JPH0448704A - Manufacture of barium ferrite magnetic powder - Google Patents

Manufacture of barium ferrite magnetic powder

Info

Publication number
JPH0448704A
JPH0448704A JP2155241A JP15524190A JPH0448704A JP H0448704 A JPH0448704 A JP H0448704A JP 2155241 A JP2155241 A JP 2155241A JP 15524190 A JP15524190 A JP 15524190A JP H0448704 A JPH0448704 A JP H0448704A
Authority
JP
Japan
Prior art keywords
iron oxide
magnetic powder
raw material
barium
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2155241A
Other languages
Japanese (ja)
Inventor
Koji Matsui
光二 松井
Tsutomu Uema
上間 力
Hideo Mitsui
光井 英雄
Tsugio Murakami
次雄 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2155241A priority Critical patent/JPH0448704A/en
Publication of JPH0448704A publication Critical patent/JPH0448704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply manufacture barium ferrite magnetic powder being symmetricalfine grains, having high dispersibility and a plate shape, moreover a big magnetization value by spraying slurry mainly containing a barium hydroxide water solution and iron oxide and/or hydrated iron oxide in a gas atmosphere at not less than 700 deg.C to be subjected to thermal decomposition. CONSTITUTION:Slurry mainly containing a barium hydroxide water solution and iron oxide and/or iron hydroxide is used as a raw material. Primary iron oxide or the like is mentioned as iron oxide and primary iron or the like is mentioned as hydrated iron oxide. On the other hand, as to barium hydroxide to be contained a raw material slurry, concentration of a water solution is desirably to be set within a range of a solution degree of barium hydroxide. Further, as a preparation method of the raw material slurry, a dispersion mixing type stirrer is used. Next, this raw material slurry is sprayed in a gas atmosphere of steam or the like above 700 deg.C to be subjected to thermal decomposition. By this method, barium ferrite magnetic powder having a grain diameter of 0.01 to 0.3mum having high dispersibility, a plate shape and a high magnetization value can be obtained economically and with good efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はバリウムフェライト磁性粉末の製造方法に関し
、更に詳しくは微細で分散性に優れたバリウムフェライ
ト磁性粉末の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing barium ferrite magnetic powder, and more particularly to a method for producing barium ferrite magnetic powder that is fine and has excellent dispersibility.

バリウムフェライト磁性粉末の主な用途は、焼結磁石、
磁気記録用磁性材料、防錆剤などであり、更に近年特に
垂直磁気記録用磁性材料としての用途も注目され、その
開発が進められている。
The main uses of barium ferrite magnetic powder are sintered magnets,
It is used as a magnetic material for magnetic recording, as a rust preventive, and in recent years, its use as a magnetic material for perpendicular magnetic recording has also attracted attention, and its development is progressing.

(従来の技術) 従来、バリウムフェライト磁性粉末の製造方法として、 ■炭酸バリウムと酸化鉄を粉砕、混合後1000℃以上
で焼成し、更に粉砕する乾式法、■Fe(I[[)イオ
ンとBaイオンの水溶液にアルカリを加えて共沈させ、
濾過、水洗後焼成する共沈法、 ■Fe(III)イオンとBaイオンを含む強アルカリ
性スラリーを150〜330℃で水処理する水熱合成法
、 ■酸化第二鉄と炭酸バリウムをホウ酸等のガラス形成物
質と混合し、1350℃前後で加熱溶解した後急冷し、
次いで800℃前後で再焼成し、得られた焼成品を酢酸
等の希酸で処理するガラス結晶化法、 などが知られている。しかしながら、上記■、■の方法
で得られた磁性粉末は焼結性が激しく、粒度分布が広く
、粒径も1μm以上であるため、分散性に劣り、これを
磁気記録材料として用いることは困難であった。また、
■の方法で得られた磁性粉末は分散性に優れているもの
の、その磁気値は低く、更に■の方法はその工程が繁雑
であるという問題点がある。
(Prior art) Conventionally, as methods for producing barium ferrite magnetic powder, there are two methods: (1) a dry method in which barium carbonate and iron oxide are crushed, mixed, fired at 1000°C or higher, and further crushed; (2) Fe(I[[) ions and Ba Co-precipitate by adding alkali to an aqueous solution of ions,
Co-precipitation method in which filtration, washing with water followed by calcination, ■ Hydrothermal synthesis method in which a strong alkaline slurry containing Fe(III) ions and Ba ions is treated with water at 150 to 330°C, ■ Ferric oxide and barium carbonate are mixed with boric acid, etc. mixed with a glass-forming substance, melted by heating at around 1350°C, and then rapidly cooled.
A glass crystallization method is known in which the fired product is then re-fired at around 800°C and treated with a dilute acid such as acetic acid. However, the magnetic powder obtained by methods ① and ① above has strong sinterability, a wide particle size distribution, and a particle size of 1 μm or more, so it has poor dispersibility and is difficult to use as a magnetic recording material. Met. Also,
Although the magnetic powder obtained by method (1) has excellent dispersibility, its magnetic value is low, and method (2) has the problem that the process is complicated.

