JPH0450333B2 - - Google Patents

Info

Publication number
JPH0450333B2
JPH0450333B2 JP61047191A JP4719186A JPH0450333B2 JP H0450333 B2 JPH0450333 B2 JP H0450333B2 JP 61047191 A JP61047191 A JP 61047191A JP 4719186 A JP4719186 A JP 4719186A JP H0450333 B2 JPH0450333 B2 JP H0450333B2
Authority
JP
Japan
Prior art keywords
polymer
temperature
reinforcing
anisotropy
polymer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61047191A
Other languages
Japanese (ja)
Other versions
JPS62205128A (en
Inventor
Toshio Nishihara
Hiroshi Mera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61047191A priority Critical patent/JPS62205128A/en
Publication of JPS62205128A publication Critical patent/JPS62205128A/en
Publication of JPH0450333B2 publication Critical patent/JPH0450333B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

技術分野 本発明は、補匷高分子ずしおのポリアゟヌルず
マトリツクスずしおの屈曲性高分子を含有する溶
液から、力孊特性の優れた高分子耇合䜓を補造す
る方法に関するものである。 背景技術 繊維匷化プラスチツクスは、飛躍的に向䞊した
物性の故に耐荷重構造甚耇合材料ずしお重芁芖さ
れ、各皮各様の材料が開発され、実甚化されおき
た。 かかる耇合材料の補造には、別途補造された匷
化甚繊維を䞀方向に䞊べる工皋や、曎に匷化され
るべきプラスチツクスをマトリツクス高分子ずし
お含浞させる工皋を芁し、しかもその際オヌトク
レヌブ䞭で行う工皋が入る等の耇雑な段階的操䜜
を必芁ずする。䞀方耇合材料の匷床ず耐久床は、
匷化甚繊維ずマトリツクス高分子ずの界面の状態
に倧きく巊右される。䞡者の界面は繊維自䜓がマ
クロな物䜓であるためマクロな界面であり、そこ
に存圚する欠陥はマクロに䌝播し、耇合材料の砎
壊に぀ながる。 かかる欠点を解決するために、マクロな圢状で
しか分散しえない繊維状匷化材に代えお、ミクロ
に分子状に分散しうる高モゞナラスな補匷甚高分
子を甚いお、それずマトリツクス甚高分子ずを共
通溶媒䞭に溶解しお䞡者をミクロな分子状に混合
し、これを凝固・成圢するこずにより、補匷成分
ず被補匷成分ずが極めおミクロな状態で分散・混
合し、しかも配向しおいる高分子耇合䜓を補造す
るこずが怜蚎されおきた。 埓来、耇合材料に甚いられおきた匷化甚繊維
は、それが高モゞナラスの有機繊維になればなる
ほどフむブリス化しやすくなるが、䞊蚘の劂き高
分子耇合䜓にするこずにより高モゞナラスであり
しかもフむブリル化しにくいものが埗られるこず
も考えられ、それに向けおの研究もなされおき
た。 ずころで、これら高分子耇合䜓の力孊特性を向
䞊させるためには、、高分子耇合䜓の䞀次成圢䜓
䟋えばテヌプ状、フむルム状或いは繊維状成圢
䜓の䞭で、補匷甚高分子を、曎に必芁によ぀お
はマトリツクス高分子をも、高配向する必芁があ
る。 十分に䞡高分子が配向した堎合には、モゞナラ
スは各高分子の成分単独で期埅される倀の各成分
比の和で衚わされる倀ずなるものであるが、実際
には配向が䞍十分であるためこの倀より䜎いのが
珟状である。 本発明者らは、珟圚有機高分子繊維ずしおは、
最も高い匕匵りモゞナラスを䞎えるポリ−−フ
゚ニレンベンゟビスオキサゟヌル等のポリアゟヌ
ル系高分子を補匷高分子ずしお甚い、屈曲性高分
子をマトリツクス高分子ずしお甚いた系での高モ
ゞナラス化に぀いお鋭意怜蚎した結果、本発明に
到達したものである。 即ち本発明は、実質的に棒状骚栌を有するポリ
アゟヌルからなる補匷高分子(A)ず融着性を有する
マトリツクス高分子(B)ずを䞻ずしお含有する高分
子溶液を、ダむ又はオリフむスから気䜓䞭に抌し
出し、次いで凝固济䞭に導入し、しかしお連続的
に匕取るこずからなる高分子耇合䜓の補造方にお
いお、圓該高分子溶液が光孊的等方性を瀺す枩床
領域ず光孊的準異方性を瀺す枩床領域ずを有する
ものであり、圓該ダむ又はオリフむスの枩床は圓
該高分子溶液が光孊的等方性を瀺す枩床領域内に
あるように保持され、圓該気䜓及び又は凝固济
の枩床は圓該高分子溶液が光孊的準異方性を瀺す
枩床領域内にあるように保持され、か぀圓該補匷
高分子(A)の固有粘床が15以䞋であるこずを特城ず
する高分子耇合䜓の補造法である。 本発明においお甚いる補匷高分子(A)ずしおは、
䞋蚘匏 䜆し、匏䞭は−−−−又は
<Technical Field> The present invention relates to a method for producing a polymer composite with excellent mechanical properties from a solution containing a polyazole as a reinforcing polymer and a flexible polymer as a matrix. <Background Art> Fiber-reinforced plastics have been regarded as important as composite materials for load-bearing structures because of their dramatically improved physical properties, and various materials have been developed and put into practical use. The production of such composite materials requires a process of arranging reinforcing fibers manufactured separately in one direction, and a process of impregnating the plastic to be further reinforced as a matrix polymer, and this process is carried out in an autoclave. requires complicated step-by-step operations such as On the other hand, the strength and durability of composite materials are
It greatly depends on the state of the interface between the reinforcing fiber and the matrix polymer. The interface between the two is a macroscopic interface because the fiber itself is a macroscopic object, and defects existing there propagate macroscopically and lead to destruction of the composite material. In order to solve this drawback, instead of the fibrous reinforcing material that can only be dispersed in a macroscopic form, we used a highly modulus reinforcing polymer that can be dispersed in a microscopic molecular form, and combined it with a matrix polymer. By dissolving both in a common solvent and mixing them in a microscopic molecular form, and solidifying and molding this, the reinforcing component and the reinforced component are dispersed and mixed in an extremely microscopic state, and are oriented. Producing polymer composites has been considered. Conventionally, the reinforcing fibers used in composite materials are more likely to fibrillate as they become organic fibers with higher modulus, but by making them into polymer composites like the one described above, they have a high modulus and are less likely to fibrillate. It is thought that things can be obtained from this, and research has been carried out toward this end. By the way, in order to improve the mechanical properties of these polymer composites, it is necessary to further add a reinforcing polymer to the primary molded product of the polymer composite (for example, a tape, film, or fibrous molded product). If necessary, the matrix polymer also needs to be highly oriented. If both polymers are sufficiently oriented, the modulus will be a value expressed by the sum of the ratios of each component of the expected value for each polymer component alone, but in reality, the orientation is insufficient. Therefore, the current value is lower than this value. The present inventors have discovered that currently, organic polymer fibers include:
The results of intensive studies on achieving high modulus in a system using a polyazole polymer such as poly-p-phenylenebenzobisoxazole, which provides the highest tensile modulus, as a reinforcing polymer and a flexible polymer as a matrix polymer. , the present invention has been achieved. That is, in the present invention, a polymer solution mainly containing a reinforcing polymer (A) consisting of a polyazole having a substantially rod-shaped skeleton and a matrix polymer (B) having fusibility is introduced into a gas through a die or orifice. In a method for producing a polymer composite consisting of extrusion, then introduction into a coagulation bath, and continuous withdrawal, the temperature range in which the polymer solution exhibits optical isotropy and the optical quasi-anisotropy are determined. The temperature of the die or orifice is maintained within a temperature range in which the polymer solution exhibits optical isotropy, and the temperature of the gas and/or coagulation bath is Production of a polymer composite characterized in that the polymer solution is maintained within a temperature range exhibiting optical quasi-anisotropy, and the reinforcing polymer (A) has an intrinsic viscosity of 15 or less. It is the law. As the reinforcing polymer (A) used in the present invention,
The following formula [However, in the formula, X is -S-, -O- or

