JPH0450606A - Flatness gage - Google Patents

Flatness gage

Info

Publication number
JPH0450606A
JPH0450606A JP15333690A JP15333690A JPH0450606A JP H0450606 A JPH0450606 A JP H0450606A JP 15333690 A JP15333690 A JP 15333690A JP 15333690 A JP15333690 A JP 15333690A JP H0450606 A JPH0450606 A JP H0450606A
Authority
JP
Japan
Prior art keywords
flatness
point
plate
plate material
cameras
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15333690A
Other languages
Japanese (ja)
Other versions
JPH0737898B2 (en
Inventor
Taichiro Fukuda
多一郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2153336A priority Critical patent/JPH0737898B2/en
Publication of JPH0450606A publication Critical patent/JPH0450606A/en
Publication of JPH0737898B2 publication Critical patent/JPH0737898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure flatness by applying laser beam to an object to be measured, detecting its reflection light by a plurality of two-dimensional detectors and calculating the detection signals. CONSTITUTION:Reflection light signals detected by two-dimensional CCD cameras 3A, 3B are supplied to a CPU 5 via an E/O device 4 sequentially according to scanning operation of the cameras, and calculation is performed. With respect to a calculated value hx, a coordinate of a measurement point is determined based on the scanning operation and a traveling speed signal of a plate material 1 from a counter 11, and the detection value hx is stored in a memory section in the CPU while it is associated with coordinate. The stored detection value is recorded on a recorder 8 and also is supplied to a CRT display 9 if necessary so that flatness is visually displayed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱間、冷間鋼板等、種種の板材平面の平坦度
を測定するための平坦度計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flatness meter for measuring the flatness of various types of plate materials such as hot and cold steel plates.

[従来技術] 光学的手段を用いて板材平面の平坦度を測定する従来例
として、以下のような方式がある。
[Prior Art] As a conventional example of measuring the flatness of a plane of a plate using optical means, there is the following method.

(1)モアレ・ホトグラフィ技術を用い、測定対象物の
等廃線をモアレ縞として観測する方式(特開昭63−2
9208号公報参照)。
(1) A method that uses moiré photography technology to observe uniform lines of the measurement object as moiré fringes (Japanese Unexamined Patent Publication No. 63-2
(See Publication No. 9208).

(2)レーザ距離計を用いて、2周波同時に変調したH
 e −N eレーザ光を対象物に照射し、その乱反射
光を集光し、自動焦点機構を介して高速ホトマルチプレ
クサで電気信号に変換し、受信信号を周波数変換してか
つ平均化し、位相差を測定して対象物までの距離を測定
し、それにより平坦度を測定する方式(特開昭63−2
324号公報参照)。
(2) H modulated at two frequencies simultaneously using a laser rangefinder
The e-N e laser beam is irradiated onto the target object, the diffusely reflected light is focused, converted into an electrical signal by a high-speed photomultiplexer via an automatic focusing mechanism, and the received signal is frequency-converted and averaged, and the phase difference is A method of measuring the distance to the object by measuring the flatness of the object (Japanese Patent Laid-Open No. 63-2
(See Publication No. 324).

(3)複数のレーザ距離計センサとして用い、対象物の
所定長さ毎に対象物との距離を測定し、それに基づき平
坦度を測定する方式(特開昭60−10563号公報参
照)。
(3) A method in which a plurality of laser rangefinder sensors are used to measure the distance to the object for each predetermined length of the object, and measure flatness based on the distance (see Japanese Patent Laid-Open No. 10563/1983).

(4)対象物の幅方向に配置した複数のレーザ変位計を
用いて、板波高値を計測し、一定走行区間における板波
の弧長を幅方向に同時に測定する方式(特開昭54−2
770号公報参照)。
(4) A method in which the plate wave height is measured using multiple laser displacement meters arranged in the width direction of the object, and the arc length of the plate wave in a certain traveling section is simultaneously measured in the width direction 2
(See Publication No. 770).

(5)レーザ変位計を2台用い、視差を与えてレーザ反
射光をそれぞれ検出し、それに基づき平坦度の測定を行
う方式(特開昭58−111708号公報参照)。
(5) A method in which two laser displacement meters are used, each detects the laser reflected light with a parallax, and the flatness is measured based on this (see Japanese Patent Laid-Open No. 111708/1983).