(発明が解決しようとする課題) 本発明は上記従来技術のもつ問題点を解決するためにな
されたものであり、均整な微細粒子で高分散性を有し、
形状は板状であり、かつ磁化値が大きいバリウムフェラ
イト磁性粉末を簡便に製造する方法を提供することを目
的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the problems of the above-mentioned prior art, and has well-balanced fine particles with high dispersibility,
It is an object of the present invention to provide a method for easily producing barium ferrite magnetic powder that is plate-like and has a large magnetization value.

(課題を解決するための手段) 本発明者らは、上記課題を解決するために種々検討を行
った結果、水酸化バリウム水溶液と固体含酸素鉄化合物
とを主として含むスラリーを高温雰囲気に噴霧すること
により、微細で磁気特性の優れたバリウムフェライト磁
性粉末を経済的に製造できることを見出し、本発明を完
成するに至った。すなわち本発明は、水酸化バリウム水
溶液と酸化鉄及び/又は水加酸化鉄とを主として含むス
ラリーを700℃以上のガス雰囲気中に噴霧し、熱分解
することを特徴とするバリウムフェライト磁性粉末の製
造方法である。本発明の骨子は、第一にバリウムフェラ
イト磁性粉末を得るために用いられるバリウム源が水酸
化バリウムであり、実質的に水溶液状態であること、鉄
源は酸化鉄及び/又は水加酸化鉄、即ち固体の含酸素鉄
化合物であること及び原料としてこの両者が混合したス
ラリーを用いることにある。第二はこのスラリーを70
0℃以上のガス雰囲気中に噴霧し、熱分解し、−気にバ
リウムフェライト磁性粉末を得ることにある。以下、本
発明を更に詳細に説明する。
(Means for Solving the Problems) As a result of various studies to solve the above problems, the present inventors have found that a slurry mainly containing an aqueous barium hydroxide solution and a solid oxygen-containing iron compound is sprayed into a high-temperature atmosphere. The inventors have discovered that, by doing so, it is possible to economically produce fine barium ferrite magnetic powder with excellent magnetic properties, and have completed the present invention. That is, the present invention is directed to the production of barium ferrite magnetic powder, which is characterized in that a slurry mainly containing an aqueous barium hydroxide solution and iron oxide and/or iron hydroxide is sprayed into a gas atmosphere of 700°C or higher and thermally decomposed. It's a method. The gist of the present invention is, firstly, that the barium source used to obtain the barium ferrite magnetic powder is barium hydroxide, which is substantially in an aqueous solution state, and that the iron source is iron oxide and/or iron hydroxide, That is, it is a solid oxygen-containing iron compound, and a slurry containing the two is used as a raw material. Second, add this slurry to 70
The purpose is to obtain barium ferrite magnetic powder by spraying it into a gas atmosphere of 0° C. or higher and thermally decomposing it. The present invention will be explained in more detail below.

本発明は、水酸化バリウム水溶液と酸化鉄及び/又は水
加酸化鉄とを主として含むスラリーを原料として用いる
ことを必須とする。ここで、原料スラリー中に含まれる
酸化鉄としては、酸化第一鉄、酸化第二鉄などが、水加
酸化鉄としては水酸化第一鉄、水酸化第二鉄(Fe(O
H)3あるいはFe  O−XH2O) 、a−FeO
OH(ゲ一タイト)、δ−FeOOHなどが挙げられる
が粒径のそろった微細な磁性粉末を収率よく得るために
は鉄源として水酸化第二鉄、α−FeOOH。
The present invention requires that a slurry mainly containing an aqueous barium hydroxide solution and iron oxide and/or iron hydroxide be used as a raw material. Here, the iron oxides contained in the raw material slurry include ferrous oxide, ferric oxide, etc., and the hydrated iron oxides include ferrous hydroxide, ferric hydroxide (Fe(O
H)3 or FeO-XH2O), a-FeO
Examples include OH (genitite) and δ-FeOOH, but in order to obtain fine magnetic powder with uniform particle size in good yield, ferric hydroxide and α-FeOOH are used as the iron source.