【匏】 を衚わし、結合手(ã‚€)(ロ)は、曎にアゟヌル環又は
炭化氎玠環を圢成する結合手であるが、或いはそ
の䞀方に氎玠原子が結合し、他方が結合手である
ものである。 で衚わされるアゟヌル骚栌を有する実質的に棒状
骚栌のポリアゟヌルが挙げられ、具䜓的には、米
囜特蚱第4207407号明现曞に蚘茉されたポリマヌ
があり、就䞭ポリ−−プニレンベンゟビスチ
アゟヌルポリ−−プニレンベンゟオキサゟ
ヌルポリ−−プニレンベンゟビスむミダゟ
ヌル等のポリアゟヌル類が挙げられる。 補匷高分子(A)の分子量は通垞分子量の目安ずな
る固有粘床が以䞊であり、奜たしくは1.5以䞊、
特に奜たしくは以䞊である。䞀方、固有粘床が
高すぎるものは奜たしくなく、20になるず良奜な
ものは埗られない。本発明の効果を発珟するため
には補匷高分子の固有粘床は15以䞋であり、奜た
しくは12以䞋、特に奜たしくは10以䞋にするのが
よい。 本発明においお甚いられるマトリツクス高分子
(B)は、補匷高分子(A)ず同䞀溶媒に溶解するもので
あり、ナむロンナむロン66ナむロン610
ナむロン12ナむロン11等の脂肪族ポリアミド
ポリヘキサメチレンむ゜フタルアミド等の半芳銙
族ポリアミドポリメタプニレンむ゜フタルア
ミド等の芳銙族ポリアミド゚ヌテル基等の屈曲
性基を導入した屈曲性芳銙族ポリアミドポリ゚
ステルポリカヌボネヌトポリ酢酞ビニルポ
リサルフオンポリ゚ヌテルサルフオンポリ゚
ヌテルむミドポリ゚ヌテルケトンポリプニ
レンサルフアむド等があげられる。 共通溶媒ずしおは、構成ポリマヌを溶解するも
のであればよく、䟋えば濃硫酞メタンスルホン
酞クロルスルホン酞ポリリン酞トリフロロ
酢酞リン酞等の酞性溶媒が挙げられる。これら
は滎宜混合しお甚いおも良い。たた溶解した高分
子の加氎分解を抌さえるため、溶媒䞭の氎の量を
できるだけ少くするための添加剀を混入しおもよ
い。䟋えば発煙硫酞クロルスルホン酞等の添加
があげられる。 高分子耇合䜓圢成甚の原液は、䞊蚘共通溶媒に
補匷高分子ずマトリツクス高分子ずを溶解した高
分子溶液であり、該高分子溶液は、光孊的等方性
を瀺す枩床領域ず、光孊的準異方性を瀺す溶液領
域が必芁である。 光孊的等方性を瀺す枩床領域ず光孊的準異方性
を瀺す枩床領域は、ポリマヌの皮類重合床成
分比及び濃床によ぀お倉化するものであるが、以
䞋の枬定方法により決定するこずができる。 即ち、所定の高分子溶液を調補し、それをスラ
むドガラス䞊に薄くのばしお配眮し、高分子溶液
の厚さが0.1mmになるようにしおプレパラヌトで
おさえる。かくしお調補されたサンプルを盎亀ニ
コルを有する偏光顕埮鏡の芳察䞋におく。先ずサ
ンプルの枩床を宀枩20℃以䞋に䞋げお、スラ
むドガラス䞊の高分子耇合䜓溶液を光孊的異方性
を瀺す状態ずする。 融点枬定装眮YANAGIMOTO(æ ª)を甚い、
偏光顕埮鏡で芳察しながらサンプルの枩床を埐々
に℃min.䞊昇させるず、特定の枩床に
おいお芖野が暗くなり光孊的等方性の状態に倉化
したこずを芳察される。この時の枩床を転移枩床
ず名づける。等方性にな぀たこずを確認埌この枩
床から、スラむドガラス䞊の高分子溶液を所定枩
床、䟋えば20℃に急速に冷华する。 冷华方法ずしおは、該枩床に冷华された銅又は
銀等の熱䌝導性のよい物質の䞊にずりを加えない
で眮くこずが達成される。このサンプルを盎亀ニ
コルを有する偏光顕埮鏡で芳察するず、高分子溶
液の調補法の条件によ぀お光孊的異方性が出珟す
るたでの時間が倧巟に倉わる。この堎合䞊蚘転移
枩床が高い系皋、䞀般に光孊的異方性が出珟する
たでの時間が短くなる。 しかしお、䞊蚘の劂き急冷を加えた際に、冷华
開始埌光孊的異方性が出珟するたでの時間が30秒
以䞊持続すれば、この枩床は光孊的準異方性枩床
領域内の枩床である。 本発明方法においおは、補匷高分子マトリツ
クス高分子の皮類分子量溶媒系及び各高分子
の成分比・濃床が決定されるず䞊蚘枬定方法に埓
぀お光孊的等方性光孊的準異方性を瀺す枩床領
域をそれぞれ枬定し、ダむ又はオリフむスの枩床
を光孊的等方性枩床領域に、気䜓及び又は凝固
济の枩床を光孊的準異方性枩床領域にそれぞれ保
持し、公知の方法に埓぀おダむ又はオリフむスか
ら高分子溶液を抌し出し、気䜓を経由しお凝固济
䞭に導き、連続的に匕き取るこずにより半也半湿
的にフむルム又は繊維を補造する。 この際、ダむ又はオリフむスから抌し出された
高分子溶液は、気䜓及び又は凝固济䞭で急激に
冷华されお光孊的準異方性を瀺す枩床に急速に達
するめ、補匷高分子は極めお埮小な棒状の集合䜓
を圢成するための条件が敎うこずずなる。これに
反し、気䜓及び又は凝固液の枩床を光孊的異方
性枩床領域前蚘時間が30秒未満ずするず埗ら
れる成圢物は延䌞性が劣り、良奜な力孊特性を瀺
さない。 たた補匷高分子(A)の分子量の目安ずなる固有粘
床が15以䞋のもの、特に12以䞋のものを甚いる
ず、補匷高分子(A)の極めお埮小な棒状の集合䜓が
圢成されやすくなるため、その埌の延䌞操䜜にお
いおマトリツクスポリマヌ䞭で補匷高分子が(A)が
すみやかに配向されやすいためか、力孊特性が意
倖に向䞊する。これに反し、気䜓及び凝固液の枩
床が光孊的等方性枩床領域であるず最終成圢物の
力孊特性、特にモゞナラスの絶察倀が本発明の方
法に比べお劣るものずなる。 補匷高分子の棒状のミクロな集合䜓を圢成する
他の手段ずしおは、高分子耇合䜓溶液の高分子濃
床を適切に遞定するこずで䞀定枩床で光孊的等方
性から光孊的異方性に転移する領域で、補匷ポリ
マヌを棒状に集合するこずが知られおいるが、こ
の方匏では、補匷高分子のミクロな集合䜓を圢成
する条件が極めお狭いためか理由は明らかでない
が、本発明に比べお良奜な成圢物は埗られない。 該高分子溶液を凝固するための凝固液ずしお
は、甚いる溶媒に非溶解性の溶媒を混合した系、
䟋えば、硫酞氎溶液メタンスルホン酞氎溶液等
が挙げられる。凝固液の枩床は、該高分子耇合䜓
溶液が光孊的準異方性を呈する枩床に保持する必
芁がある。 䞀般にスリツトダむ又はオリフむスの保持枩床
ず凝固济の枩床ずの枩床差が倧きくなるように蚭
定するこずが、埌の延䌞操䜜で高配向・高モゞナ
ラスの成圢物を埗るためには、奜たしいず云え
る。 本発明においお甚いられる補匷高分子(A)ずマト
リツクス高分子(B)の割合はが〜45
の範囲にあるのがよい。補匷高分子(A)がより
も小さい堎合には、補匷効果が小さく45を越す
ず、補匷高分子(A)の配向性が䜎䞋し本発明の特城
を発珟するこずができない。 本発明においお甚いられる固有粘床ずは、100
硫酞もしくはメタンスルホン酞もしくはクロル
スルホン酞に補匷高分子(A)の濃床が0.2100c.c.
になるように溶解埌、30℃で垞法により求めた
ηinhである。補匷高分子(A)が䞊蚘の溶媒のいずれ
にも溶解する時は、その䞭でも぀ずも䜎い倀をそ
の補匷高分子(A)の固有粘床ずする。 以䞋に本発明の効果を実斜䟋をも぀お瀺すが、
実斜䟋䞭の癟分率は、こずわらない限り重量基準
で瀺す。繊維・フむルムの機械的性質は、サンプ
ル長cmを毎分100の䌞長速床で枬定したもの
である。 実斜䟋〜比范䟋〜 補匷高分子(A)ずしお、ポリ−−プニレンベ
ンゟビスチアゟヌルPPBTず略すを垞法に埓
぀お重合し、メタンスルホン酞溶媒における固有
粘床が3.0のもの埗た。 マトリツクス高分子(B)は、3.4′−ゞアミノゞフ
゚ニル゚ヌテル50モルずパラプニレンゞ
アミン50モルずを−メチルピロリドンに
濃床がになるようにしお、也燥窒玠雰囲気䞋
に溶解せしめ、℃に冷华した埌、激しく攪拌し
ながらテレフタル酞ゞクロラむドの粉末100モ
ルを圓該溶液にすみやかに添加し、35℃で
時間重合反応を行い、これを氎にお沈柱し䞭和し
お埗た。以䞋該ポリマヌをPPOT−50ず略す。
PPOT−50のηinhは硫酞溶媒で3.6であ぀た。
PPBTずPPOT−50の成分比が2575になるよう
にしおメタンスルホン酞に溶解し、ポリマヌ党濃
床が及びのものを䜜成した。
該高分子耇合䜓溶液の異方性から等方性に転移す
る枩床盞転移枩床衚に瀺す通りであ぀た。 該高分子溶液を転移枩床以䞊の96℃に加枩埌、
それを20℃の銀板䞊に眮いお冷华し、その埌異方
性が出珟する時間をそれぞれ枬定した。出珟時間
は衚に瀺す通りであ぀た。該高分子溶液を泚射
噚型の容噚に入れ、枩床が80℃で盎埄が0.25mmの
オリフむスから線速床がminになるように
しお抌し出した。空気局枩床25℃距離18cm
を通過埌、氷氎凝固液ぞ導いた。凝固䞊りの倚少
ストレツチのかか぀た未延䌞糞は、十分に掗浄
し、アンモニア氎で䞭和埌ボビンに巻きずられ
た。枩氎翌60℃で延䌞埌颚也し、さらに200℃の
オヌブンで也燥埌、350℃および450℃の電気炉
の䞭で熱延䌞した。熱延䌞糞の力孊性胜は衚に
瀺す通りで本発明の効果が歎然ず衚われおいる。
[Formula], and the bonds (a) and (b) are bonds that further form an azole ring or a hydrocarbon ring, or a hydrogen atom is bonded to one of them and the other is a bond. It is. ] Substantially rod-like polyazoles having an azole skeleton represented by the following are mentioned, and specifically, there are polymers described in U.S. Pat. No. 4,207,407, among which poly-p-phenylenebenzobisthiazole , poly-p-phenylene benzoxazole, poly-p-phenylene benzobisimidazole, and other polyazoles. The molecular weight of the reinforcing polymer (A) is usually such that the intrinsic viscosity, which is a guideline for molecular weight, is 1 or more, preferably 1.5 or more,
Particularly preferably 2 or more. On the other hand, it is not preferable that the intrinsic viscosity is too high, and if the intrinsic viscosity is 20, a good product cannot be obtained. In order to achieve the effects of the present invention, the reinforcing polymer should have an intrinsic viscosity of 15 or less, preferably 12 or less, particularly preferably 10 or less. Matrix polymer used in the present invention
(B) is dissolved in the same solvent as the reinforcing polymer (A), and includes nylon 6, nylon 66, nylon 610,