(6)2つの異なる波長のレーザ光を照射し、その反射
光を検出して平坦度を測定する方式(特開昭58−11
5314号公報参照)。
(6) Method of measuring flatness by irradiating laser beams with two different wavelengths and detecting the reflected light (Japanese Patent Laid-Open No. 58-11
(See Publication No. 5314).

[発明が解決すべき課題1 従来例の平坦度の測定技術は、上記のような方法がある
が、それぞれ以下に説明するような問題点がある。
[Problem to be Solved by the Invention 1] Conventional techniques for measuring flatness include the methods described above, but each has problems as described below.

上記(1)のモアレホトグラフィ方式は、多くの切断光
により行うが、ITV連素により分解能が悪くかつ長手
方向の平坦度の検出が計算処理上困難であり、またパス
ライン変動が大きい場合にパスライン変動と平坦不良と
が加算されるため、板の厚み方向の変位を正確に測定す
ることができな力)つた。
The moiré photography method (1) above is performed using many cutting lights, but the resolution is poor due to the ITV series, it is difficult to detect the flatness in the longitudinal direction due to calculation processing, and it is difficult to detect when the pass line fluctuation is large. Because the pass line fluctuations and flatness defects are added together, the displacement in the thickness direction of the plate cannot be accurately measured.

上記(2)の方式においては、レーザ光の変調を用いI
;点に特徴を有するが、変調時の平坦不良による変動が
大きく、視野として大きい部分が測定できない。また、
測定装置の構造が複雑であるため、調整誤差要因が測定
値に含まれてしまい誤差が大きい。更に変調光としてH
e −N eレーザを用いているため、レーザ光源の寿
命が10’H。
In the method (2) above, modulation of laser light is used to
; Although it has a characteristic point, there are large fluctuations due to flatness defects during modulation, and a large part of the field of view cannot be measured. Also,
Since the structure of the measuring device is complex, adjustment error factors are included in the measured values, resulting in large errors. Furthermore, H as modulated light
Since an e-N e laser is used, the lifespan of the laser light source is 10'H.

程度と短い。degree and short.

上記(3)の方式においては、レーザ距離計を用いてい
るため、パスライン変動による誤差要因が測定値に含ま
れてしまいS/N比が悪くなる。
In the method (3) above, since a laser distance meter is used, error factors due to path line fluctuations are included in the measured value, resulting in a poor S/N ratio.

また距離計そのものは距離検出感度が長さにより異なる
ため、実質的な測定精度がどの程度か不明瞭である。
Furthermore, since the distance detection sensitivity of the distance meter itself varies depending on the length, it is unclear how accurate the measurement actually is.

上記(4)の方式においては、レーザ変位計を用いてい
るため、パスライン変動要因による誤差が大きくなり、
平坦度精度は±4 程度と大きくなってしまい、特に薄
物での相対的検出精度が低くなってしまう。また、対象
物の板振動を考慮してツインビーム方式を採用している
が、変位差が小さいため精度管理が実質的に困難である
。更に、ビーム方式は全体が見えないため、平坦度の幅
方向分布の検出が困難である。また、センサと測定対象
物との距離を大きく取れないので、センサの設置箇所が
制限される。
In method (4) above, since a laser displacement meter is used, errors due to path line fluctuation factors become large.
The flatness accuracy becomes as large as about ±4, and the relative detection accuracy becomes particularly low for thin objects. In addition, a twin beam method is adopted in consideration of the plate vibration of the object, but accuracy control is practically difficult because the displacement difference is small. Furthermore, since the beam method does not allow the entire surface to be seen, it is difficult to detect the distribution of flatness in the width direction. Furthermore, since it is not possible to maintain a large distance between the sensor and the object to be measured, the locations where the sensor can be installed are limited.

上記(5)の方式においては、1つの検出器に2つのレ
ーザ光が集光するt;め、平坦度の角度により検出器に
補足限界が生じてしまう。また変位計を用いているため
、パスライン変動による影響が誤差として含まれてしま
う。
In the method (5) above, since two laser beams are focused on one detector, a supplementary limit occurs in the detector due to the flatness angle. Furthermore, since a displacement meter is used, the influence of path line fluctuations is included as an error.

上記(6)の方法においては、2つの異なる波長のレー
ザ光を用いているl:め数値補正を行う必要があると同
時に、波長の識別手段が必要となる。
In the method (6) above, it is necessary to perform numerical correction using laser beams of two different wavelengths, and at the same time, a means for identifying wavelengths is required.

