JPH0448855B2 - - Google Patents

Info

Publication number
JPH0448855B2
JPH0448855B2 JP61082181A JP8218186A JPH0448855B2 JP H0448855 B2 JPH0448855 B2 JP H0448855B2 JP 61082181 A JP61082181 A JP 61082181A JP 8218186 A JP8218186 A JP 8218186A JP H0448855 B2 JPH0448855 B2 JP H0448855B2
Authority
JP
Japan
Prior art keywords
wiring
alloy
alloying elements
group
electromigration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61082181A
Other languages
Japanese (ja)
Other versions
JPS62240733A (en
Inventor
Susumu Sawada
Osamu Kanano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP8218186A priority Critical patent/JPS62240733A/en
Publication of JPS62240733A publication Critical patent/JPS62240733A/en
Publication of JPH0448855B2 publication Critical patent/JPH0448855B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はMOS型半導体の各電極の接続配線な
どに用いる半導体薄膜配線材料に関する。 [従来の技術] 半導体集積回路は近年急速に発展し、その機能
の拡大とともに、各構成素子間を電気的に相互接
続する薄膜金属配線はさらに微細化、高密度化の
傾向にある。 薄膜金属配線材料として現在Al蒸着膜が多く
用いられている。これはAlが (a) シリコンとのオーミツク接触が容易に得られ
る。 (b) 真空蒸着で導電性の良い膜となる。 (c) シリコンの酸化膜(SiO2)との密着性が良
い。 (d) 化学的に安定でSiO2と反応しない。 (e) フオトレジストによる加工が容易である。 (f) リードボンデイング性が良い。 など総合的にみて有利であると考えられているか
らである。蒸着用Al合金としては通常Al−1wt%
Si合金が用いられている。 [発明が解決しようとする問題点] 一方、Al配線膜の欠点としては、 (a) エレクトロマイグレーシヨンを起こし電流密
度が106A/cm2以上になると断線する。スパツ
タリングや真空蒸着の際に特に段差のあるとこ
ろでは均一な厚さに成膜させることは難しく、
第1図に示すように部分的に薄い所3ができる
とその部分の電流密度が高くなるために上記の
エレクトロマイグレーシヨンが発生し、その部
分から断線することがある。 (b) ヒロツクと呼ばれる突起が発生し、近接配線
間(多層配線間の場合は層間)での短絡を起こ
す。 などがある。 [問題点を解決するための手段] エレクトロマイグレーシヨンとは、高電流密度
下でAl原子が電子と衝突することにより運動エ
ネルギーを得て電子の動く方向に移動するため
に、Al原子の移動した跡に原子空孔(ボイド)
が発生し、この結果配線の断面積が減少し電流密
度がさらに大きくなり、ジユール熱などによる温
度上昇が生じて、ボイドの成長がますます加速さ
れ、ついには断線に至る現象である。このAl原
子の移動は通常Alの結晶粒界を伝わる粒界拡散
によつて起こり粒界を何らかの析出物でふさいで
しまえば粒界拡散が起こり難くなりエレクトロマ
イグレーシヨンによるボイドの発生及び成長を防
止することができる。 次にヒロツクは上記エレクトロマイグレーシヨ
ンにより移動したAl原子が表面へ突起するもの
である。これを防ぐにはボイドと同様、粒界を何
らかの析出物でふさいで粒界拡散が起こり難くす
ることが有効である。 以上のようにエレクトロマイグレーシヨンによ
るボイドやヒロツクを防ぐには粒界に何らかの元
素を析出させて粒界拡散を抑制することが有効と
考えられる。粒界への析出を起こす合金元素はい
くつかあるが、母相への溶解度が大きい元素は
Al合金の電気抵抗を上げてしまうため使用でき
ない。従つて、本発明者らは合金元素について鋭
意研究を重ねた結果、Hf、Nb、Ta、Mo及びW
からなる群より選ばれた1種類又は2種類以上の
合金元素(以下これらを「Me」という)をBと
一緒に添加すると粒界拡散抑止効果が大きく、さ
らに従来から知られているエレクトロマイグレー
シヨンの防止に効果のある金属元素であるCu、
Co、Mn、Ni、Sn、In、Au及びAgからなる群よ
り選ばれた1種類又は2種類以上の合金元素(以
下これらを「M」という)を少量添加すると粒界
拡散抑止効果が一層大きくなり、エレクトロマイ
グレーシヨン防止効果が高まることを見いだし、
この知見に基づいて本発明をなすに至つた。 [発明の構成] すなわち、本発明は、 (1) Cu、Co、Mn、Ni、Sn、In、Au及びAgか
らなる群より選ばれた1種類又は2種類以上の
合金元素を0.0001〜0.02wt%、Hf、Nb、Ta、
Mo及びWからなる群より選ばれた1種類又は
2種類以上の合金元素を0.002〜0.7wt%、
B0.002〜0.5wt%、残部Al及び不可避的不純物
からなることを特徴とするスパツタリング又は
真空蒸着により被覆される半導体薄膜配線材
料、及び (2) Cu、Co、Mn、Ni、Sn、In、Au及びAgか
らなる群より選ばれた1種類又は2種類以上の
合金元素を0.0001〜0.02wt%、Hf、Nb、Ta、
Mo及びWからなる群より選ばれた1種類又は
2種類以上の合金元素を0.002〜0.7wt%、
B0.002〜0.5wt%、Si0.5〜1.5wt%、残部Al及
び不可避的不純物からなることを特徴とするス
パツタリング又は真空蒸着により被覆される半
導体薄膜配線材料を提供する。 [発明の効果] 本発明のB含有アルミニウム合金はエレクトロ
マイグレーシヨンの防止、ヒロツクの形成の防止
に有効であり、半導体集積回路の配線材料として
極めて優れた材料である。 [発明の具体的説明] 本発明の合金はスパツタリング又は真空蒸着に
より半導体装置の薄膜配線材料として用いられ
る。 本発明の合金組成のBの添加量が0.002wt%未
満の場合は前記配線材料であるAl又はAl−Si合
金に完全に固溶してしまいMeBxが析出せず、ま
た0.5wt%を超えると配線の電気抵抗が大きくな
り好ましくないので添加量を0.002〜0.5wt%とす
る。Hf、Nb、Ta、Mo及びWからなる群より選
ばれた1種類又は2種類以上の合金元素Meの添
加量が0.002wt%未満の場合は前記配線材料であ
るAl又はAl−Si合金に完全に固溶してしまい
MeBxが析出せず、また0.7wt%を超えると配線
の電気抵抗が大きくなり好ましくないので添加量
を0.002〜0.7wt%とする。また本願発明において
は、Cu、Co、Mn、Ni、Sn、In、Au及びAgか