Aliphatic polyamides such as nylon 12 and nylon 11;
Semi-aromatic polyamides such as polyhexamethylene isophthalamide; Aromatic polyamides such as polymetaphenylene isophthalamide; Flexible aromatic polyamides into which flexible groups such as ether groups have been introduced; Polyester; Polycarbonate; Polyvinyl acetate; Polysulfon; Examples include polyether sulfone; polyetherimide; polyether ketone; polyphenylene sulfide, and the like. The common solvent may be any solvent that can dissolve the constituent polymers, and examples thereof include acidic solvents such as concentrated sulfuric acid, methanesulfonic acid, chlorosulfonic acid, polyphosphoric acid, trifluoroacetic acid, and phosphoric acid. These may be mixed and used. Further, in order to suppress hydrolysis of the dissolved polymer, an additive may be mixed in to reduce the amount of water in the solvent as much as possible. For example, addition of fuming sulfuric acid, chlorosulfonic acid, etc. may be mentioned. The stock solution for forming a polymer composite is a polymer solution in which a reinforcing polymer and a matrix polymer are dissolved in the above-mentioned common solvent. A region of solution exhibiting quasi-anisotropy is required. The temperature range showing optical isotropy and the temperature range showing optical quasi-anisotropy vary depending on the type of polymer, degree of polymerization, component ratio, and concentration, but are determined by the following measurement method. be able to. That is, a predetermined polymer solution is prepared, spread thinly on a slide glass, and placed so that the thickness of the polymer solution is 0.1 mm, and is covered with a slide. The sample thus prepared is placed under observation using a polarizing microscope with crossed Nicols. First, the temperature of the sample is lowered to below room temperature (20°C) to bring the polymer composite solution on the slide glass into a state where it exhibits optical anisotropy. Using a melting point measuring device (YANAGIMOTO Co., Ltd.),
When the temperature of the sample is gradually increased (5° C./min.) while observing it with a polarizing microscope, it is observed that the field of view becomes dark at a certain temperature and changes to an optically isotropic state. The temperature at this time is called the transition temperature. After confirming that it has become isotropic, the polymer solution on the slide glass is rapidly cooled from this temperature to a predetermined temperature, for example, 20°C. The cooling method is achieved by placing the film on a material with good thermal conductivity, such as copper or silver, which has been cooled to the above temperature without adding any shear. When this sample is observed using a polarizing microscope with crossed Nicols, the time it takes for optical anisotropy to appear varies greatly depending on the conditions of the polymer solution preparation method. In this case, the higher the transition temperature of the system, the shorter the time until optical anisotropy appears. Therefore, when applying rapid cooling as described above, if the time from the start of cooling to the appearance of optical anisotropy continues for 30 seconds or more, this temperature is within the optical quasi-anisotropy temperature range. be. In the method of the present invention, once the types, molecular weights, solvent systems, and component ratios and concentrations of the reinforcing polymers and matrix polymers are determined, optical isotropy and optical quasi-anisotropy are determined according to the above measurement method. The temperature range showing the anisotropy is measured, and the temperature of the die or orifice is kept in the optically isotropic temperature range, and the temperature of the gas and/or coagulation bath is kept in the optically quasi-anisotropic temperature range. According to the method, a polymer solution is extruded through a die or orifice, guided through a gas into a coagulation bath, and continuously withdrawn to produce films or fibers in a semi-dry and semi-wet manner. At this time, the polymer solution extruded from the die or orifice is rapidly cooled in a gas and/or coagulation bath and rapidly reaches a temperature at which it exhibits optical quasi-anisotropy. The conditions for forming a rod-shaped aggregate are now in place. On the other hand, when the temperature of the gas and/or coagulation liquid is in the optically anisotropic temperature range (the time is less than 30 seconds), the molded product obtained has poor stretchability and does not exhibit good mechanical properties. In addition, if a reinforcing polymer (A) with an intrinsic viscosity of 15 or less, especially one with an intrinsic viscosity of 12 or less, is used, extremely small rod-shaped aggregates of the reinforcing polymer (A) are likely to be formed. The mechanical properties are surprisingly