以上のように、従来例の方式はパスライン変動の問題、
平坦度の幅方向分布の検出の困難性、S/N比の大きい
センサを用いなければならないため測定誤差が大きい等
の問題、波長識別及び数値補正の必要性の問題点等があ
った。
As mentioned above, the conventional method has problems with pass line fluctuations,
There are problems such as difficulty in detecting the widthwise distribution of flatness, large measurement errors due to the need to use a sensor with a large S/N ratio, and the necessity of wavelength identification and numerical correction.

[課題を解決するだめの手段] 上巳従来技術の問題点を解決するために、本発明におい
ては、測定対象物にレーザ光を照射して、その反射光を
複数の2次元検出器により視野を設けて検出し、その検
出信号を演算するすることにより平坦度を測定できるよ
うにすることを特徴としている。
[Means for Solving the Problems] Uami: In order to solve the problems of the conventional technology, the present invention irradiates the object to be measured with laser light and uses a plurality of two-dimensional detectors to detect the reflected light in a field of view. The feature is that the flatness can be measured by providing and detecting the flatness and calculating the detected signal.

[実施例] 第1図には、本発明の実施例が示されており、図におい
て、1は測定対象物である鋼板等の板材、2は板材の幅
方向を照射するレーザ光源、3A、311はレーザ光源
2からの光が板材1で反射された光を検出する2次元C
CDカメラ、4はE10装置、5はCPU、6はプロセ
スコンピュータ、7はデスク、8はレコーダ、9はCR
Tデイスプレー 10は板材1を移送させるためのロー
ルの回転を検出してパルスを出力するPLG、11は該
PLG10からのパルスをカウントして板材1の走行速
度を検出するためのカウンタである。
[Example] Fig. 1 shows an example of the present invention, in which 1 is a plate material such as a steel plate that is the object to be measured, 2 is a laser light source that irradiates the width direction of the plate material, 3A, 311 is a two-dimensional C that detects the light from the laser light source 2 reflected by the plate 1.
CD camera, 4 is E10 device, 5 is CPU, 6 is process computer, 7 is desk, 8 is recorder, 9 is CR
T-display 10 is a PLG that detects the rotation of a roll for transporting the plate 1 and outputs a pulse, and 11 is a counter that counts the pulses from the PLG 10 to detect the traveling speed of the plate 1.

本発明の原理について第2〜4図を参照して説明する。The principle of the present invention will be explained with reference to FIGS. 2 to 4.

第2図に示されるように、レーザ光源2は板材1の幅方
向に全長で、かつ長手方向(走行方向)にある所定の輻
Wでレーザ光を平行に照射するよう構成されており、そ
の中心線は板材1の測定点0と交わるように配置されて
いる。カメラ3A%3Bはそれぞれ板材1の表面に対し
て所定の高さHに配置され、かつ平行レーザ光の最端部
(長手方向外側部)が、理想的平坦状態(仮想平面)で
の板材1と交わる点P1及び点P2からの反射光を、所
定の角度θで検知できるように配置されている。
As shown in FIG. 2, the laser light source 2 is configured to emit laser light parallel to the entire length of the plate 1 in the width direction and at a predetermined radius W in the longitudinal direction (running direction). The center line is arranged so as to intersect measurement point 0 of the plate material 1. The cameras 3A and 3B are each arranged at a predetermined height H with respect to the surface of the plate material 1, and the extreme end (external part in the longitudinal direction) of the parallel laser beam is placed on the plate material 1 in an ideal flat state (virtual plane). It is arranged so that the reflected light from the points P1 and P2 intersecting with can be detected at a predetermined angle θ.

そしてカメラ3Aと点P、を結んだ線、及びカメラ3B
と点P2を結んだ線は、平行レーザ光の中心線上の点R
で交わるように配置されており、点0と点Rとの距離は
hoである。また、点Rからカメラ3A、3Bまでの長
手方向の距離はそれぞれしてある。
And a line connecting camera 3A and point P, and camera 3B
The line connecting point P2 is point R on the center line of the parallel laser beam.
The distance between point 0 and point R is ho. Further, the distances in the longitudinal direction from the point R to the cameras 3A and 3B are respectively determined.