らなる群より選ばれた1種類又は2種類以上の合
金元素Mを添加する。この合金元素Mは添加は従
来知られているもので、エレクトロマイグレーシ
ヨンによるAl配線の平均寿命時間(MTF)を向
上させることができる。本発明においてはこの合
金元素Mの添加により、より一層エレクトロマイ
グレーシヨンの防止効果を高めることができる。
そしてこれらの添加量が0.0001wt%未満の場合は
全くエレクトロマイグレーシヨンの防止に効果が
なく、0.02wt%を超えると配線の電気抵抗が大き
くなり好ましくないので添加量を0.0001〜0.02wt
%とする。さらに好ましくは本発明のAl−Me−
B−M合金の薄膜配線材料にSiを添加して半導体
SiとAlの相互拡散を抑制することができる。Si
の添加量が0.5%未満の場合はAl−Siコンタクト
部でのSiとAlの相互拡散の防止効果が小さく、
又、1.5wt%を超えると配線の電気抵抗が大きく
なり好ましくないので添加量を0.5〜1.5wt%とす
る。 以上のアルミニウム合金からなる半導体薄膜配
線材料は通常高純度(99.999wt%)Al或いは高
純度(99.999wt%)Siを溶解したAl−Si合金に、
Hf、Nb、Ta、Mo及びWからなる群より選ばれ
た1種類又は2種類以上の合金元素Meと、高純
度(99.95wt%)の結晶Bと、Cu、Co、Mn、
Ni、Sn、In、Au及びAgからなる群より選ばれ
た1種類又は2種類以上の合金元素Mを大気中で
溶解鋳造し、次にこの鋳造材をそのまま機械加工
して真空蒸着材又はスパツタリング用ターゲツト
板とすることができる。このようにして作成され
た材料は上記の鋳造の際にMe、Bの一部が
MeBxとなつて、このMeBxが核効果を起こし、
鋳造組織を微細化するとともに鋳造材に残存する
Me、Bが多いためにスパツタリング又は真空蒸
着による薄膜の均一性に非常に優れており、さら
にまた、この薄膜において前記のMe、Bが
MeBxとなつて結晶粒界に析出し、エレクトロマ
イグレーシヨンの防止に効果のある金属元素Mの
効果と相まつて、エレクトロマイグレーシヨンに
よるボイドやヒロツク形成の防止に極めて有効に
作用する。なお、鋳造材のかわりに鋳造後所定の
形状に加工しそれをさらに熱処理してスパツタリ
ング又は真空蒸着材とすることもできる。この場
合熱処理によつて再結晶するとMeBxが析出して
核効果により結晶が微細化し、スパツタリング又
は真空蒸着材の組織の均一性が向上する。これに
よつて薄膜の均一性を向上させることもできる。
次に実施例について説明する。 [実施例] 高純度(99.999wt%)Al又は高純度Al−Si合
金、高純度(99.95wt%)の結晶B及びHf、Nb、
Ta、Mo、Wからなる群より選ばれた1種類又は
2種類以上の高純度金属Me及びCu、Co、Mn、
Ni、Sn、In、Au及びAgからなる群より選ばれ
た1種類又は2種類以上の合金元素Mを第1表に
示す組成に調整した後、高純度アルミナるつぼ内
へ装入し抵抗加熱炉で大気中で溶解した。溶解
後、所定の鋳型へ鋳造した。鋳造材はそのまま機
械加工により切削、研磨して所定の形状にしスパ
ツタリング用ターゲツト板とした。 上記ターゲツト板を用いてシリコン基板上に幅
6ミクロン、長さ380ミクロンのスパツタリング
蒸着膜を形成した。この薄膜の特性を調べるため
に温度175℃で連続して電流密度1X106A/cm2
電流を流した。その時の平均の故障発生に至る時
間(平均故障時間)を第1表に示す。同じく第1
表には比較例として純Al、Al−Cu合金及びAl−
Cu−Si合金についての試験結果も示す。 以上の第1表から明らかなように従来の純Al、
Al−Cu合金及びAl−Cu−Si合金に比較して、本
発明のAl−Me−B−M合金及びAl−Si−Me−
B−MB合金からなる薄膜配線材料による蒸着配
線膜の高温、連続通電下における平均故障時間は
大幅に改善され、Al−Cu−Si合金の2倍以上と
なつている。このように本発明のAl−Me−B−
M合金及びAl−Si−Me−B−M合金からなる薄
膜配線材料はエレクトロマイグレーシヨンによる
ボイドやヒロツクの形成の防止に有効であり、半
導体集積回路用配線材料として極めて優れた材料
であることがわかる。 【表】
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor thin film wiring material used for connection wiring of each electrode of a MOS type semiconductor. [Prior Art] Semiconductor integrated circuits have developed rapidly in recent years, and as their functions have expanded, thin film metal interconnections that electrically interconnect constituent elements are becoming increasingly finer and denser. Al-deposited films are currently widely used as thin-film metal wiring materials. This is because Al (a) can easily make ohmic contact with silicon. (b) Vacuum deposition creates a film with good conductivity. (c) Good adhesion to silicon oxide film (SiO 2 ). (d) Chemically stable and does not react with SiO 2 . (e) Easy to process with photoresist. (f) Good lead bonding properties. This is because it is considered to be advantageous overall. Al alloy for vapor deposition is usually Al-1wt%
Si alloy is used. [Problems to be Solved by the Invention] On the other hand, the disadvantages of the Al wiring film are: (a) Electromigration occurs and the wire breaks when the current density becomes 10 6 A/cm 2 or more. When using sputtering or vacuum deposition, it is difficult to form a film with a uniform thickness, especially where there are steps.