improved, probably because the reinforcing polymer (A) is easily oriented quickly in the matrix polymer during the subsequent stretching operation. On the other hand, if the temperatures of the gas and coagulation liquid are in the optically isotropic temperature range, the mechanical properties of the final molded product, especially the absolute value of the modulus, will be inferior to those obtained by the method of the present invention. Another way to form rod-shaped micro aggregates of reinforcing polymers is to change optical isotropy to optical anisotropy at a constant temperature by appropriately selecting the polymer concentration of the polymer composite solution. It is known that reinforcing polymers are aggregated into rod shapes in the region of transition, but the reason for this method is not clear, perhaps because the conditions for forming microscopic aggregates of reinforcing polymers are extremely narrow, but the present invention Comparatively, better molded products cannot be obtained. As a coagulating liquid for coagulating the polymer solution, a system in which an insoluble solvent is mixed with the solvent used,
Examples include sulfuric acid aqueous solution, methanesulfonic acid aqueous solution, and the like. The temperature of the coagulation liquid must be maintained at a temperature at which the polymer composite solution exhibits optical quasi-anisotropy. In general, it is preferable to set the temperature difference between the holding temperature of the slit die or orifice and the temperature of the coagulation bath to be large in order to obtain a molded product with high orientation and high modulus in the subsequent stretching operation. The ratio of reinforcing polymer (A) and matrix polymer (B) used in the present invention is 5 to 45% A/A+B.
It is good that it is within the range of . When the reinforcing polymer (A) is less than 5%, the reinforcing effect is small, and when it exceeds 45%, the orientation of the reinforcing polymer (A) is reduced and the characteristics of the present invention cannot be expressed. The intrinsic viscosity used in the present invention is 100
% sulfuric acid, methanesulfonic acid or chlorosulfonic acid with a concentration of reinforcing polymer (A) of 0.2g/100c.c.
ηinh was determined by a conventional method at 30°C after dissolving so that When the reinforcing polymer (A) dissolves in any of the above solvents, the lowest value among them is taken as the intrinsic viscosity of the reinforcing polymer (A). The effects of the present invention will be shown below with examples,
Percentages in the examples are given on a weight basis unless otherwise specified. Mechanical properties of fibers and films were measured using a sample length of 2 cm at an elongation rate of 100% per minute. Examples 1-2, Comparative Examples 1-3 As the reinforcing polymer (A), poly-p-phenylenebenzobisthiazole (abbreviated as PPBT) was polymerized according to a conventional method, and the intrinsic viscosity in methanesulfonic acid solvent was I got the 3.0 one. The matrix polymer (B) was prepared by adding 3.4′-diaminodiphenyl ether (50 mol%) and paraphenylene diamine (50 mol%) to N-methylpyrrolidone at a concentration of 6% in a dry nitrogen atmosphere. After cooling to 5°C, terephthalic acid dichloride powder (100 mol%) was immediately added to the solution with vigorous stirring, and the mixture was heated to 1°C at 35°C.
A polymerization reaction was carried out for a period of time, and the resultant was precipitated and neutralized with water. Hereinafter, this polymer will be abbreviated as PPOT-50.
ηinh of PPOT-50 was 3.6 in sulfuric acid solvent.
PPBT and PPOT-50 were dissolved in methanesulfonic acid at a component ratio of 25/75 to prepare polymers with total polymer concentrations of 4, 5, 6, 7, and 8%.
The temperature at which the polymer composite solution transitions from anisotropy to isotropy (phase transition temperature) was as shown in Table 1. After heating the polymer solution to 96°C, which is higher than the transition temperature,
It was placed on a silver plate at 20°C to cool it, and then the time required for anisotropy to appear was measured. The appearance times were as shown in Table 1. The polymer solution was placed in a syringe-shaped container and extruded at a temperature of 80° C. through an orifice with a diameter of 0.25 mm at a linear velocity of 5 m/min. Air layer (temperature 25℃, distance 18cm)
After passing through, it was led to an ice water coagulation solution. The somewhat stretched undrawn yarn after coagulation was thoroughly washed, neutralized with aqueous ammonia, and then wound onto a bobbin. After stretching in warm water at 60°C, the film was air-dried, further dried in an oven at 200°C, and then hot-stretched in electric furnaces at 350°C and 450°C. The mechanical performance of the hot drawn yarn is as shown in Table 1, clearly demonstrating the effects of the present invention.

