JPH0447963B2 - - Google Patents

Info

Publication number
JPH0447963B2
JPH0447963B2 JP57018792A JP1879282A JPH0447963B2 JP H0447963 B2 JPH0447963 B2 JP H0447963B2 JP 57018792 A JP57018792 A JP 57018792A JP 1879282 A JP1879282 A JP 1879282A JP H0447963 B2 JPH0447963 B2 JP H0447963B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
metal powder
cobalt
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57018792A
Other languages
Japanese (ja)
Other versions
JPS58137202A (en
Inventor
Seiichi Asada
Yasuo Tsukuda
Kazuyoshi Yoshida
Kazushige Imagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57018792A priority Critical patent/JPS58137202A/en
Publication of JPS58137202A publication Critical patent/JPS58137202A/en
Publication of JPH0447963B2 publication Critical patent/JPH0447963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁気テープ、デイスク、ドラムなど
の磁気記録媒体用金属粉末の製造法に関するもの
で、とくに、分散性にすぐれた高保磁力・微粒子
金属粉末の製造法に関するものである。 鉄、コバルト、ニツケルを主体とする針状磁性
金属粉末は、磁性酸化物粉末(γ−Fe2O3、Coエ
ピタキシヤルγ−Fe2O3、CrO2)にくらべ、保持
力、飽和磁化が大きく、テープとしたときの出力
(C)が大きい、周波数特性が良いなどの特徴をもつ
ており、オーデイオカセツトテープとして市販さ
れている。 このような目的に用いる針状金属粉末の製造法
には、主に、(1)針状酸化鉄(Fe3O3)、針状の酸
水酸化鉄(FeOOH)などに特殊な形状保持処理
(還元中の粒子間や焼結や形状の崩壊を防止する
ための処理)を施したのち、これを水素気流中で
加熱還元する方法、(2)低圧の不活性ガス中で金属
を蒸発させる方法、などの乾式プロセスが用いら
れている。 しかしながら、金属粉末は飽和磁化が大きいた
めに粒子間の磁気的相互作用が大きく、一旦乾燥
した金属粉末はほぐれにくいために、磁気テープ
バインダ溶液への分散が悪いという欠点を有して
いる。このため、テープとした際のノイズレベル
(N)が高く、十分な出力−雑音比(C/N)が
得られないという問題点があつた。この問題点
は、記録密度向上を目的として金属粉末の微粒子
化を進めるとさらに顕著となる。 本発明者らは、この欠点を改良する方法につい
て検討した。 分散性の良い金属粉末を製造する方法には、メ
チルメタアクリレート−エチルアクリレート−ビ
ニルピロリドンの3元ポリマー(35/64/1)の
ような高分子樹脂をトルエンのような有機溶媒に
溶解し、この溶液中でCO2(CO)8を約100℃で熱
分解する方法が知られている。しかしながら、こ
の方法で得られるコバルト粉は粒状であり、この
ため磁気テープなどの用途に必要な800Oe以上の
高い保磁力は得られなかつた。また、このような
粒状粉では、加熱減磁や加圧減磁が大きいという
欠点も有しており、これをこのまま磁気テープな
どの用途に用いることはできなかつた。 本発明者らは、保持力が大きく、しかも分散性
のよい針状金属粉末の製造法について検討した結
果、熱分解時に外部より100Oe以上の磁場を印加
することにより針状に連らなつた粒子が得られ、
その結果、800Oe以上の高い保磁力をもち、しか
も、分散性のよい金属粉末が得られることを見い
だした。 本発明はこの発明に基づくものである。 第2図は反応時に磁場を印加することの効果を
示したもので、曲線10、曲線11はそれぞれ
2000Oeの磁場中で配向塗布したテープの保持力、
角型比を示したものである。図からわかるよう
に、反応時に磁場を印加することにより保磁力、
角型比の大きい金属粉末テーブが得られる。 印加する磁場は100Oe以上が好ましく、500G
以上がより好ましい。印加する磁場の上限は特に
ないが、その効果は、3000Oeで飽和に達するの
で、通常3000Oe以下が好まれる。 用いる高分子樹脂としては、メチルメタクリレ
ート−エチルアクリレート−ビニルピロリドン共
重合物、塩化ビニル−酢酸ビニル−ビニルアルコ
ール共重合物、ポリクロロプレン、ポリスチレ
ン、ポリウレタン、ポリエステル、ポリウレタン
イソシアネート、シリコールオイルなどのいずれ
でもよいが、塩化ビニル−酢酸ビニル−ビニルア
ルコールの共重合物、ポリウレタン、ポリウレタ
ンのイソシアネートは、このまま磁気テープ、デ
イスクなどのバインダとなるのでより好ましい。 用いる溶媒としては、ベンゼン、トルエン、キ
シレンなどのベンゼン系溶媒、メチルエチルケト
ン、メチルイソブチルケトン、ジn−プロピルケ
トンなどのケトン系溶媒、酢酸セロソルブ、酢酸
ブチルなどのエステル系溶媒など上記高分子樹脂
を溶解するものであればいずれでもよい。また、
場合により上記溶媒の混合物を用いることができ
る。 強磁性金属のカルボニルとしてはCO2(CO)8
Fe(CO)5、Ni(CO)4などがあるが、安全上の見
地からCO2(CO)8、Fe(CO)5が好ましい。また、
耐食性向上のために上記強磁性金属のカルボニル
にV(CO)6、Cr(CO)6、Mo(CO)6、Ru(CO)5
W(CO)6などのカルボニル化合物を加え合金化す
ることもできる。 熱分解温度は50〜200℃が好ましい。雰囲気は
周知のように例えば不活性ガス、発生するCOガ
ス等とする。また、使用圧力は1〜1000気圧のい
ずれでもよいが、1〜5気圧が使用反応容器が安
価であるので特に好ましい。 以下、実施例を用いて本発明を説明するが、本
実施例は何ら本発明を制限するものではない。 実施例 1 塩化ビニル−酢酸ビニル−ビニルアルコールの
3元ポリマー(91/6/3)1.28gをメチルイソ
ブチルケトン−トルエン(1/1)混合溶媒80ml
に溶解した。この溶解にCO2(CO)815.2gを溶解
したのち、第1図に示した反応容器に入れ、ソレ
ノイドを用いて外部より磁場を印加しながら110
℃で5時間反応を行つた。反応終了後スラリを室
温まで冷却し、遠心分離機を用いて1/10に濃縮し
た。この濃縮液を超音波分散したのちポリエステ
ルフイルムに塗布し、2000Oeの磁場中で乾燥し
た。得られたテープの配向方向の磁気特性を
VSM(試料振動型磁束計)を用いて最高磁場
10000Oeのもとで測定した。結果は第2図のよう
である。なお、飽和磁化はいずれも4500Gであつ
た。第2図からわかるように、反応時に磁場を印
加することにより、保磁力(Hc)ならびに角型
比(Br/Bm)は向上する。 実施例 2 塩化ビニル−酢酸ビニル−ビニルアルコールの
3元ポリマー(91/6/3)12.8gをメチルエチ
ルケトン−トルエン(1/1)混合溶媒800mlに
溶解した。この溶解にCO2(CO)8152gを溶解し
たのち、に反応容器に入れ、ソレノイドを用いて
外部より1000Oeの磁場を印加しながら110℃で5
時間反応を行つた。反応終了後スラリーを室温ま
で冷却し、遠心分離機を用いて1/10に濃縮した。
この濃縮液に多官能性イソシアネート5.6gとα
−Fe2O30.52gを加え、超音波分散したのち、ポ
リエステルフイルムに塗布し、2000Oeの磁場中
で乾燥した。このフイルムをカレンダ処理したの
ち、1/2インチ巾に切断し、回転ドラム式測定器
を用いてテープ特性を測定した。 測定条件はつぎのようである。 磁気ヘツド;非晶質積層、ギヤツプ長;0.3μm ギヤツプ深さ;50μm トラツク幅:60μm テープスピード:4.1m/s キヤリヤー周波数;4.1MHz ノイズ帯域;1MHz〜7MHz 得られた出力(C)ならびに出力雑音比(C/N)
