどき 細孔量連結を増すことである。充填剤を除去後の延伸は細孔径を増すが、相当し て細孔の互の連結を増さないから一層有利ではない。The above method includes the step of deforming the membrane to reduce its thickness before extraction of the extractable components. can be included. For example, membrane dimensions, desired pore properties, halopolymer Depending on the nature, extractable components, membrane Can be transformed upward. Preferably a roller, e.g. Deformation is performed using a prowler, but other techniques including film stretching can be used. Wear. Deformation of the membrane can increase the efficiency of the extraction process and also affect the nature of the pores. It can be done. For example, passing the membrane through a nip roller will affect the totity of the pores. can be given. The advantage of deformation before extraction of the filler is that the unextracted filler is increases the likelihood of local rupture of the membrane between individual particles, where the filler is extracted. The goal is to increase pore volume connectivity. Stretching after removing the filler increases the pore size, but the It is even less advantageous because it does not increase the interconnection of the pores.

この発明を参考実施例および実施例によってさらに記載する。The invention is further described by reference examples and examples.

1曳叉施ヨ エチレン/テトラフルオロエチレン共重合体fTefzel 210) 、炭酸 1ノチウムおよびポリエチレンオキシド(Polyox WSR301、商品名 )を双スク1ノ二−配合押出機を使って十分に配合し、Tefzel 45重量 部、表に示した量の炭酸1ノチウムとPo1yoxを含む均一ブレンドを得た。1st place Ethylene/tetrafluoroethylene copolymer fTefzel 210), carbonic acid 1 Notium and polyethylene oxide (Polyox WSR301, trade name ) were thoroughly blended using a twin-screw one-piece compounding extruder, and Tefzel 45 weight A homogeneous blend was obtained containing mononotium carbonate and Polyox in the amounts shown in the table.

可塑剤を上記混合物に加える場合Cよ、均一に混合するまで転倒ブレンドする。When adding plasticizer to the above mixture, blend by end-over-end until evenly mixed.

コンパウンドを単一スクリュー押出機を使って押出し、厚さ0.1msの膜をつ くり、これをローラーを使しX100〜175℃でロールかけし厚さ約50μ− の膜をつ(つた、この薄膜を湿潤剤としてTeepalを含む14%HCI溶液 で室温(約23℃)で処理し、Tefzelのミクロ細孔ウエヴに残っている炭 酸リチウムとPo1yoxを除いた。膜の乾燥前に、蒸留水で洗って過剰の酸と 反応生成物を除去した。 Coulterポリメーターを使LAASTM D2 873−70によって測定した膜の多孔度と細孔径分布を添付表に示す、膜を通 る空気流は:2Qpsiの圧力差での値である。The compound was extruded using a single screw extruder and passed through a 0.1 ms thick membrane. Cut it out and roll it using a roller at 100~175℃ to a thickness of about 50μ. This thin film was applied to a 14% HCI solution containing Teepal as a wetting agent. at room temperature (approximately 23°C) to remove the remaining charcoal from the Tefzel microporous web. Lithium oxide and Polyox were removed. Before drying the membrane, remove excess acid by washing with distilled water. Reaction products were removed. LAASTM D2 using Coulter Polymeter The porosity and pore size distribution of the membrane measured by 873-70 are shown in the attached table. The air flow is: at a pressure difference of 2 Qpsi.