【衚】 実斜䟋〜及び比范䟋〜 実斜䟋で甚いたPPBTずPPOT−50を甚い、
PPBTずPPOT−50の成分比が3070になるよう
にメタンスルホン酞に溶解し、ポリマヌ党濃床が
のものを䜜成した。 該高分子溶液の異方性に転移がある堎合にはそ
の枩床及び該高分子溶液を90℃に加熱埌、それを
20℃の銀板䞊に眮いお冷华し、その埌異方性が出
珟する時間を枬定した。結果は衚に瀺す通りで
あ぀た。 実斜䟋ず同じようにしお、玡糞延䌞し、力孊
特性を評䟡した。衚に瀺すように本発明の条件
を満たすものは、良奜な力孊特性を瀺した。
[Table] Examples 3 to 5 and Comparative Examples 4 to 5 Using PPBT and PPOT-50 used in Example 1,
PPBT and PPOT-50 were dissolved in methanesulfonic acid at a component ratio of 30/70 to prepare polymers with total polymer concentrations of 4, 5, 6, 7, and 8%. If there is a transition in the anisotropy of the polymer solution, change the temperature and the temperature after heating the polymer solution to 90°C.
It was placed on a silver plate at 20°C to cool it, and then the time for anisotropy to appear was measured. The results were as shown in Table 2. Spinning and drawing were carried out in the same manner as in Example 1, and the mechanical properties were evaluated. As shown in Table 2, those that met the conditions of the present invention exhibited good mechanical properties.