は第1表のようである。
The present invention relates to a method for producing metal powder for magnetic recording media such as magnetic tapes, disks, and drums, and in particular to a method for producing fine-particle metal powder with high coercive force and excellent dispersibility. Acicular magnetic metal powders mainly composed of iron, cobalt, and nickel have lower coercivity and saturation magnetization than magnetic oxide powders (γ-Fe 2 O 3 , Co epitaxial γ-Fe 2 O 3 , CrO 2 ). Output when large and tape
It has characteristics such as a large (C) value and good frequency characteristics, and is commercially available as an audio cassette tape. The manufacturing method of acicular metal powder used for such purposes mainly involves (1) special shape-retention treatment of acicular iron oxide (Fe 3 O 3 ), acicular acid iron hydroxide (FeOOH), etc. (a treatment to prevent interparticles, sintering, and shape collapse during reduction) and then heating and reducing the metal in a hydrogen stream; (2) evaporating the metal in a low-pressure inert gas; Dry processes such as methods are used. However, since metal powder has a large saturation magnetization, there is a large magnetic interaction between particles, and once dried, metal powder is difficult to loosen, so it has the disadvantage of poor dispersion in a magnetic tape binder solution. For this reason, there was a problem in that the noise level (N) when made into a tape was high and a sufficient output-to-noise ratio (C/N) could not be obtained. This problem becomes even more pronounced when the metal powder is made into finer particles for the purpose of improving the recording density. The present inventors have studied methods to improve this drawback. A method for producing metal powder with good dispersibility involves dissolving a polymer resin such as a terpolymer of methyl methacrylate-ethyl acrylate-vinyl pyrrolidone (35/64/1) in an organic solvent such as toluene. A method is known in which CO 2 (CO) 8 is thermally decomposed in this solution at about 100°C. However, the cobalt powder obtained by this method is granular, and therefore a high coercive force of 800 Oe or more, which is necessary for applications such as magnetic tapes, cannot be obtained. Further, such granular powder has the disadvantage that it undergoes large heat demagnetization and pressure demagnetization, and cannot be used as is for applications such as magnetic tapes. The present inventors investigated a method for producing acicular metal powder that has a large coercive force and good dispersibility, and found that by applying an external magnetic field of 100 Oe or more during thermal decomposition, the particles become acicularly connected. is obtained,
As a result, it was discovered that a metal powder with a high coercive force of 800 Oe or more and good dispersibility could be obtained. The present invention is based on this invention. Figure 2 shows the effect of applying a magnetic field during the reaction, with curves 10 and 11 respectively.
Retention force of tape coated with orientation in 2000Oe magnetic field,
This shows the squareness ratio. As can be seen from the figure, by applying a magnetic field during the reaction, the coercive force,
A metal powder table with a high squareness ratio can be obtained. The applied magnetic field is preferably 100Oe or more, and 500G