Sz Pts 重量部 部 値 実験 μ潟 塩 TAICPEO空気流1 最小 公称 最大A 6 100  0 22 <1 0.109 0.128 0.294B 6 167 5.8  22 2.8 0.109 0.128 0.264C’6 167 6 3 3 5 0.112 0.180 0.475D 15 167 B 33 + 3.3 0.243 0.4+、6 0.950E 15 200 6.7 3 3 22 0.271 0.465 0.1122F 25 167 6 33  16 0.300 0.473 1..133G 25 200 6.7 3 3 19 0.262 0.454 1.191塩=炭酸リチウム ■^IC=イソシアヌル酸トリアリル * l/+minで測定した空気流 Sよ=塩粒子のサイズ 叉施偲1 添付表に示したポリエチレンオキシド(Polyoに)等吸上よびTefzel  100重量部当り表に示した炭酸リチウムとPo1yoxの量を使用し、参考 実施例の操作をくり返した0表の配合物1.1はイソシアヌル酸トリアリルを含 まず、配合物1.2はTefzel 1. O0重量部当り6重量部を含み、配 合物1.3〜1.5は7重量部を含む、湿潤剤は、リン酸エステル基剤のアニオ ン湿潤剤のTeepolから、非イオン湿潤剤でありポリエチレンオキシドの変 性形であるTritonXに変えた。押出し膜を示した厚さにロールがけし、上 記のように処理した。生成膜を通る空気流は、膜を横切る圧力差20psiで1 7sinで測定した6容量多孔度は密度により測定した。セパレーター表面の走 査電子顕微鏡写真をとり、多孔領域を明らかに決定するため上記写真を拡大し、 画像分析器を便って多孔領域の面積を測定し、多孔領域の面積により構成する全 面積の百分率を計算し、表面多孔度を測定した。電解質の抵抗を測定し、試験電 池でセパレーターとして使った膜片の多孔度、厚さ、面積を測定し、電解質の比 伝導度および電解質中のセパレーターの抵抗を測定することにより、トートシテ ィ−(tortuosityl因子を計算した。トートシティ−因子は次式によ って計算した。Sz Pts parts by weight parts value Experiment μ Lagoon Salt TAICPEO Airflow 1 Minimum Nominal Maximum A 6 100 0 22 < 1 0.109 0.128 0.294B 6 167 5.8 22 2.8 0.109 0.128 0.264C'6 167 6 3 3 5 0.112 0.180 0.475D 15 167 B 33 + 3.3 0.243 0.4+, 6 0.950E 15 200 6.7 3 3 22 0.271 0.465 0.1122F 25 167 6 33 16 0.300 0.473 1. .. 133G 25 200 6.7 3 3 19 0.262 0.454 1.191 salt = lithium carbonate ■^IC = triallyl isocyanurate *Airflow measured in l/+min S = size of salt particle 叉し偲1 Polyethylene oxide (Polyo) etc. as shown in the attached table and Tefzel Use the amounts of lithium carbonate and Polyox shown in the table per 100 parts by weight, and Formulation 1.1 of Table 0, which was obtained by repeating the procedure of the example, contains triallyl isocyanurate. First, formulation 1.2 is Tefzel 1. Contains 6 parts by weight per part by weight of O0, and the distribution Compounds 1.3-1.5 contain 7 parts by weight, the wetting agent is a phosphate ester-based anionic from Teepol, a non-ionic wetting agent, to modified polyethylene oxide. The sex form was changed to Triton X. Roll the extruded membrane to the indicated thickness and Processed as described. The air flow through the production membrane is 1 with a pressure difference of 20 psi across the membrane. 6 Volume porosity measured at 7 sin was determined by density. The running of the separator surface Take an electron micrograph and enlarge the above photograph to clearly determine the porous area. The area of the porous region is measured using an image analyzer, and the total area constituted by the area of the porous region is The area percentage was calculated and the surface porosity was determined. Measure the resistance of the electrolyte and The porosity, thickness, and area of the membrane pieces used as separators in the pond were measured, and the electrolyte ratio was determined. By measuring the conductivity and resistance of the separator in the electrolyte, The tortuosity factor was calculated using the following formula: I calculated that.

式中、kは電解質の比伝導度(Ω”cm−’) 、 Roは電解質中のセパレー ターの抵抗(Ω)、Aはセパレーターの面積(cm2) 、 Pは膜の多孔度、 Lは膜の厚さである。結果は、分子量が4.000.OOO[Po1yoxWS R301)から300.000fPolyoxWSRN750)に減少すると、 細孔径と表面多孔度が増加することを示している。Po1yoxの分子量が約1 00.000(PolyoxN 10)に減少すると、細孔径、表面多孔度、空 気流の著しい増加とトートシティ−因子の著しい減少が認められる。所定の電解 質中のセパレーター膜のイオン伝導度は膜の多孔度の細孔構造に依存するから、 これらの差異は改善された電気的性能をもたらすはずである。In the formula, k is the specific conductivity of the electrolyte (Ω”cm-’), and Ro is the separator in the electrolyte. resistance of the membrane (Ω), A is the area of the separator (cm2), P is the porosity of the membrane, L is the thickness of the membrane. As a result, the molecular weight was 4.000. OOO[Po1yoxWS R301) to 300.000fPolyoxWSRN750), It shows that the pore size and surface porosity increase. The molecular weight of Polyox is approximately 1 When it decreases to 00.000 (PolyoxN 10), the pore size, surface porosity, and voids decrease. A significant increase in airflow and a significant decrease in tote city factor are observed. Predetermined electrolysis Since the ionic conductivity of the separator membrane in the medium depends on the pore structure of the membrane's porosity, These differences should result in improved electrical performance.

災施透ス 夫々セパレーターとして試料1. 1j5よび1.5の材料、1.8M塩化チす ニル、電極として多孔炭素カソード、リチウム箔アノードを使い、同一構造の試 験電池をつくった8両電池は1 mA/cvs2で放電し、夫々動作電圧2.6 0V、3.30Vであった。第2の電池の一層高い動作電圧は、試料1.5の電 池の増加した多孔度と一層開いた細孔構造の結果と考えられる。Disaster relief Sample 1 was used as a separator, respectively. 1j5 and 1.5 materials, 1.8M nitrogen chloride A sample with the same structure was prepared using a porous carbon cathode and a lithium foil anode as electrodes. The 8 batteries that made the test battery were discharged at 1 mA/cvs2, and each had an operating voltage of 2.6 0V, 3.30V. The higher operating voltage of the second cell is the same as that of sample 1.5. This may be a result of the increased porosity and more open pore structure of the pond.