【衚】 実斜䟋比范䟋 補匷高分子ずしお、PPBTを実斜䟋の方法に
準じお重合しηinhが7.3のものを埗た。この
PPBTず実斜䟋で埗られたマトリツクスポリマ
ヌPPOT−50ずの割合が2575になるようにし
お、メタンスルホン酞に溶解し、ポリマヌ党濃床
がになるようにした。 該高分子溶液の転移枩床は62℃であり、20℃で
急冷したずきの異方性が出珟する時間は60秒以䞊
であり、準異方性を呈した。該高分子溶液をスリ
ツトダむ10mm×0.1mmから抌し出し、枩氎延䌞
熱延䌞を垞法に埓぀おするこずで厚みΌ
モゞナラスGPa䌞床匷床GPa
51823.51.1を埗た。䞀方、ポリマヌ党濃
床がのものは準異方性状態を瀺さず、等方性
溶液から補膜したものは、厚みΌモゞナ
ラスGPa䌞床匷床GPa52
532.60.8であり、良奜でなか぀た。 比范䟋  補匷ポリマヌずしおのPPBTを実斜䟋の方法
に埓぀お重合し、ηinh21のものを埗た。 PPBT−PPOT−502575の割合でポリマヌ
濃床3.5の溶液を䜜成した。盞転移枩床は82℃
であり、20℃冷华の異方性出珟時間は玄20秒で準
異方性を呈しおいた。 オリフむス枩床90℃から吐出し、枩氎延
䌞熱延䌞するこずで高分子耇合䜓の繊維を埗
た。繊維性胜は、盎埄Όモゞナラス
GPa䌞床匷床GPa4165
2.31.1であり、PPBTのηinhの小さいものに比
べ劣぀おいた。
[Table] Example 6, Comparative Example 5 As a reinforcing polymer, PPBT was polymerized according to the method of Example 1 to obtain one with ηinh of 7.3. this
The ratio of PPBT to the matrix polymer PPOT-50 obtained in Example 1 was 25/75, and the mixture was dissolved in methanesulfonic acid so that the total polymer concentration was 6%. The transition temperature of the polymer solution was 62°C, and when it was rapidly cooled to 20°C, the time for anisotropy to appear was 60 seconds or more, indicating quasi-anisotropy. The polymer solution was extruded through a slit die of 10 mm x 0.1 mm, stretched with hot water,
Thickness (ÎŒm)/
Modulus (GPa) / Elongation (%) / Strength (GPa)
= 51/82/3.5/1.1 was obtained. On the other hand, a film with a total polymer concentration of 4% does not exhibit a quasi-anisotropic state, and a film formed from an isotropic solution has a thickness (ÎŒm)/modulus (GPa)/elongation (%)/strength (GPa). )=52/
53/2.6/0.8, which was not good. Comparative Example 7 PPBT as a reinforcing polymer was polymerized according to the method of Example 1, and a polymer having ηinh=21 was obtained. A solution with a polymer concentration of 3.5% was prepared at a ratio of PPBT-PPOT-50 = 25/75. Phase transition temperature is 82℃
, and the anisotropy appearance time after cooling to 20°C was approximately 20 seconds, exhibiting quasi-anisotropy. A polymer composite fiber was obtained by discharging from an orifice (temperature: 90°C), hot water stretching, and hot stretching. Fiber performance is diameter (Όm) / modulus (GPa) / elongation (%) / strength (GPa) = 41 / 65 /
2.3/1.1, which was inferior to PPBT with small ηinh.

