JPH0449185Y2 - - Google Patents

Info

Publication number
JPH0449185Y2
JPH0449185Y2 JP19111887U JP19111887U JPH0449185Y2 JP H0449185 Y2 JPH0449185 Y2 JP H0449185Y2 JP 19111887 U JP19111887 U JP 19111887U JP 19111887 U JP19111887 U JP 19111887U JP H0449185 Y2 JPH0449185 Y2 JP H0449185Y2
Authority
JP
Japan
Prior art keywords
crystal
heating means
solid
single crystal
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19111887U
Other languages
Japanese (ja)
Other versions
JPH0194467U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19111887U priority Critical patent/JPH0449185Y2/ja
Publication of JPH0194467U publication Critical patent/JPH0194467U/ja
Application granted granted Critical
Publication of JPH0449185Y2 publication Critical patent/JPH0449185Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は単結晶製造装置に関し、特に、固液界
面の形状を良好にして単結晶の製造を容易にした
単結晶製造装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a single crystal production apparatus, and particularly to a single crystal production apparatus in which the shape of the solid-liquid interface is improved to facilitate the production of single crystals.

〔従来の技術〕[Conventional technology]

横型ボート法によるGaAs単結晶製法には、
HB法、GF法、ZM法等があるが、いずれの方法
においても結晶固化する時の固液界面をいかにし
て平面または若干凸に制御するかという点が重要
になつている。そこで、このような固液界面を制
御する単結晶製造装置として、特公昭56−32272
号公報に示されるものがある。これは、炉体上部
に放熱孔を設け、石英ボート中のGaAs融液の上
部自由表面から放熱、冷却させて上から下方向に
結晶成長させるものであり、放熱孔の幅を結晶幅
より若干狭くすることにより、結晶の界面形状の
制御を行うことができる。また、他の単結晶製造
装置として、特開昭61−209983号公報に示される
ものがあり、多分割ヒータを用いて界面制御を行
つている。このヒータの分割方法は断面方向に
90°の間隔で上下左右に4分割し、上部ヒータの
温度を下げることによつて固液界面の温度を制御
している。
The GaAs single crystal manufacturing method using the horizontal boat method includes:
There are the HB method, GF method, ZM method, etc., but in each method, the important point is how to control the solid-liquid interface to be flat or slightly convex during crystal solidification. Therefore, as a single crystal production device that controls such solid-liquid interface, we developed the
There is something shown in the publication. In this method, a heat dissipation hole is provided in the upper part of the furnace body, and the heat is dissipated from the upper free surface of the GaAs melt in the quartz boat to cool it and grow the crystal from top to bottom.The width of the heat dissipation hole is set slightly larger than the crystal width. By narrowing the width, the shape of the crystal interface can be controlled. Another single crystal manufacturing apparatus is disclosed in Japanese Patent Application Laid-Open No. 61-209983, in which interface control is performed using a multi-segmented heater. This heater is divided in the cross-sectional direction.
It is divided into four parts at 90° intervals vertically, horizontally, and horizontally, and the temperature of the solid-liquid interface is controlled by lowering the temperature of the upper heater.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、従来の単結晶製造装置によれば、特公
昭56−32272号公報の場合、外径が2インチ程度
の結晶の界面形状の制御は可能であるが、外径が
3インチ程度の大形結晶の界面制御には不充分で
ある。そのため、第3図に示すように中央部は凸
形状になるがボート壁付近は凹面形状になる恐れ
があり、この部分からリネージ、ツイン等が発生
して単結晶成長が難しくなるという不都合がある
(第3図において、1はGaAs結晶、2はGaAs融
液である)。また、特開昭61−209983号公報の場
合、上部に放熱手段がないため、単に上部ヒータ
の温度を下げただけでは放熱量が不充分であり、
成長速度も非常に遅いという不都合がある。ま
た、GaAs結晶の表面がヒータから受ける熱輻射
量を計算すると、ボート壁に近い部分がボート壁
そのものに輻射を遮られて加熱されにくいため、
第3図に示すように固液界面の形状がボート壁付
近で凹面になりやすく、単に、左右に配置された
ヒータでは固液界面の形状を平面または凸面にす
ることができないという不都合がある。つまり、
左右ヒータの幅が広すぎてボート側壁と結晶表面
を同時に加熱してしまうことが主原因となつてい
る。
However, according to conventional single crystal manufacturing equipment, in the case of Japanese Patent Publication No. 56-32272, it is possible to control the interface shape of a crystal with an outer diameter of about 2 inches, but it is possible to control the interface shape of a crystal with an outer diameter of about 3 inches. This is insufficient for crystal interface control. As a result, as shown in Figure 3, the central part becomes convex, but the area near the boat wall may become concave, creating the disadvantage that lineage, twins, etc. occur from this area, making single crystal growth difficult. (In FIG. 3, 1 is a GaAs crystal and 2 is a GaAs melt). Furthermore, in the case of JP-A-61-209983, since there is no heat dissipation means in the upper part, simply lowering the temperature of the upper heater does not radiate enough heat.
The disadvantage is that the growth rate is also very slow. In addition, when calculating the amount of thermal radiation that the surface of the GaAs crystal receives from the heater, it is found that the part near the boat wall is difficult to heat because the boat wall itself blocks the radiation.
As shown in FIG. 3, the shape of the solid-liquid interface tends to become concave near the boat wall, and there is a problem in that the shape of the solid-liquid interface cannot be made flat or convex simply by heaters placed on the left and right sides. In other words,
The main cause is that the left and right heaters are too wide, heating the boat side wall and the crystal surface at the same time.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は上記に鑑みてなされたものであり、固
液界面の形状を良くすることにより断面積が大に
なつても容易に単結晶を成長できるようにするた
め、固液界面部において石英ボートの底部および
側壁部、および結晶表面部を個別のヒータで加熱
することによつて、固液界面の形状を制御するよ
うにした単結晶製造装置を提供するものである。
The present invention was developed in view of the above, and in order to improve the shape of the solid-liquid interface and thereby enable easy growth of single crystals even when the cross-sectional area becomes large, a quartz boat is used at the solid-liquid interface. The present invention provides a single crystal manufacturing apparatus in which the shape of the solid-liquid interface is controlled by heating the bottom and side walls and the surface of the crystal with separate heaters.