試料 塩 PEOPEO厚さ 平均 空気流 体積 表面 トートシティ一番号  重量部 重量部 等級 μl 細孔径 cs3>−2vair+−’ 多孔度  多孔度 因子1.1 100 22 301. 40−500.09−0.1 5 50−100 50 20 4.01.2 168 27 301 40− 500.15−0.30 200−800 60 25 3.01.3 200  35 301 60 0.40−0.70 1000−1500 66 30  2.01.4 200 35 N750 60 0.70−1.0 1000 −1500 66 35−50 2.01.5 200 35 NIO601, 50−3,0550ロー12500 66 52 1.5実五l糺ジ 次の組成(重量部)をもつ押出用混合物について酸化防止剤の効果をしらべた。Sample Salt PEOPEO Thickness Average Air Flow Volume Surface Tote City Number Part by weight Part by weight Grade μl Pore diameter cs3>-2vair+-' Porosity Porosity factor 1.1 100 22 301. 40-500.09-0.1 5 50-100 50 20 4.01.2 168 27 301 40- 500.15-0.30 200-800 60 25 3.01.3 200 35 301 60 0.40-0.70 1000-1500 66 30 2.01.4 200 35 N750 60 0.70-1.0 1000 -1500 66 35-50 2.01.5 200 35 NIO601, 50-3,0550 low 12500 66 52 1.5 real five l taji The effect of the antioxidant was investigated for an extrusion mixture having the following composition (parts by weight).

Tefzel 210 100 炭酸リチウム 130 Po1.yox N750 17. 5 ・イソシアヌル酸トリアリル (2重 量%となるよう)Tefzel (ペレッ日と炭酸リチウム(粉末、平均寸法2 5μ)の等重量混合物とPo1yoxと酸化防止剤(存在するとき)とを、Pa penmeir羽根ミキサーで1500 rpmで室温で2分混合した。生成混 合物を、Tefzelが融解し他の成分がそのなかに均一に分散するように、2 50〜260℃で双スクリュー配合機を通した。ストランドとして出てきた生成 物をチップに変えた。得られたチップをさらに炭酸リチウム粉末と混合し、同一 のミキサーと条件を使用し、上記の組成物を得た。2段階混合はTefzel中 への炭酸リチウムの比較的高い割合の分散を助け、炭酸リチウム粒子の凝集を防 ぐ、得られた混合物を、ツイフチの「コートハンガー」ダイス型をもつ32關単 −スクリュー押出機を使い265℃のダイス型温度で押出し、幅ツイフチで典型 的には厚さ約500μ腫の平らなテープを得た。得られたテープを、120℃に 保ったニップローラーで60psi圧で、テープを厚さ11OuI11に減少す るような回転速度でロールかけした。このテープを巻取装置に巻取った。別の操 作で、ついでテープを巻取装置から常温で5〜lO分の滞留時間で希塩酸浴を通 し、洗浄タンクを通し、乾燥した。Tefzel 210 100 Lithium carbonate 130 Po1. yox N750 17. 5. Triallyl isocyanurate (double %) Tefzel (pellet day and lithium carbonate (powder, average size 2 5μ) and Polyox and antioxidant (when present) at Pa Mixed in a Penmeir blade mixer at 1500 rpm for 2 minutes at room temperature. generation mixture The mixture was heated for 2 minutes so that the Tefzel melted and the other ingredients were uniformly dispersed therein. Passed through a twin screw compounder at 50-260°C. Generation that came out as strands I turned things into chips. The obtained chips were further mixed with lithium carbonate powder and the same The above composition was obtained using a mixer and conditions. Two stage mixing in Tefzel helps disperse a relatively high proportion of lithium carbonate into the lithium carbonate and prevents agglomeration of lithium carbonate particles. Then, pour the resulting mixture into a 32-piece die with a Twift “coat hanger” die. -Extruded using a screw extruder at a die mold temperature of 265℃, typically with a wide width A flat tape approximately 500 μm thick was obtained. The obtained tape was heated to 120°C. Reduce the tape to a thickness of 11 OuI11 with a nip roller held at 60 psi pressure. It was rolled at a rotational speed such that This tape was wound up on a winding device. another operation The tape is then passed through a dilute hydrochloric acid bath from a winding device at room temperature for a residence time of 5 to 10 minutes. It was then passed through a washing tank and dried.

破壊することな(押出しできたテープ長さに対する酸化防止剤の割合の変化の効 果は次の通りであった。(effect of changing the proportion of antioxidant on the extruded tape length) The results were as follows.

1% 250 2% 500 酸化防止剤の上記百分率は、充てん剤を含む全物質に対してである。1% 250 2% 500 The above percentages of antioxidant are based on the total material including fillers.