The above is more preferable. Although there is no particular upper limit to the applied magnetic field, the effect reaches saturation at 3000 Oe, so 3000 Oe or less is usually preferred. The polymer resin used may be methyl methacrylate-ethyl acrylate-vinyl pyrrolidone copolymer, vinyl chloride-vinyl acetate-vinyl alcohol copolymer, polychloroprene, polystyrene, polyurethane, polyester, polyurethane isocyanate, silicone oil, etc. However, vinyl chloride-vinyl acetate-vinyl alcohol copolymers, polyurethane, and polyurethane isocyanates are more preferred because they can be used as binders for magnetic tapes, disks, etc. Solvents to be used include benzene-based solvents such as benzene, toluene, and xylene, ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone, and di-n-propyl ketone, and ester-based solvents such as cellosolve acetate and butyl acetate to dissolve the above polymer resin. Anything is fine as long as it does. Also,
Optionally mixtures of the abovementioned solvents can be used. The carbonyl of ferromagnetic metals is CO 2 (CO) 8 ,
Examples include Fe(CO) 5 and Ni(CO) 4 , but CO 2 (CO) 8 and Fe(CO) 5 are preferred from a safety standpoint. Also,
To improve corrosion resistance, V(CO) 6 , Cr(CO) 6 , Mo(CO) 6 , Ru(CO) 5 ,
It is also possible to add a carbonyl compound such as W(CO) 6 to form an alloy. The thermal decomposition temperature is preferably 50 to 200°C. As is well known, the atmosphere is, for example, an inert gas, generated CO gas, or the like. Further, the working pressure may be anywhere from 1 to 1000 atm, but 1 to 5 atm is particularly preferred since the reaction vessel used is inexpensive. EXAMPLES The present invention will be explained below using Examples, but these Examples do not limit the present invention in any way. Example 1 1.28 g of vinyl chloride-vinyl acetate-vinyl alcohol ternary polymer (91/6/3) was mixed with 80 ml of methyl isobutyl ketone-toluene (1/1) mixed solvent.
dissolved in After dissolving 15.2 g of CO 2 (CO) 8 in this solution, it was placed in the reaction vessel shown in Figure 1 and heated for 110 g while applying a magnetic field from the outside using a solenoid.
The reaction was carried out at ℃ for 5 hours. After the reaction was completed, the slurry was cooled to room temperature and concentrated to 1/10 using a centrifuge. This concentrated solution was subjected to ultrasonic dispersion, then applied to a polyester film, and dried in a magnetic field of 2000 Oe. The magnetic properties of the obtained tape in the orientation direction were
The highest magnetic field using a VSM (vibrating sample magnetometer)
Measured under 10000Oe. The results are shown in Figure 2. Note that the saturation magnetization was 4500G in all cases. As can be seen from FIG. 2, by applying a magnetic field during the reaction, the coercive force (Hc) and squareness ratio (Br/Bm) are improved. Example 2 12.8 g of a vinyl chloride-vinyl acetate-vinyl alcohol ternary polymer (91/6/3) was dissolved in 800 ml of a methyl ethyl ketone-toluene (1/1) mixed solvent. After dissolving 152 g of CO 2 (CO) 8 in this solution, it was placed in a reaction vessel and heated at 110°C for 5 minutes while applying a magnetic field of 1000 Oe from the outside using a solenoid.
A time reaction was performed. After the reaction was completed, the slurry was cooled to room temperature and concentrated to 1/10 using a centrifuge.
This concentrate contains 5.6g of polyfunctional isocyanate and α
-0.52 g of Fe 2 O 3 was added and subjected to ultrasonic dispersion, then applied to a polyester film and dried in a magnetic field of 2000 Oe. After calendering this film, it was cut into 1/2 inch width pieces and tape characteristics were measured using a rotating drum measuring device. The measurement conditions are as follows. Magnetic head: Amorphous laminated, gap length: 0.3 μm Gap depth: 50 μm Track width: 60 μm Tape speed: 4.1 m/s Carrier frequency: 4.1 MHz Noise band: 1 MHz to 7 MHz Obtained output (C) and output noise Ratio (C/N)
is as shown in Table 1.