即ち、本考案の単結晶製造装置は以下の手段を
備えている。
That is, the single crystal manufacturing apparatus of the present invention includes the following means.

(1) 多分割加熱手段 石英ボートを底部より加熱する底部加熱手段、
石英ボートを側壁より加熱する側壁加熱手段、お
よび結晶表面部を加熱する表面部加熱手段によつ
て構成され、これらの加熱手段を固液界面の外周
に環状に配置する。特に、側壁加熱手段が結晶表
面部を加熱しないように、石英ボートの側壁の最
上部と同じ位置レベルを有することが重要であ
る。多分割ヒータの材質として、例えば、カンタ
ルA−1、パイロマツクス等の金属抵抗体、カー
ボン、SiC等のセラミツクスが良い。
(1) Multi-division heating means Bottom heating means that heats the quartz boat from the bottom;
It consists of a side wall heating means for heating the quartz boat from the side wall and a surface heating means for heating the crystal surface, and these heating means are arranged in a ring around the solid-liquid interface. In particular, it is important that the side wall heating means are at the same level as the top of the side wall of the quartz boat, so that the side wall heating means do not heat the crystal surfaces. Preferred materials for the multi-segment heater include, for example, metal resistors such as Kanthal A-1 and Pyromax, and ceramics such as carbon and SiC.

(2) 放熱手段 表面部加熱手段が中央部に設けられることが好
ましく、放熱により固液界面の温度制御をして形
状を整形するものであり、更に、単結晶を成長し
て冷却固化する場合、放熱して冷却させるもので
ある。これは、例えば、加熱炉の上部に放熱孔を
設けることによつて放熱させるか、または冷却管
を設けて放熱させても良い。また、放熱孔を設け
た場合、これを覗き窓に利用することができる。
(2) Heat dissipation means A surface heating means is preferably provided in the center, and is used to control the temperature of the solid-liquid interface by heat dissipation to shape the shape.Furthermore, when growing a single crystal and solidifying it by cooling, , to dissipate heat and cool it down. For example, the heat may be radiated by providing heat radiation holes in the upper part of the heating furnace, or by providing cooling pipes. Furthermore, if a heat radiation hole is provided, this can be used as a viewing window.

〔作用〕[Effect]

以上の構成により、所定の位置に配置された多
分割ヒータが均熱ヒータを介して種結晶および原
料を加熱し、種結晶および原料の固液界面を多分
割ヒータと放熱孔の温度制御によつて固液界面を
理想の形状に制御することができる。
With the above configuration, the multi-segment heater placed at a predetermined position heats the seed crystal and the raw material via the soaking heater, and the solid-liquid interface of the seed crystal and the raw material is controlled by the temperature control of the multi-segment heater and the heat radiation hole. Therefore, the solid-liquid interface can be controlled to an ideal shape.