上記の3つの混合物の試料を室温で480時間まで貯蔵し、メルトフロ一時間に 対する酸化防止剤の存在の効果を測定した。酸化防止剤を含む混合物では、メル トフロ一時間が貯蔵時間と共に次第に急速に増加し、一方酸化防止剤を含む混合 物では上記効果は認められず、長時間貯蔵してもメルトフロ一時間は実質上同じ であった。そこで、酸化防止剤の作用は混合中および次の押出工程中Po1yo xを保護することであり、そこで部分的に分解したPo1yoxが押出ダイス型 に蓄積せず、テープ破壊の主原因と考えられる生成テープに弱さを生じないと考 えられる。酸化防止剤を添加すると、細孔径にわずかな減少があるが、それにも かかわらずテープはミクロ多孔性であり、リチウム/塩化チオニル電池のセパレ ーターとして有用であった。Samples of the above three mixtures were stored at room temperature for up to 480 hours and melt flowed per hour. The effect of the presence of antioxidants on In mixtures containing antioxidants, melt Toflo-time increases gradually and rapidly with storage time, while mixtures containing antioxidants The above effect was not observed for solids, and the melt flow rate was virtually the same even when stored for a long time. Met. Therefore, the action of antioxidants is important during mixing and during the next extrusion process. x, where the partially decomposed Po1yox is extruded into the die It is considered that the tape does not accumulate and does not cause weakness in the resulting tape, which is considered to be the main cause of tape failure. available. There is a slight decrease in pore size with the addition of antioxidants; However, the tape is microporous and is used as a separator in lithium/thionyl chloride batteries. It was useful as a controller.

手続補正書 平成4年4月2日Procedural amendment April 2, 1992

Claims (1)