δ−Fe00Hを用いることが好ましく、更に結晶形の
点から鉄源としてδ−FeOOHを用いることが望まし
い。また、分散性が良好で、微細な磁性粉末を得るため
には上記の酸化鉄及び/又は水加酸化鉄の粒子は、1個
1個がバラバラで微細であることが好ましく、各々の粒
子径は0.01〜0.31mとすることが好ましく、更
に好ましくは0.03〜0.17mである。なお、これ
らの酸化鉄及び/又は水加酸化鉄の製造は特に限定され
ることはなく、公知の方法で得られたもの、または市販
品を用いることができる。
It is preferable to use δ-FeOOH, and furthermore, it is desirable to use δ-FeOOH as the iron source from the viewpoint of crystal form. In addition, in order to obtain a fine magnetic powder with good dispersibility, it is preferable that the particles of the iron oxide and/or iron hydroxide mentioned above are individually fine and dispersed, and each particle size is is preferably 0.01 to 0.31 m, more preferably 0.03 to 0.17 m. Note that the production of these iron oxides and/or iron hydroxides is not particularly limited, and those obtained by known methods or commercially available products can be used.

一方、原料スラリー中に含まれる水酸化バリウムは水溶
液であるが、水酸化バリウムが水溶液中で固体として存
在する場合、得られる磁性粉末の凝集が激しくなるおそ
れがあるので、濃度は水酸化バリウムの溶解度の範囲内
に設定することが好ましい。
On the other hand, barium hydroxide contained in the raw material slurry is an aqueous solution, but if barium hydroxide exists as a solid in an aqueous solution, there is a risk that the obtained magnetic powder will agglomerate violently, so the concentration of barium hydroxide should be adjusted accordingly. It is preferable to set the solubility within the range.

更に、得られる磁性粉末の分散性をより向上させるため
に、原料スラリー中にリチウム、ナトリウム、カリウム
、バリウムの塩化物、臭化物などの塩を添加してもよい
がこれら添加物はスラリー中に溶解していることが望ま
しい。なお、上記添加物のうち水酸化ナトリウム、水酸
化カリウムなどのアルカリを用いた場合、バリウムフェ
ライトが生成しないおそれがあるが、例えば水酸化ナト
リウム水溶液に塩化バリウムを溶解させる水酸化バリウ
ム水溶液の調製方法などにおいてアルカリを用いること
は、水酸化物イオンがBaイオンに対して当量以下とす
れば何ら差支えない。
Furthermore, in order to further improve the dispersibility of the resulting magnetic powder, salts such as chlorides and bromides of lithium, sodium, potassium, and barium may be added to the raw slurry, but these additives must be dissolved in the slurry. It is desirable that you do so. Note that if alkali such as sodium hydroxide or potassium hydroxide is used among the above additives, there is a risk that barium ferrite will not be generated. There is no problem in using an alkali in such cases as long as the amount of hydroxide ions is equal to or less than the amount of Ba ions.

また、本発明は原料スラリーを熱分解して磁性粉末を得
るものであることから、用いる原料スラリー中に、助燃
作用を有するアルコール、アセトンなどの有機溶媒を添
加してもよい。また、その他にも原料スラリー中にカル
ボン酸を含む有機酸などの添加剤を添加することにより
、得られる磁性材料の磁気粉末の向上を図ることができ
る。この添加剤としては、コハク酸、クエン酸などのジ
カルボン酸、トリカルボン酸などが好ましく用いられ、
用いる量は原料スラリー中に含まれるBaに対して4倍
モル以上であることが好ましい。上記添加剤を用いるこ
とにより得られる磁性粉末の磁気特性が向上する理由は
、添加剤自身の助燃作用、および添加剤と金属原子との
複合錯体形成による核発生の均一化などの効果が反応率
、結晶化度、および分散性などのファクターに影響を与
えることによるものと推定される。
Furthermore, since the present invention obtains magnetic powder by thermally decomposing a raw material slurry, an organic solvent such as alcohol or acetone having a combustion-enhancing effect may be added to the raw material slurry used. In addition, by adding additives such as organic acids containing carboxylic acids to the raw material slurry, it is possible to improve the magnetic powder of the magnetic material obtained. As this additive, dicarboxylic acids such as succinic acid and citric acid, tricarboxylic acids, etc. are preferably used.
The amount used is preferably at least 4 times the molar amount of Ba contained in the raw material slurry. The reason why the magnetic properties of the magnetic powder obtained by using the above additives is improved is because of the combustion-enhancing effect of the additives themselves and the uniformity of nucleation due to the formation of complexes between the additives and metal atoms. This is presumed to be due to influencing factors such as , crystallinity, and dispersibility.