以上の関係を数式で表すと、 tan&=2ho/W = (H+h o)/L     (1)平行レーザ光
が照射された板材1の部分に凹凸がなく、平坦であると
すれば、カメラ3A、3.は共に、点P1%点P2が平
行レーザ光が照射された最端点であると検出するので、
第2図の下方に示されるように、板材1上の線ABにお
いてそれぞれのカメラから見た点Pi、点P2からのず
れal、a2及びb+、bzが総て0であることが検出
され、従って検出点0でのずれ ao= (a、+ax)/2=O bo−(b++b2)/2=。
Expressing the above relationship mathematically, tan&=2ho/W = (H+ho)/L (1) If the part of the plate material 1 irradiated with the parallel laser beam is flat and has no unevenness, then the camera 3A, 3. Both detect that point P1% and point P2 are the extreme points irradiated with the parallel laser beam, so
As shown in the lower part of FIG. 2, it is detected that the deviations al, a2, b+, and bz from the point Pi, point P2 as seen from each camera on the line AB on the plate 1 are all 0, Therefore, the deviation at detection point 0 is ao=(a,+ax)/2=O bo-(b++b2)/2=.

が求められ、点0には仮想平面から見て凹凸か存在しな
い事が検出される。
is obtained, and it is detected that there is no unevenness at point 0 when viewed from the virtual plane.

一方、第3図に示されるように板材lの点Oの付近に凸
部が存在すると、レーザ光の最端部か点P1″、P2′
において板材lと交わるので、カメラ3居よレーザ光の
最端部が点PIA%点P2Aの方向にあることを検出し
、またカメラ3Bは最端部が点P4、点P、の方向にあ
ることを検出する。
On the other hand, if a convex portion exists near the point O of the plate l as shown in FIG.
Since it intersects with plate l at , camera 3 detects that the end of the laser beam is in the direction of point PIA%, point P2A, and camera 3B detects that the end of the laser beam is in the direction of point P4, point P. Detect that.

従って第3図の下方に示されるように、点P1からaい
blのずれ、及び点P2からa2、b2のずれが検出さ
れる。
Therefore, as shown in the lower part of FIG. 3, the deviations from point P1 to abl and from point P2 to a2 and b2 are detected.

そして、これらのずれを平均して、点0における変位a
0、b、が、 ao=(a+”az)/2 1)0= (bi+bi)/2 の演算により求められる。
Then, by averaging these deviations, the displacement a at point 0 is
0 and b are obtained by the following calculation: ao=(a+”az)/2 1)0=(bi+bi)/2.

このようにして求められたao及びboに基づいて、点
Oにおける高さ方向の変位の求め方について、第4図を
参照して説明する。
How to determine the displacement in the height direction at point O based on ao and bo determined in this way will be explained with reference to FIG.

第4図は、第3図の点Rを中心とした部分を取り出して
拡大したものであり、変位a0及びboは上記のように
求められたものである。
FIG. 4 is an enlarged view of a portion centered on point R in FIG. 3, and the displacements a0 and bo were determined as described above.

角度θ′は該図から明らかなように θ′ −π/2−θ であるから、 hA=ao/lanθ′ =a、/cotθ        (2)h B = 
b o/ t a nθ′=b0/cotθ     
   (3)となり、また点Oにおける高さ方向の変位
は、点Rから点R′までの距離hxとすると、h x=
 hB+ (be (hA ha)l / (ao+b
o)= (a+1bB+bohA)/ (ao+bo)
となる。そして(2)及び(3)式に基づいて上記式を
変形すれば、 hX=2aobo/ (co tθ (ao+bo)1
となり、更に(1)式に基づいて hX=2aobo/(ao+bo)XH/(2L  w
)が得られ、(4)式または(5)式を用いて変位量h
xが求められる。
As is clear from the figure, the angle θ' is θ' - π/2-θ, so hA=ao/lanθ' = a,/cotθ (2) h B =
b o/t a nθ'=b0/cotθ
(3), and if the displacement in the height direction at point O is the distance hx from point R to point R', then h x =
hB+ (be (hA ha)l / (ao+b
o)= (a+1bB+bohA)/(ao+bo)
becomes. Then, if we transform the above equation based on equations (2) and (3), we get hX=2aobo/ (co tθ (ao+bo)1
Based on equation (1), hX=2aobo/(ao+bo)XH/(2L w
) is obtained, and using equation (4) or (5), the displacement h
x is required.