【特許請求の範囲】 1.反覆単位が−(CnH2n)−および−(CmX2m)−(式中、各Xは独 立にフッ素または塩素を表わし、nおよびmの値は1より大で6より小である) であるハロポリマーからなり、第1にハロポリマーと抽出可能塩と抽出可能重合 体の混合物を融解加工し、第2に少なくとも若干の抽出可能塩を抽出して膜を多 孔性にし、少なくとも若干の前記重合体を抽出して膜に表面多孔度を与えて得ら れ、上記抽出可能重合体が100万以下の分子量をもつことからなる重合体膜。 2.50%以上の多孔度を有し、ハロポリマー、150重量部以上の抽出可能塩 および80重量部以下の抽出可能重合体の混合物を融解加工して得られる請求の 範囲第1項の膜。 3.抽出可能塩が次の特徴: (a)リチウム塩である、および/または(b)6μより大きい粒度の上限をも つ、および/または(c)15μの粒度の公称上限をもつ、および/または(d )25μの粒度の公称上限をもつ、および/または(e)炭酸リチウムである、 のいずれかをもつ混合物の押出で得られる請求の範囲第1項または第2項の膜。 4.重合体と共に押出される抽出可能塩の量がハロポリマー100重量部当り1 50〜200重量部である請求の範囲第1〜3項のいずれかの膜。 5.抽出可能重合体がアルキレンオキシドのホモポリマーまたは共重合体である 請求の範囲第1〜4項のいずれかの膜。 6.抽出可能重合体が室温で固体であり、次の可能性:(a)100万以下 (b)50,000〜1,000,000、(c)100,000〜300,0 00、(d)約300,000、 (e)約100,000 から選ばれる分子量をもつポリエチレンオキシドまたはポリエチレングリコール である請求の範囲第5項の膜。 7.さらにシアヌル酸トリアリルまたはイソシアヌル酸トリアリルからなる混合 物の押出で得られる請求の範囲第1〜6項のいずれかの膜。 8.押出混合物が組成物100重量部当り1〜3重量部のシアヌル酸トリアリル またはイソシアヌル酸トリアリルからなる請求の範囲第7項の膜。 9.押出混合物がさらに酸化防止剤からなる請求の範囲第1〜8項のいずれかの 膜。 10.酸化防止剤がフェノール性酸化防止剤である請求の範囲第9項の膜。 11.酸化防止剤がブチル化ヒドロキシトルエンである請求の範囲第10項の膜 。 12.酸化防止剤を組成物の重量に対して1〜2重量%の量で存在させる請求の 範囲第9〜12項のいずれかの膜。 13.(a)55%以上の多孔度、または(b)60〜70%の多孔度、および /または(c)約50μの厚さをもつ請求の範囲第1〜12項のいずれかの膜。 14.(a)反覆単位が−(CnH2n)−および−(CmX2m)−(式中、 各Xは独立にフッ素または塩素を表わし、nおよびmの値は1より大で6より小 である)であるハロポリマーの第1成分と、抽出可能塩および共に融解するとき ハロポリマーより低い粘度をもちハロポリマーと非相容性であり100万以下の 分子量をもつ抽出可能重合体からなる第2成分とを混合し、(b)上記混合物を 融解加工して、抽出可能重合体が少なくとも部分に表面に移動した膜を形成し、 (c)少なくとも若干の抽出可能塩を抽出して膜を連結細孔を含む三次元網目構 造に変換し、少なくとも若干の前記重合体を抽出して膜の主表面を通り開いてい る細孔の数を増す、ことからなる20容量%以上の多孔度をもつ重合体膜の製造 方法。 15.少なくとも若干の抽出可能重合体と少なくとも若干の抽出可能塩を単一溶 剤によって重合体組成物から抽出し、所望により抽出可能成分の抽出前に膜を変 形してその厚さを減らす請求の範囲第14項の方法、16.融解加工しようとす る混合物がさらに次の塩抽出工程で抽出できる酸化防止剤を含んでいる請求の範 囲第15項の方法。 17.融解加工しようとする混合物が、混合物の重量に対して1〜2重量%のブ チル化ヒドロキシトルエンを含んでいる請求の範囲第16項の方法。 18.(a)反覆単位が−(CnH2n)−および−(CmX2m)−(式中、 各Xは独立にフッ素または塩素を表わし、nおよびmの値は1より大で6より小 である)であるハロポリマー、 (b)150重量部以上の抽出可能塩、(c)ハロポリマー100重量部当り8 0重量部以下の分子量100万以下をもつ抽出可能重合体、からなる重合体組成 物。 19.さらにシアヌル酸トリアリルまたはイソシアヌル酸トリアリルを含む請求 の範囲第18項の重合体組成物。 20.組成物100重量部当り1〜3重量部のシアヌル酸トリアリルまたはイソ シアヌル酸トリアリルからなる請求の範囲第19項の重合体組成物。 21.さらに酸化防止剤を含む請求の範囲第18〜20項のいずれかの重合体組 成物。 22.さらに組成物の重量に対して1〜2重量%のブチル化ヒドロキシトルエン を含む請求の範囲第21項の重合体組成物。 23.セパレーターが、反覆単位が−(CnH2n)−および−(CmX2m) −(式中、各Xは独立にフッ素または塩素を表わし、nおよびmの値は1より大 で6より小である)であるハロポリマーからなる重合体膜からなり、(b)上記 膜が、第1にハロポリマーと抽出可能塩と抽出可能重合体の混合物を抽出し、第 2に少なくとも若干の抽出可能塩を抽出して膜を多孔性にし、少なくとも若干の 抽出可能重合体を抽出して膜に表面多孔度を与えて得られるものであり、上記抽 出可能重合体の分子量が100万以下であることを特徴としている、電気化学的 電池。 24.膜が60容量%以上の多孔度をもつ請求の範囲第23項の電気化学的電池 。 25.リチウムアノード、塩化チオニル、電解質形成のため溶解した塩からなる 請求の範囲第24項の電気化学的電池。 26.反覆単位が−(CnH2n)−および−(CmX2m)−(式中、各Xは 独立にフッ素または塩素を表わし、nおよびmの値は1より大で6より小である )であるハロポリマーからなり、30容量%以上の多孔度と0.7μm以上の平 均細孔径を有する重合体膜。 27.多孔度が55容量%以上である請求の範囲第26項の膜。 28.多孔度が60〜70容量%でありおよび/または平均細孔径が0.1μm 以上である請求の範囲第27項の膜。 29.反覆単位が−(CnH2n)−および−(CmX2m)−(式中、各Xは 独立にフッ素または塩素を表わし、nおよびmの値は1より大で6より小である )であるハロポリマーからなり、20容量%以上の多孔度と30%以上の平均表 面多孔度をもつ重合体膜。 30.多孔度が55容量%以上であり、平均細孔径が0.7μm以上であり、平 均表面多孔度が35%以上である請求の範囲第29項の膜。 31.多孔度が60〜70容量%であり、平均細孔径が1μm以上であり、平均 表面多孔度が約50%である請求の範囲第29項の膜。 32.反覆単位が−(CnH2n)−および−(CmX2m)−(式中、各Xは 独立にフッ素または塩素を表わし、nおよびmの値は1より大で6より小である )であるハロポリマーからなり、30容量%以上の多孔度と2以下のトートシテ ィー因子をもつ重合体膜。 33.多孔度が53容量%以上である請求の範囲第32項の膜。 34.多孔度が60〜70容量%であり、トートシティー因子が約1.5であり 、平均表面多孔度が約50%であり.平均細孔径が1μm以上である請求の範囲 第32項の膜。 35.セパレーターとして、反覆単位が−(CnH2n)−および−(CmX2 m)−(式中、各Xは独立にフッ素または塩素を表わし、nおよびmの値は1よ り大で6より小である)であるハロポリマーからなり、0.3μm以上の平均細 孔径をもつミクロ細孔重合体膜を有する電気化学的電池。 36.セパレーターとして、反覆単位が−(CnH2n)−および−(CmX2 m)−(式中、各Xは独立にフッ素または塩素を表わし、nおよびmの値は1よ り大で6より小である)であるハロポリマーからなり、100万以下の分子量の 可溶重合体の膜から抽出によって形成された細孔を有するミクロ細孔重合体膜を 有している電気化学的電池。 37.(a)反覆単位が−(CnH2n)−および−(CmX2m)−(式中、 各Xは独立にフッ素または塩素を表わし、nおよびmの値は1より大で6より小 である)であるハロポリマーの第1成分と、ハロポリマー100重量部当り15 0重量部以上の抽出可能塩およびハロポリマー100重量部当り80重量部以下 の抽出可能重合体からなる第2成分と(ただし抽出可能重合体はハロポリマーと 共に融解するときハロポリマーよりも低い粘度を有しハロポリマーと非相容性で ある)、酸化防止剤の第3成分とを混合し、(b)上記混合物を融解加工して、 抽出可能重合体が少なくとも部分的に表面に移動している膜を形成し、 (c)少なくとも若干の抽出可能塩を抽出して膜を連結細孔を含む三次元網目構 造に変換し、少なくとも若干の抽出可能重合体を抽出して膜の主表面を通し開い ている細孔の数を増すことからなる、20容量%以上の多孔度をもつ重合体膜の 製造方法。 38.少なくとも若干の抽出可能重合体と少なくとも若干の抽出可能塩とを、単 一溶剤によって重合体組成物から抽出し、所望により抽出可能成分の抽出前に膜 を変形してその厚さを減らす請求の範囲第37項の方法。 39.抽出可能重合体が分子量100,000〜500,000のポリエチレン オキシドまたはポリエチレングリコールである請求の範囲第37項または第38 項の方法。 40.酸化防止剤を混合物の全重量に対して0.5〜2重量部の量で混合物中に 存在させる請求の範囲第37〜39項のいずれかの方法。 41.酸化防止剤がフェノール性酸化防止剤である請求の範囲第37〜40項の いずれかの方法。 43.酸化防止剤がブチル化ヒドロキシトルエンである請求の範囲42の方法。[Claims] 1. The repeating units are -(CnH2n)- and -(CmX2m)- (where each X is fluorine or chlorine, and the values of n and m are greater than 1 and less than 6) Firstly, the halopolymer, the extractable salt and the extractable polymer melt processing the body mixture and second extracting at least some of the extractable salts to form a membrane. porous and extracting at least some of said polymer to impart surface porosity to the membrane. and the extractable polymer has a molecular weight of 1 million or less. 2. Having a porosity of 50% or more, a halopolymer, 150 parts by weight or more of an extractable salt. and a claimed product obtained by melt processing a mixture of not more than 80 parts by weight of extractable polymer. Membrane of range 1. 