As shown in FIG. 1, when a thin portion 3 is formed in a portion, the current density at that portion becomes high, so that the above-mentioned electromigration occurs, and the wire may be disconnected from that portion. (b) Protrusions called hills occur, causing short circuits between adjacent wirings (or between layers in the case of multilayer wiring). and so on. [Means for solving the problem] Electromigration is an electromigration process in which Al atoms collide with electrons under high current density, gaining kinetic energy and moving in the direction of electron movement. Atomic vacancy (void) in the trace
occurs, and as a result, the cross-sectional area of the wiring decreases, the current density further increases, and the temperature rises due to Joule heat, etc., which further accelerates the growth of voids, eventually leading to disconnection. This movement of Al atoms is normally caused by grain boundary diffusion that propagates through the grain boundaries of Al, and if the grain boundaries are blocked with some kind of precipitate, grain boundary diffusion becomes difficult to occur, preventing the generation and growth of voids due to electromigration. can do. Next, the ridges are the Al atoms that have migrated due to the electromigration and protrude toward the surface. To prevent this, as with voids, it is effective to block the grain boundaries with some kind of precipitate to make it difficult for grain boundary diffusion to occur. As described above, in order to prevent voids and hills caused by electromigration, it is considered effective to precipitate some element at grain boundaries to suppress grain boundary diffusion. There are several alloying elements that precipitate at grain boundaries, but those with high solubility in the matrix
It cannot be used because it increases the electrical resistance of the Al alloy. Therefore, as a result of extensive research into alloying elements, the inventors found that Hf, Nb, Ta, Mo and W
When one or more alloying elements selected from the group consisting of (hereinafter referred to as "Me") are added together with B, the effect of suppressing grain boundary diffusion is large, and furthermore, the effect of suppressing electromigration, which is known from the past, is Cu, a metallic element that is effective in preventing
Adding a small amount of one or more alloying elements selected from the group consisting of Co, Mn, Ni, Sn, In, Au, and Ag (hereinafter referred to as "M") will further increase the effect of suppressing grain boundary diffusion. It was found that the anti-electromigration effect was increased.
Based on this knowledge, the present invention was accomplished. [Structure of the Invention] That is, the present invention provides: (1) 0.0001 to 0.02wt of one or more alloying elements selected from the group consisting of Cu, Co, Mn, Ni, Sn, In, Au, and Ag; %, Hf, Nb, Ta,
0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of Mo and W;
A semiconductor thin film wiring material coated by sputtering or vacuum evaporation, characterized by comprising B0.002 to 0.5wt%, the balance Al and unavoidable impurities, and (2) Cu, Co, Mn, Ni, Sn, In, 0.0001 to 0.02wt% of one or more alloying elements selected from the group consisting of Au and Ag, Hf, Nb, Ta,