また、一般に磁性粉末を磁気記録用磁性材料として用い
る場合、一般に磁性粉末の磁化値を下げずに保磁力(H
e)の調整が行なわれるが、本発明においてこの調整は
Co(II)とTi(IV)またはZn (II)と5
n(IV)などの置換元素を磁性粉末中に導入すること
により達成することができる。なお、この置換元素の導
入はあらかじめ酸化鉄及び/又は水加酸化鉄に行なって
も、原料スラリーを調製する時に行なってもよい。
In general, when magnetic powder is used as a magnetic material for magnetic recording, coercive force (H
e), and in the present invention this adjustment is carried out using Co(II) and Ti(IV) or Zn(II) and 5
This can be achieved by introducing a substituting element such as n(IV) into the magnetic powder. Note that this substitution element may be introduced into the iron oxide and/or hydrated iron oxide in advance, or may be introduced at the time of preparing the raw material slurry.

本発明において、原料スラリーにおける水酸化バリウム
と酸化鉄及び/又は水加酸化鉄のFe/Ba(原子比)
は4〜12とすることが好ましい。
In the present invention, Fe/Ba (atomic ratio) of barium hydroxide and iron oxide and/or iron hydroxide in the raw material slurry
is preferably 4 to 12.

この原子比が4よりも小さくなるとバリウムフェライト
の生成量が減少し、結晶形も悪くなることがあり、12
よりも大きくなると不純物としてのα−Fe2O3が多
くなる傾向がある。更にC。
When this atomic ratio becomes smaller than 4, the amount of barium ferrite produced decreases and the crystal shape may deteriorate.
If it is larger than , there is a tendency for α-Fe2O3 as an impurity to increase. Furthermore C.

(II) 、T i (IV)などの置換元素を導入す
る場合、これらの置換元素はFeとして換算してFe/
 B aが設定される。また、得られる磁性粉末の分散
性を向上させるために原料スラリー中に添加する塩化バ
リウム、臭化バリウムなどの添加物はF e / B 
aの設定に関係しない。
When introducing substitution elements such as (II) and Ti (IV), these substitution elements are converted into Fe/Fe/
B a is set. In addition, additives such as barium chloride and barium bromide that are added to the raw material slurry to improve the dispersibility of the obtained magnetic powder are F e / B
It is not related to the setting of a.

また原料スラリーの調製方法は特に限定されないが、例
えばホモジナイザーの如き分散混合型の攪拌機を使用す
ることにより行なうことができる。
Further, the method for preparing the raw material slurry is not particularly limited, but it can be carried out, for example, by using a dispersion mixing type stirrer such as a homogenizer.

次いで本発明は上記の原料7.ラリ−を700℃以上の
ガス雰囲気中に噴霧し、熱分解することを必須とする。
Next, the present invention uses the above raw material 7. It is essential to spray the rally into a gas atmosphere of 700°C or higher and thermally decompose it.

このとき用いられるガス雰囲気としては、水蒸気、窒素
、酸素、炭酸ガス、アルゴンなどが挙げられ、いずれの
ものでも用いることができ、またこれらガスの混合系を
用いてもよい。
The gas atmosphere used at this time includes water vapor, nitrogen, oxygen, carbon dioxide, argon, and the like, and any of them can be used, or a mixed system of these gases can be used.

このうち特に反応を速めるためには、酸素あるいは酸素
を含むガス雰囲気を用いることが好ましい。
Among these, in order to particularly speed up the reaction, it is preferable to use oxygen or a gas atmosphere containing oxygen.

また、原料スラリーを噴霧するときの噴滴は50#m以
下であることが好ましく、更に好鳶しくは2OjIll
以下で、粒度分布をシャープにすることである。この噴
滴が50#ffiよりも大きくなるとバリウムフェライ
ト磁性粉末の反応率は減少してしまう傾向があり、噴滴
の粒度分布がブロードになると得られる磁性粉末の粒度
分布もブロードになるおそれがある。噴霧の際に用いる
噴霧器としては、二流体ノズル、超音波ノズル、などが
挙げられる。
Further, when spraying the raw material slurry, the spray droplets are preferably 50 #m or less, more preferably 20 #m or less.
The following is to sharpen the particle size distribution. If the droplets are larger than 50 #ffi, the reaction rate of the barium ferrite magnetic powder tends to decrease, and if the particle size distribution of the droplets becomes broad, the particle size distribution of the obtained magnetic powder may also become broad. . Examples of the sprayer used for spraying include a two-fluid nozzle, an ultrasonic nozzle, and the like.