以上のようにして、点0における高さ方向の変位hxが
求められるが、カメラ3A及び3Bは、板材1の長さ方
向に所定幅(平行レーザ光の幅W以上)スキャンニング
して、それによる検出反射光に基づいてその中心点であ
る点Oの変位が検出され、それを板幅方向に繰り返すこ
とにより点Oを含んだ板幅方向の各点の変位が検出され
る。また板材1は所定の速度で走行しているので、上記
を繰り返すことにより板材1の長手方向もスキャンニン
グされ、実質的に板材1の表面全域に渡って平坦度が検
出できることになる。
As described above, the displacement hx in the height direction at point 0 is obtained, but the cameras 3A and 3B scan a predetermined width (more than the width W of the parallel laser beam) in the length direction of the plate material 1, and The displacement of the point O, which is the center point, is detected based on the detected reflected light, and by repeating this in the sheet width direction, the displacement of each point in the sheet width direction including point O is detected. Further, since the plate material 1 is traveling at a predetermined speed, by repeating the above steps, the longitudinal direction of the plate material 1 is also scanned, and the flatness can be detected over substantially the entire surface of the plate material 1.

第2図に戻り、本発明の動作の概要を説明すると、2次
元CCDカメラ3A、3Aで検出した反射光信号がカメ
ラのスキャンニング動作に応じて、順次E10装置4を
介してCPU5に供給され、上記第2〜4図に関して説
明したような演算か実行される。求められた値hxは、
スキャンニング動作及びカウンタ11からの板材1の走
行速度信号に基づき、測定点の座標が定められ、その座
標に対応付けられて検出値hxはCPU内のメモリ部に
記憶される。記憶された検出値は、レコーダ8において
把録されると共に、必要に応じてCRTデイスプレィ9
に供給されて平坦度を可視表示される。なお、プロセス
コンピュータ6はプログラムを内蔵して、装置全体の動
作を制御するためのものである。
Returning to FIG. 2, to explain the outline of the operation of the present invention, the reflected light signals detected by the two-dimensional CCD cameras 3A, 3A are sequentially supplied to the CPU 5 via the E10 device 4 in accordance with the scanning operation of the cameras. , operations such as those described with respect to FIGS. 2-4 above are performed. The obtained value hx is
Based on the scanning operation and the traveling speed signal of the plate material 1 from the counter 11, the coordinates of the measurement point are determined, and the detected value hx is stored in the memory section in the CPU in association with the coordinates. The stored detection values are recorded in the recorder 8 and displayed on the CRT display 9 as necessary.
The flatness is visually displayed. Note that the process computer 6 has a built-in program and is used to control the operation of the entire apparatus.

[効果コ 本発明は以上のように構成されているので、以下のよう
な作用効果を奏することかできる。
[Effects] Since the present invention is configured as described above, the following effects can be achieved.

a、カメラの設置高Hをある程度大きくすれば、パスラ
イン変動による影響が無視できる大きさにすることが可
能である。
a. By increasing the installation height H of the camera to a certain extent, it is possible to make the influence of path line fluctuations negligible.

b、上記H及び測定点Oかものカメラまでの長手方向の
距離りを適宜調節することにより、ずれa ol b 
oの値を十分な精度にまで変更できると共に、実物の平
坦度よりも値を犬さく変動を捕らえることができ、従っ
て微細な変位でも検出可能である。
b. By appropriately adjusting the distance in the longitudinal direction from the above H and the measuring point O to the camera, the deviation a ol b
The value of o can be changed with sufficient precision, and variations in the value can be detected more closely than the actual flatness, so even minute displacements can be detected.