3. Extractable salt has the following characteristics: (a) is a lithium salt, and/or (b) has an upper particle size limit of greater than 6μ. and/or (c) has a nominal upper limit of particle size of 15μ; and/or (d ) has a nominal upper limit of particle size of 25μ, and/or (e) is lithium carbonate; A membrane according to claim 1 or 2 obtained by extrusion of a mixture having any of the following. 4. The amount of extractable salt extruded with the polymer is 1 per 100 parts by weight of halopolymer. The membrane according to any one of claims 1 to 3, which contains 50 to 200 parts by weight. 5. The extractable polymer is a homopolymer or copolymer of alkylene oxide A membrane according to any one of claims 1 to 4. 6. The possibility that the extractable polymer is solid at room temperature is: (a) 1,000,000 or less; (b) 50,000-1,000,000, (c) 100,000-300,000 00, (d) approximately 300,000, (e) Approximately 100,000 polyethylene oxide or polyethylene glycol with a molecular weight selected from The membrane according to claim 5, which is 7. A mixture further consisting of triallyl cyanurate or triallyl isocyanurate 7. A membrane according to any one of claims 1 to 6, which is obtained by extrusion of a product. 8. The extrusion mixture contains 1 to 3 parts by weight of triallyl cyanurate per 100 parts by weight of the composition. or triallyl isocyanurate. 9. Claims 1 to 8, wherein the extrusion mixture further comprises an antioxidant. film. 10. 10. The membrane of claim 9, wherein the antioxidant is a phenolic antioxidant. 11. The membrane of claim 10, wherein the antioxidant is butylated hydroxytoluene. . 12. The antioxidant is present in an amount of 1 to 2% by weight relative to the weight of the composition. A film according to any one of the ranges 9 to 12. 13. (a) a porosity of 55% or more; or (b) a porosity of 60-70%; and 13. A membrane according to any of claims 1 to 12 having a thickness of about 50 microns. 14. (a) The repeating units are -(CnH2n)- and -(CmX2m)- (in the formula, Each X independently represents fluorine or chlorine, and the values of n and m are greater than 1 and less than 6. when melted together with the extractable salt and the first component of the halopolymer which is It has a lower viscosity than the halopolymer, is incompatible with the halopolymer, and has a viscosity of less than 1 million (b) mixing the above mixture with a second component consisting of an extractable polymer having a molecular weight; melt processing to form a film having at least a portion of the extractable polymer transferred to the surface; (c) a three-dimensional network comprising pores connecting the membrane to extract at least some extractable salts; converting it into a structure and extracting at least some of the polymer to open it through the main surface of the membrane. production of a polymer membrane with a porosity of 20% by volume or more, consisting of increasing the number of pores Method. 15. At least some of the extractable polymer and at least some of the extractable salt are dissolved in a single solution. extractable components from the polymeric composition, optionally modifying the membrane prior to extraction of the extractable components. 16. The method of claim 14 of shaping to reduce its thickness; 16. trying to melt process Claims that the mixture further contains an antioxidant that can be extracted in a subsequent salt extraction step. The method of Box 15. 17. If the mixture to be melt processed contains 1-2% by weight based on the weight of the mixture, 17. The method of claim 16, comprising tylated hydroxytoluene. 18. (a) The repeating units are -(CnH2n)- and -(CmX2m)- (in the formula, Each X independently represents fluorine or chlorine, and the values of n and m are greater than 1 and less than 6. a halopolymer which is ) (b) 150 parts by weight or more of extractable salt; (c) 8 parts by weight per 100 parts by weight of halopolymer; A polymer composition consisting of an extractable polymer having a molecular weight of 1,000,000 or less and 0 parts by weight or less. thing. 19. Further claims containing triallyl cyanurate or triallyl isocyanurate The polymer composition of range item 18. 20. 1 to 3 parts by weight of triallyl or isocyanurate per 100 parts by weight of the composition. 20. The polymer composition of claim 19 comprising triallyl cyanurate. 21. The polymer set according to any one of claims 18 to 20, further comprising an antioxidant. A product. 22. and 1 to 2% by weight of butylated hydroxytoluene based on the weight of the composition. 22. The polymer composition of claim 21 comprising: 23. The separator has repeating units of -(CnH2n)- and -(CmX2m) - (wherein each X independently represents fluorine or chlorine, and the values of n and m are greater than 1) is less than 6), and (b) the above The membrane first extracts the mixture of halopolymer, extractable salt, and extractable polymer; 2 to extract at least some of the extractable salts to make the membrane porous; It is obtained by extracting an extractable polymer to impart surface porosity to the membrane. Electrochemical battery. 