また、上記スラリーを噴霧するガス雰囲気中は700℃
以上であるが、この温度が低い場合、磁性粉末の生成率
が低くなり、あまりにも高い場合、粒子間の焼結が激し
くなり磁性粉末の粒径も大きくなるおそれがある。従っ
て、より好ましい温度は750〜1100℃である。更
に噴滴の滞留時間は雰囲気温度によるが、温度が高い場
合短く、温度が低い場合は長くすることが好ましい。な
お、原料スラリーを上記雰囲気中で、火炎中に噴霧する
ことによっても、優れた磁気特性を有する磁性粉末を効
率よく得ることができる。このときの火炎は700℃以
上であることが必要であり、用いられる火炎を形成する
ためのバーナーとしては、噴霧された噴滴がうまく火炎
ゾーンに導かれるような形状、すなわち噴滴と火炎とが
効率的に接触混合されるようなバーナーであることが好
ましい。
In addition, the temperature in the gas atmosphere in which the above slurry is sprayed is 700°C.
As mentioned above, if this temperature is low, the production rate of magnetic powder will be low, and if it is too high, sintering between particles will be severe and the particle size of the magnetic powder may become large. Therefore, a more preferable temperature is 750 to 1100°C. Further, the residence time of the ejected droplets depends on the ambient temperature, but it is preferable that the residence time is short when the temperature is high, and long when the temperature is low. Note that magnetic powder having excellent magnetic properties can also be efficiently obtained by spraying the raw material slurry into a flame in the above atmosphere. The flame at this time needs to be at least 700°C, and the burner used to form the flame must have a shape that allows the sprayed droplets to be guided well to the flame zone, that is, the shape of the flame is such that the droplets and the flame Preferably, the burner is one that allows efficient contact mixing.

この方法において、噴滴と火炎の接触性が悪い場合、反
応性が低下し、バリウムフェライト磁性粉末の生成量が
減少するおそれかある。また、用いるバーナーとしては
、リングバーナー、予混合式バーナー、全噴霧式バーナ
ーなどが挙げられ、ガスとして、プロパン、アセチレン
、水素等の可燃性ガスと酸素との混合ガスなどが挙げら
れる。
In this method, if the contact between the droplets and the flame is poor, the reactivity may decrease and the amount of barium ferrite magnetic powder produced may decrease. Examples of the burner used include a ring burner, a premix burner, and a full spray burner, and examples of the gas include a mixed gas of flammable gas such as propane, acetylene, and hydrogen and oxygen.

上述した本発明において得られるバリウムフェライト磁
性粉末の特性は、水酸化バリウムの濃度、含酸素鉄化合
物の種類、粒径、溶媒の種類、原料組成比、噴滴径、噴
霧速度、火炎と噴滴との接触性、雰囲気温度、雰囲気ガ
スに依存するので、これら条件を適宜設定することによ
りコントロールすることができる。また、生成した磁性
粉末は、未反応物質、他の塩を含むことがあるので、水
洗したり、希薄酸で溶解して不純物を除去することが好
ましい。
The characteristics of the barium ferrite magnetic powder obtained in the present invention described above include the concentration of barium hydroxide, the type of oxygen-containing iron compound, the particle size, the type of solvent, the raw material composition ratio, the droplet diameter, the spray speed, the flame and the droplet. Since it depends on the contact with the atmosphere, the ambient temperature, and the ambient gas, it can be controlled by appropriately setting these conditions. Furthermore, since the generated magnetic powder may contain unreacted substances and other salts, it is preferable to remove impurities by washing with water or dissolving with dilute acid.

以上の方法により、粒子径が0.01〜0.31、高分
散で板状、且つ磁化値の高いノくリウムフェライト磁性
粉末を経済的に効率良く得ることができる。
By the above method, it is possible to economically and efficiently obtain a highly dispersed, plate-shaped, and highly magnetized ferrite magnetic powder having a particle size of 0.01 to 0.31.

(実施例) 以下、本発明の実施例および比較例を示すが、本発明は
これらに限定されるものではない。
(Example) Examples and comparative examples of the present invention will be shown below, but the present invention is not limited thereto.

尚、本実施例において磁化値、保磁力は粉末状態で10
KOeの磁場において試料振動型磁力計(VSM)を用
いて測定した。
In this example, the magnetization value and coercive force are 10 in the powder state.
Measurements were made using a vibrating sample magnetometer (VSM) in the magnetic field of KOe.