C,ビーム幅Wを調節することにより、更に精度の向上
を図ることができる。
By adjusting C and beam width W, accuracy can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すための概瞥ブロック図
、第2〜4図は本発明の詳細な説明するための説明図で
ある。 1・・・板材 2・・・レーザ光源 3A、3B・・・2次元CCDカメラ 第 2 図 夕 %方向 第 回 頂’N117
FIG. 1 is a schematic block diagram showing one embodiment of the present invention, and FIGS. 2 to 4 are explanatory diagrams for explaining the present invention in detail. 1... Plate material 2... Laser light sources 3A, 3B... 2-dimensional CCD camera No. 2 Fig. evening % direction No. 117

Claims (1)

【特許請求の範囲】 1、長手方向に走行する板材の上方に配置され、板材の
長手方向に所定の幅を有する平行ビームを板材の幅方向
全域に渡って照射する光源、該光源から照射され、板材
で反射された反射光を検出する2つの2次元カメラであ
つて、該カメラは光源に対して対称的に配置され、幅方
向について同一方向及び同一ピッチで反射光をスキャン
ニング検出する2次元カメラ、 該それぞれのカメラからの検出信号に基づき、平行ビー
ムの長手方向最端部と板材とが交差する方向を求め、そ
れにより平行ビーム中心線が板材と交わる点の高さ方向
変位を演算する演算装置、 とを具備している事を特徴とする板材の平坦度を測定す
る平坦度計。
[Claims] 1. A light source that is disposed above a plate running in the longitudinal direction and irradiates a parallel beam having a predetermined width in the longitudinal direction of the plate across the entire width of the plate; , two two-dimensional cameras that detect the reflected light reflected by the plate material, the cameras are arranged symmetrically with respect to the light source, and scan and detect the reflected light in the same direction and at the same pitch in the width direction. Dimensional camera. Based on the detection signals from each camera, determine the direction in which the longitudinal end of the parallel beam intersects with the plate material, and then calculate the displacement in the height direction at the point where the parallel beam center line intersects with the plate material. A flatness meter for measuring the flatness of a plate material, characterized in that it is equipped with:
JP2153336A 1990-06-12 1990-06-12 Flatness meter Expired - Lifetime JPH0737898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153336A JPH0737898B2 (en) 1990-06-12 1990-06-12 Flatness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153336A JPH0737898B2 (en) 1990-06-12 1990-06-12 Flatness meter

Publications (2)

Publication Number Publication Date
JPH0450606A true JPH0450606A (en) 1992-02-19
JPH0737898B2 JPH0737898B2 (en) 1995-04-26

Family

ID=15560250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153336A Expired - Lifetime JPH0737898B2 (en) 1990-06-12 1990-06-12 Flatness meter

Country Status (1)

Country Link
JP (1) JPH0737898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564327B1 (en) * 2001-12-24 2006-03-27 주식회사 포스코 Equipment method for measuring flatness of cold strip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159102A (en) * 1984-12-29 1986-07-18 Hitachi Zosen Corp Two-dimensional measuring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159102A (en) * 1984-12-29 1986-07-18 Hitachi Zosen Corp Two-dimensional measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564327B1 (en) * 2001-12-24 2006-03-27 주식회사 포스코 Equipment method for measuring flatness of cold strip

Also Published As

Publication number Publication date
JPH0737898B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
EP1828713B1 (en) Thin film thickness measurement method and apparatus
CA1269525A (en) Procedure and means for measuring the thickness of a film-like or sheet-like web
JP5334861B2 (en) Method and apparatus for thickness measurement
US5714763A (en) Method and apparatus for optical alignment of a measuring head in an X-Y plane
US4498776A (en) Electro-optical method and apparatus for measuring the fit of adjacent surfaces
JPH08132118A (en) Method and device for measuring shape and/or flatness of moving material
US5402239A (en) Method of measuring orientation flat width of single crystal ingot
JPH0123041B2 (en)
JPH0450606A (en) Flatness gage
JPH06167327A (en) Measuring method for camber
JP3192461B2 (en) Optical measuring device
JP3019647B2 (en) Non-contact thickness gauge
JP3457918B2 (en) Opposite plane parallelism measurement method and apparatus
JP4031124B2 (en) Optical hole shape measuring method and measuring apparatus
JPH01244303A (en) Three-dimensional shape measuring device of non-contact method
JPH02254304A (en) Apparatus for measuring configuration of shape steel
JPH02134505A (en) Thickness measuring apparatus
JPH0534120A (en) Method and apparatus for measuring shape of surface
JPH0285704A (en) Gap measuring instrument
JPH051904A (en) Optical shape measuring instrument
JPS63177011A (en) Method for measuring squareness of flange of h-shaped material
JPH03291505A (en) Thickness measuring instrument
JPH04116406A (en) Automatic plate-thickness measuring apparatus
JPS5832103A (en) Noncontacting measuring device
JPH07110218A (en) Instrument for measuring diameter of object