0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of Mo and W;
A semiconductor thin film wiring material coated by sputtering or vacuum evaporation is provided, which is characterized by comprising 0.002 to 0.5 wt% of B, 0.5 to 1.5 wt% of Si, the balance being Al and unavoidable impurities. [Effects of the Invention] The B-containing aluminum alloy of the present invention is effective in preventing electromigration and the formation of hills, and is an extremely excellent material as a wiring material for semiconductor integrated circuits. [Detailed Description of the Invention] The alloy of the present invention is used as a thin film wiring material for semiconductor devices by sputtering or vacuum deposition. If the amount of B added in the alloy composition of the present invention is less than 0.002wt%, it will be completely dissolved in the Al or Al-Si alloy that is the wiring material, and MeBx will not precipitate, and if it exceeds 0.5wt%. Since the electrical resistance of the wiring increases, which is undesirable, the amount added is set at 0.002 to 0.5 wt%. If the addition amount of one or more alloying elements Me selected from the group consisting of Hf, Nb, Ta, Mo, and W is less than 0.002wt%, the wiring material Al or Al-Si alloy is completely added. solid solution in
MeBx does not precipitate, and if it exceeds 0.7 wt%, the electrical resistance of the wiring increases, which is undesirable, so the amount added is set to 0.002 to 0.7 wt%. Further, in the present invention, one or more alloying elements M selected from the group consisting of Cu, Co, Mn, Ni, Sn, In, Au, and Ag are added. Addition of this alloying element M is conventionally known, and can improve the mean life time (MTF) of Al wiring due to electromigration. In the present invention, by adding this alloying element M, the effect of preventing electromigration can be further enhanced.
If the amount of these additives is less than 0.0001wt%, it will have no effect on preventing electromigration, and if it exceeds 0.02wt%, the electrical resistance of the wiring will increase, which is undesirable, so the amount of addition should be increased from 0.0001 to 0.02wt.
%. More preferably, the Al-Me-
Semiconductor by adding Si to B-M alloy thin film wiring material
Mutual diffusion of Si and Al can be suppressed. Si
If the amount added is less than 0.5%, the effect of preventing mutual diffusion of Si and Al in the Al-Si contact area is small;
Moreover, if it exceeds 1.5 wt%, the electrical resistance of the wiring increases, which is not preferable, so the amount added is set at 0.5 to 1.5 wt%. Semiconductor thin film wiring materials made of the above aluminum alloys are usually made of Al-Si alloys in which high purity (99.999wt%) Al or high purity (99.999wt%) Si is dissolved.
One or more alloying elements Me selected from the group consisting of Hf, Nb, Ta, Mo and W, high purity (99.95wt%) crystal B, Cu, Co, Mn,
One or more alloying elements M selected from the group consisting of Ni, Sn, In, Au, and Ag are melted and cast in the air, and then this cast material is machined as it is to form a vacuum evaporation material or a sputtering material. It can be used as a target board. The material created in this way has part of Me and B during the above casting.