【表】 第1表からわかるように、本発明の方法で作製
したテープは標準酸化テープ、比較テープにくら
べ、出力(C)、出力−雑音比(C/N)が大きく、
ビデオテープとしてすぐれている。 実施例 3 塩化ビニル−酢酸ビニル−ビニルアルコールの
3元ポリマ(91/6/3)1.28gをジn−プロピ
ルケトン−キシルン(1/1)混合溶媒80mlの溶
解した。この溶解にFe(CO)516mlを溶解したのち
反応容器に入れソレノイドを用いて外部より
1000Oeの磁場を印加しながら140℃で10時間反応
を行つた。反応終了後スラリを室温まで冷却し遠
心分離機を用いて1/10に濃縮した。この濃縮液を
超音波分散したのちポリエステルフイルムに塗布
し2000Oeの磁場中で乾燥した。得られたテープ
の配向方向の磁場特性をVSMを用いて最高磁場
10000Oeのもとで測定した。結果は第2表のよう
である。第2表には比較のために反応時に磁場を
印加しなかつた場合もあわせ示した。
[Table] As can be seen from Table 1, the tape produced by the method of the present invention has higher output (C) and output-to-noise ratio (C/N) than the standard oxide tape and comparative tape.
Excellent as a videotape. Example 3 1.28 g of vinyl chloride-vinyl acetate-vinyl alcohol terpolymer (91/6/3) was dissolved in 80 ml of di-n-propyl ketone-xylene (1/1) mixed solvent. After dissolving 16 ml of Fe(CO) 5 in this solution, it is placed in a reaction vessel and is heated from the outside using a solenoid.
The reaction was carried out at 140°C for 10 hours while applying a magnetic field of 1000 Oe. After the reaction was completed, the slurry was cooled to room temperature and concentrated to 1/10 using a centrifuge. This concentrated solution was subjected to ultrasonic dispersion, then applied to a polyester film and dried in a magnetic field of 2000 Oe. The obtained magnetic field characteristics in the orientation direction of the tape were measured using VSM at the highest magnetic field.
Measured under 10000Oe. The results are shown in Table 2. For comparison, Table 2 also shows the case where no magnetic field was applied during the reaction.