〔実施例〕〔Example〕

以下、本考案の単結晶製造装置を詳細に説明す
る。
Hereinafter, the single crystal manufacturing apparatus of the present invention will be explained in detail.

第1図は本考案の一実施例を示す。これはGF
法による外径3インチのGaAs単結晶成長を行つ
た例を示し、GaAs結晶1あるいはGaAs融液2
を載せた石英ボート3と、石英ボート3を配置し
た石英アンプル5を載置する石英アンプル支持台
4と、GaAs結晶1およびGaAs融液2を加熱す
るSiC均熱管6と、GaAs結晶1およびGaAs融液
2の固液界面を温度制御しながら加熱する表面部
加熱手段10a,10b、側壁加熱手段11a,
11b、底部加熱手段12を有する。表面部加熱
手段10aは入力端子8a,8bを有するヒータ
線8と、ヒータ線8を包囲する断熱材9によつて
構成されている。他の加熱手段も同様である。表
面部加熱手段10a,10bの間に放熱孔7が設
けられている。
FIG. 1 shows an embodiment of the present invention. This is GF
An example of growing a GaAs single crystal with an outer diameter of 3 inches using the GaAs crystal 1 or GaAs melt 2 method is shown.
a quartz boat 3 carrying a quartz boat 3, a quartz ampoule support 4 on which a quartz ampoule 5 with the quartz boat 3 is placed, a SiC soaking tube 6 for heating the GaAs crystal 1 and the GaAs melt 2, and a quartz boat 3 carrying the quartz boat 3; surface heating means 10a, 10b for heating the solid-liquid interface of the melt 2 while controlling the temperature; side wall heating means 11a;
11b, it has a bottom heating means 12. The surface heating means 10a is composed of a heater wire 8 having input terminals 8a and 8b, and a heat insulating material 9 surrounding the heater wire 8. The same applies to other heating means. A heat radiation hole 7 is provided between the surface heating means 10a and 10b.

以上の構成において、石英アンプル5の片側
(紙面の垂直方向において)に種結晶と原料
Ga5000gを載せた内幅85mm、長さ600mm、最大深
さ50mmの石英ボート3を入れ、石英アンプル5の
他端にAs5500gを入れ、両アンプルを中央部で溶
接した後、5×10-6Torr以下で1時間以上真空
引きして封じた。そして、石英アンプル5を電気
炉中に設置して昇温させる。このとき、高温炉を
1200℃に、低温炉を610℃に調整した状態で
GaAs合成反応を行わせた後、再昇温しシード付
部分を1238℃とし、石英ボート3後端に向かつて
固液界面部の温度勾配が常に1℃/cmになるよう
に調整し、シード付終了後、0.5℃/hで降温し
ながらGaAs結晶成長を行つた。この結晶成長中
に各加熱ヒータ10a,10b,11b,12の
温度を調節し固液界面の形状を制御した。この制
御は各ヒータを第1図に示した最適な分割方法に
することにより行える。即ち、底部を加熱する部
分12と、側壁を加熱する部分11a,11b、
結晶上部を加熱する部分10a,10bに分割し
ている。特に、側壁加熱手段11a,11bの最
上部は石英ボート3の側壁の最上部とレベルが一
致している。この後、全体を固化し50℃/hの速
度で空温まで冷却して取り出した。その結果、幅
85mm(外径3インチ用)、長さ600mm、約10Kgの単
結晶が得られた。結晶表面付近を水平に切断し、
ストリエーシヨンを観察した結果、第2図に示し
たように、成長方向に向かつて中央が凸形の界面
に制御されていることがわかつた。このようにし
て、固液界面を中央凸形の形状に制御しているた
め、単結晶成長を容易にすることができる。
In the above configuration, the seed crystal and the raw material are placed on one side of the quartz ampoule 5 (in the direction perpendicular to the paper).
A quartz boat 3 with an inner width of 85 mm, a length of 600 mm, and a maximum depth of 50 mm is loaded with 5000 g of Ga, and 5500 g of As is placed in the other end of the quartz ampoule 5. After welding both ampoules at the center, the The chamber was evacuated and sealed for over 1 hour. Then, the quartz ampoule 5 is placed in an electric furnace and heated. At this time, turn on the high temperature furnace.
With the temperature adjusted to 1200℃ and the low temperature furnace adjusted to 610℃.
After carrying out the GaAs synthesis reaction, the temperature was raised again to 1238°C in the seeded part, and the temperature gradient at the solid-liquid interface towards the rear end of the quartz boat 3 was adjusted to always be 1°C/cm. After the completion of the deposition, GaAs crystal growth was performed while cooling the temperature at 0.5° C./h. During this crystal growth, the temperature of each heater 10a, 10b, 11b, and 12 was adjusted to control the shape of the solid-liquid interface. This control can be performed by dividing each heater in the optimal manner shown in FIG. That is, a portion 12 that heats the bottom, portions 11a and 11b that heat the side walls,
The upper part of the crystal is divided into heating parts 10a and 10b. In particular, the tops of the side wall heating means 11a, 11b are level with the top of the side walls of the quartz boat 3. Thereafter, the whole was solidified, cooled to air temperature at a rate of 50° C./h, and taken out. As a result, the width
A single crystal of 85 mm (for an outer diameter of 3 inches), 600 mm long, and approximately 10 kg was obtained. Cut horizontally near the crystal surface,
As a result of observing the striations, it was found that the interface was controlled to have a convex center in the growth direction, as shown in FIG. In this way, since the solid-liquid interface is controlled to have a convex central shape, single crystal growth can be facilitated.