24. 24. The electrochemical cell of claim 23, wherein the membrane has a porosity of 60% or more by volume. . 25. Consists of lithium anode, thionyl chloride, and dissolved salts for electrolyte formation The electrochemical cell of claim 24. 26. The repeating units are -(CnH2n)- and -(CmX2m)- (wherein each X is independently represents fluorine or chlorine, the values of n and m are greater than 1 and less than 6 ) with a porosity of 30% by volume or more and a flatness of 0.7μm or more. Polymer membrane with uniform pore size. 27. 27. The membrane of claim 26, wherein the porosity is greater than or equal to 55% by volume. 28. The porosity is 60-70% by volume and/or the average pore size is 0.1 μm The membrane according to claim 27, which is the above. 29. The repeating units are -(CnH2n)- and -(CmX2m)- (wherein each X is independently represents fluorine or chlorine, the values of n and m are greater than 1 and less than 6 ) with a porosity of 20% by volume or more and an average surface of 30% or more. Polymer membrane with areal porosity. 30. The porosity is 55% by volume or more, the average pore diameter is 0.7 μm or more, and the average pore size is 0.7 μm or more. 30. The membrane according to claim 29, which has a uniform surface porosity of 35% or more. 31. The porosity is 60 to 70% by volume, the average pore diameter is 1 μm or more, and the average 30. The membrane of claim 29, wherein the surface porosity is about 50%. 32. The repeating units are -(CnH2n)- and -(CmX2m)- (wherein each X is independently represents fluorine or chlorine, the values of n and m are greater than 1 and less than 6 ) with a porosity of 30% by volume or more and a tote porosity of 2 or less. A polymer membrane with a high energy factor. 33. 33. The membrane of claim 32, wherein the porosity is greater than or equal to 53% by volume. 34. The porosity is 60-70% by volume and the tote city factor is about 1.5. , the average surface porosity is about 50%. Claims in which the average pore diameter is 1 μm or more The membrane of paragraph 32. 35. As separators, repeating units -(CnH2n)- and -(CmX2 m) - (in the formula, each X independently represents fluorine or chlorine, and the values of n and m are 1 or more. It consists of a halopolymer with an average fineness of 0.3 μm or more An electrochemical cell having a microporous polymeric membrane with pore size. 36. As separators, repeating units -(CnH2n)- and -(CmX2 m) - (in the formula, each X independently represents fluorine or chlorine, and the values of n and m are 1 or more. consisting of a halopolymer with a molecular weight of 1,000,000 or less. A microporous polymer membrane with pores formed by extraction from a soluble polymer membrane has an electrochemical battery. 37. (a) The repeating units are -(CnH2n)- and -(CmX2m)- (in the formula, Each X independently represents fluorine or chlorine, and the values of n and m are greater than 1 and less than 6. ) and 15 parts by weight per 100 parts by weight of the halopolymer. 0 parts by weight or more of extractable salt and 80 parts by weight or less per 100 parts by weight of halopolymer a second component consisting of an extractable polymer (where the extractable polymer is a halopolymer); Has a lower viscosity than the halopolymer when melted together and is incompatible with the halopolymer (b) melt-processing the mixture, forming a film in which the extractable polymer has at least partially migrated to the surface; (c) a three-dimensional network comprising pores connecting the membrane to extract at least some extractable salts; The membrane is then opened through the main surface of the membrane to extract at least some of the extractable polymer. of polymeric membranes with a porosity of 20% by volume or more, which consists of increasing the number of pores in the membrane. Production method. 38. At least some of the extractable polymer and at least some of the extractable salt are extraction from the polymeric composition by one solvent and optionally a membrane prior to extraction of the extractable components. 38. The method of claim 37, further comprising deforming to reduce its thickness. 39. Polyethylene whose extractable polymer has a molecular weight of 100,000 to 500,000 Claim 37 or 38 which is an oxide or polyethylene glycol Section method. 40. The antioxidant is added to the mixture in an amount of 0.5 to 2 parts by weight based on the total weight of the mixture. 40. A method according to any one of claims 37 to 39, in which the presence of 41. Claims 37 to 40, wherein the antioxidant is a phenolic antioxidant. Either way. 43. 43. The method of claim 42, wherein the antioxidant is butylated hydroxytoluene.
JP2508643A 1989-06-13 1990-06-12 microporous membrane Pending JPH04506224A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8913518.0 1989-06-13
GB8913518A GB2232982A (en) 1989-06-13 1989-06-13 Microporous films