【表】 第2表からわかるように、反応時に磁場を印加
することによりHc、Br/Bmの大きい磁気テー
プが得られる。 実施例 4 CO2(CO)812g、Fe(CO)5を3.2gを用いたこ
と、反応時の磁場を1000Oeとしたことを除き、
実施例1と同様にして金属粉テープを作製し、そ
の磁気特性を測定した。結果は、第3表のようで
ある。表には比較のために反応時に磁場を印加し
なかつた場合もあわせ示した。
[Table] As can be seen from Table 2, by applying a magnetic field during the reaction, a magnetic tape with high Hc and Br/Bm can be obtained. Example 4 Except that 12 g of CO 2 (CO) 8 and 3.2 g of Fe (CO) 5 were used, and the magnetic field during the reaction was 1000 Oe.
A metal powder tape was produced in the same manner as in Example 1, and its magnetic properties were measured. The results are shown in Table 3. For comparison, the table also shows the case where no magnetic field was applied during the reaction.

【表】 表からわかるように、反応時に磁場を印加する
ことによりHc、Br/Bmの大きいテープが得ら
れる。 以上の実施例からわかるように、強磁性金属の
カルボニルを高分子樹脂溶液中で熱分解して金属
粉末を製造する際に外部より磁場を印加すること
により、保磁力、角型比の大きい磁性金属粉末が
得られ、この磁性金属粉末を用いた磁気テープは
C/Nが大きく、磁気テープとしてすぐれてい
る。
[Table] As seen from the table, tapes with high Hc and Br/Bm can be obtained by applying a magnetic field during the reaction. As can be seen from the above examples, by applying an external magnetic field when producing metal powder by thermally decomposing the carbonyl of a ferromagnetic metal in a polymer resin solution, magnetic fields with high coercive force and squareness ratio can be produced. Metal powder is obtained, and a magnetic tape using this magnetic metal powder has a large C/N ratio and is excellent as a magnetic tape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例で用いた反応容器の
縦断面図、第2図は、反応時の印加磁場の大きさ
と得られた磁気テープの保磁力、角型比との関係
を示すグラフである。 1……モータ、2……プロペラ撹拌機、3……
反応液、4……ガス導入管、5……還流器、6…
…温度計、7……撹拌シール、8……ヒータ、9
……ソレノイド、10……保磁力を示す曲線、1
1……角型比を示す曲線。
FIG. 1 is a longitudinal cross-sectional view of a reaction vessel used in an example of the present invention, and FIG. 2 shows the relationship between the magnitude of the magnetic field applied during the reaction and the coercive force and squareness ratio of the obtained magnetic tape. It is a graph. 1...Motor, 2...Propeller agitator, 3...
Reaction liquid, 4... Gas introduction tube, 5... Refluxer, 6...
...Thermometer, 7...Stirring seal, 8...Heater, 9
... Solenoid, 10 ... Curve showing coercive force, 1
1...Curve showing squareness ratio.