一方、上述したGF法において同一条件で多分
割ヒータを使用しないで成長させた結晶を取り出
したところ、途中からリネージが入り、後半は多
結晶になつてしまつた。固液界面を確認するため
に結晶表面付近を水平に切断し、ストリエーシヨ
ンを観察した結果、第3図に示すような中央部の
み凸でボート壁付近が凹面になつていることがわ
かつた。
On the other hand, when we took out a crystal grown under the same conditions in the GF method described above without using a multi-segmented heater, lineage appeared in the middle, and the latter half became polycrystalline. In order to confirm the solid-liquid interface, we cut horizontally near the crystal surface and observed the striations. As a result, we found that only the central part was convex and the area near the boat wall was concave, as shown in Figure 3. .

また、単に上、下、左、右の位置に均一に4分
割したヒータを使用して同様に結晶成長を行つた
ところ、左右ヒータがボート側壁のみを加熱せ
ず、結晶表面も加熱してしまい固液界面の形状が
ボート壁付近を凹面に形成してしまうことがわか
つた。
In addition, when crystal growth was performed in the same way using heaters that were divided evenly into four parts at the top, bottom, left, and right positions, the left and right heaters did not heat only the side walls of the boat, but also heated the crystal surface. It was found that the shape of the solid-liquid interface formed a concave surface near the boat wall.

以上の結果から、第1図に示した多分割ヒータ
を使用すると好ましいことが判つた。また、多分
割ヒータとして、カンタルA−1、パイロマツク
ス等の金属抵抗体、カーボン、SiC等のセラミツ
ク等の材質を使用することが望ましい。
From the above results, it was found that it is preferable to use the multi-segment heater shown in FIG. Further, it is desirable to use a material such as a metal resistor such as Kanthal A-1 or pyromax, or a ceramic such as carbon or SiC for the multi-segment heater.

尚、本実施例はGF法について述べたが、これ
に限定するものではなく、HB法、ZM法にも応
用することができる。
Note that although this embodiment has been described with respect to the GF method, it is not limited to this, and can also be applied to the HB method and the ZM method.

〔考案の効果〕[Effect of idea]

以上説明した通り、本考案の単結晶製造装置に
よれば、固液界面部において石英ボートの底部お
よび側壁部、および結晶表面部を個別のヒータで
加熱することによつて、固液界面の形状を制御す
るようにしたため、固液界面の形状を改善するこ
とができ、それにより断面積が大になつても容易
に単結晶を成長させることができる。
As explained above, according to the single crystal manufacturing apparatus of the present invention, the shape of the solid-liquid interface is heated by heating the bottom and side walls of the quartz boat, and the crystal surface at the solid-liquid interface with individual heaters. Since it is possible to control the shape of the solid-liquid interface, it is possible to easily grow a single crystal even if the cross-sectional area becomes large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す説明図、第2
図は本考案によつて成長された単結晶の固液界面
形状を示す説明図、第3図は従来の結晶成長にお
ける固液界面形状を示す説明図。 符号の説明、1……GaAs結晶、2……GaAs
融液、3……石英ボート、4……アンプル支持
台、5……石英アンプル、6……均熱管、7……
放熱孔、8……ヒータ線、9……断熱材、10
a,10b……結晶表面部加熱ヒータ、11a,
11b……ボート側壁部加熱ヒータ、12……ボ
ート底部加熱ヒータ。
Fig. 1 is an explanatory diagram showing one embodiment of the present invention;
The figure is an explanatory diagram showing the solid-liquid interface shape of a single crystal grown by the present invention, and FIG. 3 is an explanatory diagram showing the solid-liquid interface shape in conventional crystal growth. Explanation of symbols, 1...GaAs crystal, 2...GaAs
Melt, 3... Quartz boat, 4... Ampoule support stand, 5... Quartz ampoule, 6... Soaking tube, 7...
Heat radiation hole, 8... Heater wire, 9... Heat insulation material, 10
a, 10b...Crystal surface heater, 11a,
11b... Boat side wall heater, 12... Boat bottom heater.