This MeBx becomes MeBx and causes a nuclear effect.
It refines the casting structure and remains in the casting material.
Because of the large amounts of Me and B, the thin film formed by sputtering or vacuum deposition has excellent uniformity.
Coupled with the effect of the metal element M, which precipitates at grain boundaries as MeBx and is effective in preventing electromigration, it is extremely effective in preventing the formation of voids and hills due to electromigration. Incidentally, instead of using a cast material, it is also possible to process the material into a predetermined shape after casting and further heat treat it to make a sputtering or vacuum evaporation material. In this case, when recrystallized by heat treatment, MeBx precipitates and the crystals become finer due to the nucleation effect, improving the uniformity of the structure of the sputtering or vacuum evaporation material. This can also improve the uniformity of the thin film.
Next, an example will be described. [Example] High purity (99.999wt%) Al or high purity Al-Si alloy, high purity (99.95wt%) crystal B and Hf, Nb,
One or more high purity metals selected from the group consisting of Ta, Mo, W, Cu, Co, Mn,
After adjusting the composition of one or more alloying elements M selected from the group consisting of Ni, Sn, In, Au, and Ag to the composition shown in Table 1, it is charged into a high-purity alumina crucible and placed in a resistance heating furnace. dissolved in the atmosphere. After melting, it was cast into a predetermined mold. The cast material was machined as it was, cut and polished into a predetermined shape and used as a target plate for sputtering. A sputtering deposition film having a width of 6 microns and a length of 380 microns was formed on a silicon substrate using the above target plate. In order to examine the properties of this thin film, a current was continuously applied at a temperature of 175° C. and a current density of 1×10 6 A/cm 2 . Table 1 shows the average time to failure (average time to failure) at that time. Also the first
The table shows pure Al, Al-Cu alloy and Al-Cu alloy as comparative examples.
Test results for Cu-Si alloys are also shown. As is clear from Table 1 above, conventional pure Al,
Compared to the Al-Cu alloy and the Al-Cu-Si alloy, the Al-Me-B-M alloy of the present invention and the Al-Si-Me-
The mean failure time of a vapor-deposited wiring film made of a thin film wiring material made of a B-MB alloy under high temperature and continuous energization is significantly improved, and is more than twice as long as that of an Al-Cu-Si alloy. In this way, the Al-Me-B-
Thin film wiring materials made of M alloy and Al-Si-Me-B-M alloy are effective in preventing the formation of voids and hills due to electromigration, and are considered to be extremely excellent materials as wiring materials for semiconductor integrated circuits. Recognize. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリコン基板上にAl配線膜を蒸着し
た部分の断面図である。 1:シリコン基板、2:Al配線膜。
FIG. 1 is a cross-sectional view of a portion where an Al wiring film is deposited on a silicon substrate. 1: Silicon substrate, 2: Al wiring film.