Publications (1)

Publication Number Publication Date
JPH04506224A true JPH04506224A (en) 1992-10-29

Family

ID=10658331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2508643A Pending JPH04506224A (en) 1989-06-13 1990-06-12 microporous membrane

Country Status (5)

Country Link
EP (1) EP0477230A1 (en)
JP (1) JPH04506224A (en)
GB (1) GB2232982A (en)
IL (1) IL94716A0 (en)
WO (1) WO1990015838A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373705A (en) * 2002-05-13 2002-12-26 Japan Storage Battery Co Ltd Lithium ion conductive polymer and lithium ion conductive polymer electrolyte
JP2008501218A (en) * 2004-05-28 2008-01-17 コミツサリア タ レネルジー アトミーク Lithium battery polymer separator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2258318A (en) * 1991-07-12 1993-02-03 Scimat Ltd Liquid crystal materials.
JP3385516B2 (en) * 1995-01-18 2003-03-10 日本電池株式会社 Non-aqueous polymer battery and method for producing polymer film for non-aqueous polymer battery
KR100308690B1 (en) * 1998-12-22 2001-11-30 이 병 길 Microporous polymer electrolyte containing absorbent and its manufacturing method
US6617078B1 (en) * 2000-08-10 2003-09-09 Delphi Technologies, Inc. Lithium ion rechargeable batteries utilizing chlorinated polymer blends
WO2007051307A2 (en) * 2005-11-04 2007-05-10 Ppd Meditech Porous material and method for fabricating same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2219589A (en) * 1988-06-13 1989-12-13 Scimat Ltd Microporous halopolymer films
GB8432048D0 (en) * 1984-12-19 1985-01-30 Raychem Ltd Electrochemical cells
GB2168981B (en) * 1984-12-27 1988-07-06 Asahi Chemical Ind Porous fluorine resin membrane and process for preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373705A (en) * 2002-05-13 2002-12-26 Japan Storage Battery Co Ltd Lithium ion conductive polymer and lithium ion conductive polymer electrolyte
JP2008501218A (en) * 2004-05-28 2008-01-17 コミツサリア タ レネルジー アトミーク Lithium battery polymer separator

Also Published As

Publication number Publication date
IL94716A0 (en) 1991-04-15
GB8913518D0 (en) 1989-08-02
EP0477230A1 (en) 1992-04-01
GB2232982A (en) 1991-01-02
WO1990015838A1 (en) 1990-12-27

Similar Documents

Publication Publication Date Title
US5198162A (en) Microporous films
JP5140896B2 (en) Porous film and battery separator using the same
TWI418581B (en) Polyethylene microporous film and the preparation method thereof and separator for cell
JP5576609B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
US5641565A (en) Separator for a battery using an organic electrolytic solution and method for preparing the same
JP5512976B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP3347835B2 (en) Method for producing microporous polyolefin membrane
JP2004196870A (en) Polyolefin fine porous membrane and method for producing the same and use
JP4234392B2 (en) Microporous membrane, production method and use thereof
JP2004196871A (en) Polyolefin fine porous membrane and method for producing the same and use
JP2004161899A (en) Film with minute pore and its manufacturing method and use
JP2002194132A (en) Polyolefin fine porous film and method of manufacturing the same
JP3699562B2 (en) Polyolefin microporous membrane and method for producing the same
JPH04506224A (en) microporous membrane
JP4303355B2 (en) Polyvinylidene fluoride resin, porous membrane comprising the same, and battery using the porous membrane
JPH11269290A (en) Polyoelfin fine porous membrane
TW201840666A (en) Microporous polyolefin membrane and battery including same
JP4280371B2 (en) Polyolefin microporous membrane and method for producing the same
JP2513786B2 (en) Polyolefin microporous film
KR930006929B1 (en) Formation of halogenated polymeric microporous membranes having improved strength properties
JP6988880B2 (en) Polyolefin microporous membrane
JP3009495B2 (en) Polyolefin microporous membrane and method for producing the same
JP2503007B2 (en) Microporous polypropylene film
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
JPH09231957A (en) Separator for zinc bromine secondary battery