Claims (1)

【特蚱請求の範囲】[Claims]  実質的に棒状骚栌を有するポリアゟヌルから
なる補匷高分子(A)ず融着性を有するマトリツクス
高分子(B)ずを䞻ずしお含有する高分子溶液を、ダ
む又はオリフむスから気䜓䞭に抌し出し、次いで
凝固济䞭に導入し、しかしお連続的に匕取るこず
からなる高分子耇合䜓の補造法においお、圓該高
分子溶液が光孊的等方性を瀺す枩床領域ず光孊的
準異方性を瀺す枩床領域ずを有するものであり、
圓該ダむ又はオリフむスの枩床は圓該高分子溶液
が光孊的等方性を瀺す枩床領域内にあるように保
持され、圓該気䜓及び又は凝固济の枩床は圓該
高分子溶液が光孊的準異方性を瀺す枩床領域内に
あるように保持されおおり、か぀圓該補匷高分子
(A)の固有粘床が15以䞋であるこずを特城ずする高
分子耇合䜓の補造法。
1 A polymer solution mainly containing a reinforcing polymer (A) consisting of a polyazole having a substantially rod-shaped skeleton and a matrix polymer (B) having fusibility is extruded into a gas through a die or orifice, and then solidified. In a method for producing a polymer composite, which involves introducing the polymer solution into a bath and then continuously taking it out, the temperature range in which the polymer solution exhibits optical isotropy and the temperature range in which it exhibits optical quasi-anisotropy is determined. and
The temperature of the die or orifice is maintained within a temperature range in which the polymer solution exhibits optical isotropy, and the temperature of the gas and/or coagulation bath is maintained such that the polymer solution exhibits optical quasi-anisotropy. and the reinforcing polymer
A method for producing a polymer composite characterized in that (A) has an intrinsic viscosity of 15 or less.
JP61047191A 1986-03-06 1986-03-06 Production of polymer composite Granted JPS62205128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61047191A JPS62205128A (en) 1986-03-06 1986-03-06 Production of polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61047191A JPS62205128A (en) 1986-03-06 1986-03-06 Production of polymer composite