Claims (1)

【特許請求の範囲】 1 Cu、Co、Mn、Ni、Sn、In、Au及びAgか
らなる群より選ばれた1種類又は2種類以上の合
金元素を0.0001〜0.02wt%、Hf、Nb、Ta、Mo
及びWからなる群より選ばれた1種類又は2種類
以上の合金元素を0.002〜0.7wt%、B0.002〜
0.5wt%、残部Al及び不可避的不純物からなるこ
とを特徴とするスパツタリング又は真空蒸着によ
り被覆される半導体薄膜配線材料。 2 Cu、Co、Mn、Ni、Sn、In、Au及びAgか
らなる群より選ばれた1種類又は2種類以上の合
金元素を0.0001〜0.02wt%、Hf、Nb、Ta、Mo
及びWからなる群より選ばれた1種類又は2種類
以上の合金元素を0.002〜0.7wt%、B0.002〜
0.5wt%、Si0.5〜1.5wt%、残部Al及び不可避的
不純物からなることを特徴とするスパツタリング
又は真空蒸着により被覆される半導体薄膜配線材
料。
[Claims] 1. One or more alloying elements selected from the group consisting of Cu, Co, Mn, Ni, Sn, In, Au, and Ag at 0.0001 to 0.02 wt%, Hf, Nb, Ta. ,Mo
and 0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of W, B0.002 to
A semiconductor thin film wiring material coated by sputtering or vacuum evaporation, characterized by comprising 0.5wt%, the remainder Al and unavoidable impurities. 2 0.0001 to 0.02wt% of one or more alloying elements selected from the group consisting of Cu, Co, Mn, Ni, Sn, In, Au and Ag, Hf, Nb, Ta, Mo
and 0.002 to 0.7 wt% of one or more alloying elements selected from the group consisting of W, B0.002 to
A semiconductor thin film wiring material coated by sputtering or vacuum deposition, characterized by comprising 0.5 wt% Si, 0.5 to 1.5 wt% Si, the balance Al and unavoidable impurities.
JP8218186A 1986-04-11 1986-04-11 B-containing aluminum alloy for semiconductor wiring material Granted JPS62240733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8218186A JPS62240733A (en) 1986-04-11 1986-04-11 B-containing aluminum alloy for semiconductor wiring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8218186A JPS62240733A (en) 1986-04-11 1986-04-11 B-containing aluminum alloy for semiconductor wiring material