実施例1 1、6wol/j!のF e S O4を含む水溶液5
3211に、10 sol#)のNaOH水溶液51)
を混合し、水酸化第一鉄を析出させ、次にこれに1 m
ol/f)のCoCjll  水溶液とT I C1)
 4水溶液を各々75■1添加混合し、更にこれに10
%のH2O2溶液を4251を加えて急速酸化を行なう
ことにより、δ−FeOOHを含むスラリー得た。その
後、このδ−Fe00Hを含むスラリーを濾過、水洗し
てNaOHを除去したδ−FeOOHのケークを得、こ
れを0.14mol/!lのB a (OR) 2水溶
液中にホモミキサーを用いて分散混合して、(F e+
Co+T i)/Ba (原子比)が8.5、B a 
(OH) 2の濃度が0.083sol#lの原料スラ
リーを調製した。
Example 1 1,6 wol/j! Aqueous solution 5 containing FeSO4 of
3211, 10 sol#) NaOH aqueous solution 51)
to precipitate ferrous hydroxide, and then add 1 m
CoCjll aqueous solution of ol/f) and T I C1)
4 aqueous solutions were added and mixed, and then 10
A slurry containing δ-FeOOH was obtained by rapid oxidation by adding 4251% H2O2 solution. Thereafter, this slurry containing δ-Fe00H was filtered and washed with water to remove NaOH to obtain a δ-FeOOH cake, which was 0.14 mol/! 1 of B a (OR) 2 aqueous solution using a homomixer, and (F e+
Co+T i)/Ba (atomic ratio) is 8.5, Ba
A raw material slurry having a concentration of (OH) 2 of 0.083 sol#l was prepared.

次いで、内部が酸素雰囲気である電気炉中に上記原料ス
ラリーを噴霧した。噴霧は、電気炉内の温度を1050
℃となるように調節し、はぼ均一な温度分布が得られて
いることをPt−Rh熱電対で確認した後、スラリーを
IN/時間の噴霧速度で二流体ノズルを用い、粒径が1
0μm程度の噴滴となるようにして行なった。噴滴は酸
素雰囲気を通って熱分解し、粉末となってフィルターで
補集された。その後補集された粉末を水洗、乾燥した。
Next, the raw material slurry was sprayed into an electric furnace with an oxygen atmosphere inside. The spraying lowers the temperature inside the electric furnace to 1050℃.
After confirming with a Pt-Rh thermocouple that a fairly uniform temperature distribution was obtained, the slurry was sprayed at a spray rate of IN/hour using a two-fluid nozzle, and the particle size was 1°C.
This was done so that the droplet size was about 0 μm. The droplets passed through an oxygen atmosphere and decomposed into powder, which was collected by a filter. Thereafter, the collected powder was washed with water and dried.

この得られた微粉末をX線回折により分析したところバ
リウムフェライトであることが確認された。また、その
飽和磁化は46esu/gで、保磁力は8000eであ
った。更に、電子顕微鏡で観察した結果、微粉末の粒径
は均整て、平均粒径は0.08μmの六角に近い板状で
あった。
When the obtained fine powder was analyzed by X-ray diffraction, it was confirmed that it was barium ferrite. Further, its saturation magnetization was 46 esu/g, and its coercive force was 8000 e. Further, as a result of observation using an electron microscope, the particle size of the fine powder was uniform, and the average particle size was 0.08 μm, and it was found to be in the shape of a nearly hexagonal plate.

実施例2 実施例1において調製した原料スラリーを内部が空気雰
囲気である反応器の中に上記原料スラリーを噴霧した。
Example 2 The raw material slurry prepared in Example 1 was sprayed into a reactor having an air atmosphere inside.

噴霧は、反応器内の温度が970℃になるようにプロパ
ン−酸素炎のガス流量を調節し、はぼ均一な温度分布が
得られていることをP t−Rh熱電対で確認した後、
スラリーを11/時間の噴霧速度で二流体ノズルを用い
、粒径がlc1m程度の噴滴がうまく火炎ゾーンを通る
ように噴霧して行なった。噴滴は火炎ゾーンを通って熱
分解し、粉末となってフィルターで補集された。
For spraying, the gas flow rate of the propane-oxygen flame was adjusted so that the temperature inside the reactor was 970°C, and after confirming with a Pt-Rh thermocouple that a fairly uniform temperature distribution was obtained,
The slurry was atomized using a two-fluid nozzle at an atomization rate of 11/hour so that droplets with a particle size of about 1 cm passed through the flame zone. The droplets passed through the flame zone and decomposed into a powder that was collected by a filter.

その後補集された粉末を水洗、乾燥した。Thereafter, the collected powder was washed with water and dried.