Publications (2)

Publication Number Publication Date
JPS62205128A JPS62205128A (en) 1987-09-09
JPH0450333B2 true JPH0450333B2 (en) 1992-08-14

Family

ID=12768218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61047191A Granted JPS62205128A (en) 1986-03-06 1986-03-06 Production of polymer composite

Country Status (1)

Country Link
JP (1) JPS62205128A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749528B2 (en) * 1988-12-03 1995-05-31 工業技術院長 Polymer composite manufacturing method
TWI340773B (en) * 2008-07-07 2011-04-21 Univ Taipei Medical Method of fabricating nano-fibers by electrospinning

Also Published As

Publication number Publication date
JPS62205128A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
US5286833A (en) Polybenzazole fiber with ultra-high physical properties
JPS61255831A (en) Manufacture of molded shape and film from thermotropic polymer
EP3094768A1 (en) Polyamide fibers
KR880001262B1 (en) Process for the preparation of polyvinyl alcohol articles of high strength and modulus
US5011643A (en) Process for making oriented, shaped articles of para-aramid/thermally-consolidatable polymer blends
US4749753A (en) Intimate mixture containing aromatic polyazole and aromatic copolyamide and process for its production
JPH0353336B2 (en)
KR0126128B1 (en) Process for preparation of fibers of stereoregular polystyrene
JPH0450333B2 (en)
JPH0678440B2 (en) Polymer composite manufacturing method
JPH0749528B2 (en) Polymer composite manufacturing method
KR100270090B1 (en) Process for preparing polyamideimide resin polymer composite
JPS63308040A (en) Production of polymer composite
JPH0625266B2 (en) Method for producing polyazole biaxially oriented film
JPH0476055A (en) Polymer composite and its preparation
JPH02281077A (en) Production of polymer composite material
JPS5921962B2 (en) Method for manufacturing aromatic polyamide molded products
CN106480519B (en) Electrospinning nylon66 fiber/PVA/ boric acid nanofibers and preparation method thereof
KR930002419B1 (en) Process for preparation of copolyamid
CN117295855A (en) Monofilament and method for producing same
JPH0136785B2 (en)
Hwang Processing and properties of rigid rod polymers and their molecular composites
JPH04146946A (en) Polymer composition
JPS5834498B2 (en) Polyamide material
JPH0768541A (en) Production of self-reinforcing composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term