Publications (2)

Publication Number Publication Date
JPS62240733A JPS62240733A (en) 1987-10-21
JPH0448855B2 true JPH0448855B2 (en) 1992-08-07

Family

ID=13767266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8218186A Granted JPS62240733A (en) 1986-04-11 1986-04-11 B-containing aluminum alloy for semiconductor wiring material

Country Status (1)

Country Link
JP (1) JPS62240733A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554889A (en) * 1992-04-03 1996-09-10 Motorola, Inc. Structure and method for metallization of semiconductor devices
EP0606761A3 (en) * 1992-12-28 1995-02-08 Kawasaki Steel Co Semiconductor device and process for production thereof.
FR2756572B1 (en) * 1996-12-04 1999-01-08 Pechiney Aluminium ALUMINUM ALLOYS WITH HIGH RECRYSTALLIZATION TEMPERATURE USED IN CATHODE SPRAYING TARGETS
US6465376B2 (en) 1999-08-18 2002-10-15 International Business Machines Corporation Method and structure for improving electromigration of chip interconnects
US20010047838A1 (en) 2000-03-28 2001-12-06 Segal Vladimir M. Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100644A (en) * 1983-11-02 1985-06-04 Sumitomo Electric Ind Ltd Aluminum alloy for bonding wire
JPS60248861A (en) * 1984-05-22 1985-12-09 Sumitomo Electric Ind Ltd Aluminum alloy for bonding wire
JPS619536A (en) * 1984-06-21 1986-01-17 Sumitomo Electric Ind Ltd Manufacture of aluminum alloy thin wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100644A (en) * 1983-11-02 1985-06-04 Sumitomo Electric Ind Ltd Aluminum alloy for bonding wire
JPS60248861A (en) * 1984-05-22 1985-12-09 Sumitomo Electric Ind Ltd Aluminum alloy for bonding wire
JPS619536A (en) * 1984-06-21 1986-01-17 Sumitomo Electric Ind Ltd Manufacture of aluminum alloy thin wire

Also Published As

Publication number Publication date
JPS62240733A (en) 1987-10-21

Similar Documents

Publication Publication Date Title
US6797079B2 (en) Physical vapor deposition target
US4087314A (en) Bonding pedestals for semiconductor devices
KR20090051267A (en) Copper sputtering target with fine grain size and high electromigration resistance and methods of making the same
US4319264A (en) Nickel-gold-nickel conductors for solid state devices
JP3296708B2 (en) Multilayer Al alloy structure for metal conductor
JPS62240738A (en) N-and c-containing aluminum alloy for semiconductor wiring material
JPS62240739A (en) B-, c-, and n-containing aluminum alloy for semiconductor wiring material
JPH10308363A (en) Manufacture of metalization structure
JPS62235451A (en) Al alloy for semiconductor wiring material
JPS62240736A (en) B-and c-containing aluminum alloy for semiconductor wiring material
JPH0448855B2 (en)
JPH0448854B2 (en)
JPH0250432A (en) Semiconductor device
JP2000349085A (en) Semiconductor device and its manufacture
JPS62235454A (en) N-containing al alloy for semiconductor wiring material
JPS62240737A (en) B-and n-containing aluminum alloy for semiconductor wiring material
JP2004193553A (en) Copper alloy sputtering target for forming semiconductor device interconnect line seed layer and seed layer formed using that target
JPS62240734A (en) C-containing aluminum alloy for semiconductor wiring material
JPS62240735A (en) N-containing aluminum alloy for semiconductor wiring material
JP2004193552A (en) Copper alloy sputtering target for forming semiconductor device interconnect line seed layer
JPS62235453A (en) C-containing al alloy for semiconductor wiring material
JPS62234343A (en) Al alloy containing b and c for semiconductor wiring material
JP2004193546A (en) Copper alloy sputtering target for forming semiconductor device interconnect line seed layer
JPS62228446A (en) Aluminum alloy for semiconductor wiring material
JPS62234346A (en) Al alloy containing b, c and n for semiconductor wiring material