Claims (1)

【実用新案登録請求の範囲】 (1) 単結晶より成る種結晶と原料を入れた石英ボ
ートを電気炉内に配置し、該電気炉によつて加
熱しながら固液界面の温度を制御することによ
り単結晶を製造する単結晶製造装置において、 前記石英ボート底部を加熱する底部加熱手段
と、前記石英ボート側壁を加熱する側壁加熱手
段と、結晶表面部を加熱する表面部加熱手段を
前記固液界面の外周に環状に配置した多分割加
熱手段を有し、 前記側壁加熱手段はその最上部が前記石英ボ
ートの側壁の最上部と同じ高さに位置している
ことを特徴とする単結晶製造装置。 (2) 前記表面部加熱手段がその中央部に放熱孔あ
るいは冷却手段を有する実用新案登録請求の範
囲第1項記載の単結晶製造装置。
[Claims for Utility Model Registration] (1) A quartz boat containing a single crystal seed crystal and raw materials is placed in an electric furnace, and the temperature of the solid-liquid interface is controlled while being heated by the electric furnace. In a single crystal manufacturing apparatus for manufacturing a single crystal, a bottom heating means for heating the bottom of the quartz boat, a side wall heating means for heating the side wall of the quartz boat, and a surface heating means for heating the crystal surface are connected to the solid-liquid. Single-crystal production characterized in that it has multi-segment heating means arranged in an annular manner around the outer periphery of the interface, and the top of the side wall heating means is located at the same height as the top of the side wall of the quartz boat. Device. (2) The single crystal manufacturing apparatus according to claim 1, wherein the surface heating means has a radiation hole or a cooling means in the center thereof.
JP19111887U 1987-12-16 1987-12-16 Expired JPH0449185Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19111887U JPH0449185Y2 (en) 1987-12-16 1987-12-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19111887U JPH0449185Y2 (en) 1987-12-16 1987-12-16

Publications (2)

Publication Number Publication Date
JPH0194467U JPH0194467U (en) 1989-06-21
JPH0449185Y2 true JPH0449185Y2 (en) 1992-11-19

Family

ID=31482044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19111887U Expired JPH0449185Y2 (en) 1987-12-16 1987-12-16

Country Status (1)

Country Link
JP (1) JPH0449185Y2 (en)

Also Published As

Publication number Publication date
JPH0194467U (en) 1989-06-21

Similar Documents

Publication Publication Date Title
JPH0449185Y2 (en)
JP4144349B2 (en) Compound semiconductor manufacturing equipment
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0316988A (en) Production device of single crystal of compound semiconductor
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JPS60180989A (en) Manufacture of compound single crystal
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
JP3700397B2 (en) Method for producing compound semiconductor crystal
JPS63185885A (en) Crystal growing device of horizontal type
JP2686662B2 (en) Oxide single crystal manufacturing equipment
JPH05238870A (en) Production of single crystal of compound semiconductor and device therefor
JP2773441B2 (en) Method for producing GaAs single crystal
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPH0475880B2 (en)
JPH0733303B2 (en) Crystal growth equipment
JPH05319973A (en) Single crystal production unit
JPS5997591A (en) Method and apparatus for growing single crystal
JPH0234592A (en) Growing method for compound semiconductor single crystal
JP2004026577A (en) Apparatus for growing compound semiconductor single crystal and method of growing compound semiconductor single crystal
JPH05262596A (en) Production of single crystal of lithium tetraborate
JPS63103895A (en) Apparatus for growing cdte crystal
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JPS63233091A (en) Process and apparatus for producing single crystal of compound semiconductor
JP2004018319A (en) Compound semiconducting crystal growth apparatus