この得られた微粉末をX線回折により分析したところバ
リウムフェライトであることが確認された。また、その
飽和磁化は48e■u / gで、保磁力は8500e
であった。更に、電子顕微鏡で観察した結果、微粉末の
粒径は均整で、平均粒径は0.07jmの六角に近い板
状であった。
When the obtained fine powder was analyzed by X-ray diffraction, it was confirmed that it was barium ferrite. In addition, its saturation magnetization is 48e■u/g, and its coercive force is 8500e
Met. Furthermore, as a result of observation with an electron microscope, the particle size of the fine powder was uniform, and the average particle size was 0.07 jm, and it was found to be in the shape of a nearly hexagonal plate.

実施例3 1 、  Osol/11のF e CII gを含む
I11水溶液に2.0箇o1/flのNH4OH水溶液
2fIを混合し、これに11ollのCo C1) 2
水溶液とT iCI 2水溶液を各々88m1添加混合
し、Fe(OH)3を含むスラリーを得た。次にこのF
 e (OH) aを含むスラリーをろ過、水洗してN
H4OHを除去したFe(OH)3のケークを得、この
ケークを0.10mol#)のB a (OH) 2水
溶液にホモミキサーを用いて分散混合して、(Fe十C
o+Ti)/Ba(原子比)が8.5の原料スラリーを
調製した。
Example 3 2.0 o1/fl of NH4OH aqueous solution 2fI was mixed into an I11 aqueous solution containing 1, Osol/11 g of F e CII, and 11 oll of Co C1) 2 was added to this.
88 ml each of the aqueous solution and TiCI 2 aqueous solution were added and mixed to obtain a slurry containing Fe(OH) 3 . Next this F
Filter the slurry containing e (OH) a, wash it with water, and remove N.
A cake of Fe(OH)3 from which H4OH was removed was obtained, and this cake was dispersed and mixed in an aqueous solution of 0.10 mol#) of B a (OH) 2 using a homomixer.
A raw material slurry having an atomic ratio of 8.5 (o+Ti)/Ba (atomic ratio) was prepared.

次に、実施例2と同一装置を用い、同様に操作し、噴霧
熱分解を行ない微粉末を得た。但し、このとき反応器内
の平均温度は1100℃とした。
Next, using the same apparatus as in Example 2 and operating in the same manner, spray pyrolysis was performed to obtain a fine powder. However, at this time, the average temperature inside the reactor was 1100°C.

得られた微粉末をX11回折により分析したところバリ
ウムフェライトであることが確認された。
When the obtained fine powder was analyzed by X11 diffraction, it was confirmed that it was barium ferrite.

また、この微粉末の飽和磁化値は45emu/gで、保
磁力は7000eであった。更に電子顕微鏡で観察した
結果、微粉末の粒径は均整で平均粒径は0.08jmの
六角に近い板状であった。
Moreover, the saturation magnetization value of this fine powder was 45 emu/g, and the coercive force was 7000 e. Furthermore, as a result of observation using an electron microscope, the particle size of the fine powder was uniform, and the average particle size was 0.08 jm, and it was found to be in the shape of a nearly hexagonal plate.

比較例 反応器内の温度を650℃とした以外は、実施例2と同
様の方法で粉末を得た。得られた粉末は、X線回折パタ
ーンから、α−Fe2O3を多量に含有する粉末であっ
た。また、その飽和磁化値は12emu/gであった◎ (発明の効果) 以上述べたように、本発明の方法によれば均整な微粒子
で、その粒形は六角に近い板状であり、飽和磁化も高い
バリウムフェライト磁性粉末が得られ、この微粉末は高
分散性を有するものとなる。
Comparative Example Powder was obtained in the same manner as in Example 2, except that the temperature inside the reactor was 650°C. The obtained powder was found to contain a large amount of α-Fe2O3 from the X-ray diffraction pattern. In addition, the saturation magnetization value was 12 emu/g◎ (Effect of the invention) As mentioned above, according to the method of the present invention, the particles are well-balanced, the particle shape is plate-like, close to hexagonal, and the saturation magnetization value is 12 emu/g. Barium ferrite magnetic powder with high magnetization is obtained, and this fine powder has high dispersibility.

更に、本発明の方法は極めて簡便で操作も容品であり、
工業的、紅済的に優位な方法である。
Furthermore, the method of the present invention is extremely simple and easy to operate;
This is an advantageous method from an industrial and Hongji perspective.