Claims (1)

【特許請求の範囲】 1 鉄、コバルトもしくはニツケルのカルボニル
化合物、これらの混合物、または鉄、コバルト、
ニツケルを主体として含む金属カルボニル化合物
の混合物を高分子樹脂溶液中で熱分解して、鉄、
コバルト、ニツケル、これらの合金、もしくは、
鉄、コバルト、ニツケルを主体とする金属粉末を
製造する方法において、熱分解時に100Oe以上の
磁場を印加することにより高分子樹脂溶液中で反
応して得られる針状金属粉末をそのままの状態で
該高分子樹脂溶液中で分散させ磁性塗料とするこ
とを可能としたことを特徴とする磁気記録媒体用
金属粉末の製造方法。 2 上記印加磁場の上限は3000Oeである特許請
求の範囲第1項記載の磁気記録媒体用金属粉末の
製造方法。
[Claims] 1. Iron, cobalt or nickel carbonyl compounds, mixtures thereof, or iron, cobalt,
A mixture of metal carbonyl compounds mainly containing nickel is thermally decomposed in a polymer resin solution to produce iron,
cobalt, nickel, alloys thereof, or
In a method for producing metal powders mainly composed of iron, cobalt, and nickel, the acicular metal powder obtained by reacting in a polymer resin solution by applying a magnetic field of 100 Oe or more during thermal decomposition is used as it is. A method for producing metal powder for magnetic recording media, characterized in that it can be dispersed in a polymer resin solution to form a magnetic coating. 2. The method for producing metal powder for magnetic recording media according to claim 1, wherein the upper limit of the applied magnetic field is 3000 Oe.
JP57018792A 1982-02-10 1982-02-10 Manufacture of metal powder for magnetic recording medium Granted JPS58137202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57018792A JPS58137202A (en) 1982-02-10 1982-02-10 Manufacture of metal powder for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57018792A JPS58137202A (en) 1982-02-10 1982-02-10 Manufacture of metal powder for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58137202A JPS58137202A (en) 1983-08-15
JPH0447963B2 true JPH0447963B2 (en) 1992-08-05

Family

ID=11981448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57018792A Granted JPS58137202A (en) 1982-02-10 1982-02-10 Manufacture of metal powder for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58137202A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926799A (en) * 1972-07-04 1974-03-09
JPS5050691A (en) * 1973-08-30 1975-05-07
JPS50112800A (en) * 1974-02-15 1975-09-04
JPS5231558A (en) * 1975-09-05 1977-03-10 Ebara Infilco Co Ltd Exposure treatment apparatus
JPS54140199A (en) * 1978-04-24 1979-10-31 Tdk Corp Production method and device of ferro-magnetic powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926799A (en) * 1972-07-04 1974-03-09
JPS5050691A (en) * 1973-08-30 1975-05-07
JPS50112800A (en) * 1974-02-15 1975-09-04
JPS5231558A (en) * 1975-09-05 1977-03-10 Ebara Infilco Co Ltd Exposure treatment apparatus
JPS54140199A (en) * 1978-04-24 1979-10-31 Tdk Corp Production method and device of ferro-magnetic powder

Also Published As

Publication number Publication date
JPS58137202A (en) 1983-08-15

Similar Documents

Publication Publication Date Title
EP0074410A1 (en) Magnetic recording medium
JPH0313647B2 (en)
JPS58119609A (en) Magnetic recording medium
JP2000277311A (en) Iron nitride-based magnetic powder material, manufacture thereof, and magnetic recording medium
US4608093A (en) Ferromagnetic particles with stable magnetic characteristics and method of preparing same
US3767464A (en) Magnetic recording member and method of producing same
JPS608605B2 (en) Oxidation treatment method for metal magnetic powder for magnetic recording media
JP2751535B2 (en) Magnetic transfer method
JPH0447963B2 (en)
Van der Giessen Advances in magnetic recording materials
JPH0743824B2 (en) Magnetic recording medium and manufacturing method thereof
JPH0572084B2 (en)
JPH036574B2 (en)
JPS6258604A (en) Manufacture of magnetic iron powder for magnetic recording
JP2002289415A (en) Magnetic recording spindle-shaped alloy magnetic particle powder and magnetic recoding medium
JP3129414B2 (en) Manufacturing method of acicular iron alloy magnetic particles for magnetic recording
JPH0623402B2 (en) Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JPS6018609B2 (en) Ferromagnetic powder and its manufacturing method
JPH0581644A (en) Magnetic recording medium
JP3242102B2 (en) Magnetic powder and method for producing the same
JPS6066325A (en) Magnetic recording medium
JPS5852804A (en) Magnetic recording medium
JPS6116024A (en) Magnetic recording medium
JPS59127224A (en) Magnetic recording medium
JPS58161703A (en) Production of ferromagnetic powder