Claims (4)

【特許請求の範囲】[Claims] (1)水酸化バリウム水溶液と酸化鉄及び/又は水加酸
化鉄とを主として含むスラリーを700℃以上のガス雰
囲気中に噴霧し、熱分解することを特徴とするバリウム
フェライト磁性粉末の製造方法。
(1) A method for producing barium ferrite magnetic powder, which comprises spraying a slurry mainly containing an aqueous barium hydroxide solution and iron oxide and/or iron hydroxide into a gas atmosphere at 700°C or higher and thermally decomposing it.
(2)水酸化バリウム水溶液と酸化鉄及び/又は水加酸
化鉄とを主として含むスラリーを700℃以上のガス雰
囲気中で火炎中に噴霧し、熱分解することを特徴とする
バリウムフェライト磁性粉末の製造方法。
(2) Barium ferrite magnetic powder is produced by spraying a slurry mainly containing barium hydroxide aqueous solution and iron oxide and/or iron hydroxide into a flame in a gas atmosphere of 700°C or higher and thermally decomposing it. Production method.
(3)酸化鉄がα−Fe_2O_3である請求項(1)
項または第(2)項に記載のバリウムフェライトの製造
方法。
(3) Claim (1) that the iron oxide is α-Fe_2O_3
The method for producing barium ferrite according to item (2) or item (2).
(4)水加酸化鉄がα−FeOOH、 δ−FeOOH及びFe(OH)_3からなる群より選
ばれた1種以上の化合物である請求項(1)〜(3)項
いずれかに記載のバリウムフェライトの製造方法。
(4) The iron hydroxide according to any one of claims (1) to (3), wherein the iron hydroxide is one or more compounds selected from the group consisting of α-FeOOH, δ-FeOOH and Fe(OH)_3. Method for manufacturing barium ferrite.
JP2155241A 1990-06-15 1990-06-15 Manufacture of barium ferrite magnetic powder Pending JPH0448704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2155241A JPH0448704A (en) 1990-06-15 1990-06-15 Manufacture of barium ferrite magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2155241A JPH0448704A (en) 1990-06-15 1990-06-15 Manufacture of barium ferrite magnetic powder

Publications (1)

Publication Number Publication Date
JPH0448704A true JPH0448704A (en) 1992-02-18

Family

ID=15601622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2155241A Pending JPH0448704A (en) 1990-06-15 1990-06-15 Manufacture of barium ferrite magnetic powder

Country Status (1)

Country Link
JP (1) JPH0448704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076666A (en) * 2006-09-20 2008-04-03 Fuji Electric Holdings Co Ltd Driving circuit for organic el element
JP2009200186A (en) * 2008-02-20 2009-09-03 Tdk Corp Method of manufacturing sintered magnet
JP2013017957A (en) * 2011-07-12 2013-01-31 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing fine particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076666A (en) * 2006-09-20 2008-04-03 Fuji Electric Holdings Co Ltd Driving circuit for organic el element
JP2009200186A (en) * 2008-02-20 2009-09-03 Tdk Corp Method of manufacturing sintered magnet
JP4716051B2 (en) * 2008-02-20 2011-07-06 Tdk株式会社 Manufacturing method of sintered magnet
JP2013017957A (en) * 2011-07-12 2013-01-31 Furukawa Electric Co Ltd:The Apparatus and method for manufacturing fine particle

Similar Documents

Publication Publication Date Title
Esmaeili et al. Modified single-phase hematite nanoparticles via a facile approach for large-scale synthesis
Gajbhiye et al. Thermal decomposition of zinc-iron citrate precursor
JP5105503B2 (en) ε Iron oxide production method
US4751070A (en) Low temperature synthesis
JP2009527365A (en) Production of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and alloys
KR100753773B1 (en) Method for preparing perovskite oxide nanopowders
Zhou et al. Morphology-controlled synthesis of Co3O4 by one step template-free hydrothermal method
CN111168083A (en) Preparation method of nano silver powder
US5736111A (en) Method for producing iron-containing complex oxide powders
Veintemillas‐Verdaguer et al. Effect of the oxidation conditions on the maghemites produced by laser pyrolysis
US4473542A (en) Production of microcrystalline ferrimagnetic spinels
JPH0448704A (en) Manufacture of barium ferrite magnetic powder
CN102583567B (en) Superfine high-dispersion super-paramagnetism ferrate nano particles and preparation method thereof
JP3443991B2 (en) Method for producing positive electrode active material for secondary battery
JPS63288913A (en) Production of zinc oxide
JP2829644B2 (en) Production method of α-iron oxide
US5626788A (en) Production of magnetic oxide powder
JP2569580B2 (en) Method for producing acicular goethite
JP3981513B2 (en) Method for producing metal oxide
JPH02163908A (en) Manufacture of magnet plumbite type magnetic material
US11718536B2 (en) Solvent-free synthesis of lanthanide oxide and mixed lanthanide oxide nanoparticles
RU2732298C1 (en) Method for producing of maghemite
JPS6313934B2 (en)
JPS62171926A (en) Production of magnetite fine powder
JPH06654B2 (en) M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder