JPH0444300Y2 - - Google Patents

Info

Publication number
JPH0444300Y2
JPH0444300Y2 JP1987057160U JP5716087U JPH0444300Y2 JP H0444300 Y2 JPH0444300 Y2 JP H0444300Y2 JP 1987057160 U JP1987057160 U JP 1987057160U JP 5716087 U JP5716087 U JP 5716087U JP H0444300 Y2 JPH0444300 Y2 JP H0444300Y2
Authority
JP
Japan
Prior art keywords
mold
slab
corner
casting
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987057160U
Other languages
Japanese (ja)
Other versions
JPS63163242U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987057160U priority Critical patent/JPH0444300Y2/ja
Publication of JPS63163242U publication Critical patent/JPS63163242U/ja
Application granted granted Critical
Publication of JPH0444300Y2 publication Critical patent/JPH0444300Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、半連続鋳造もしくは連続鋳造によ
りアルミニウム合金のスラブを鋳造するための鋳
型に関し、特に種々の異なる幅のスラブを同一の
鋳型で鋳造可能とするように短辺部を長辺部とは
別体に作成して短辺部の位置を調整可能とした幅
可変鋳型に関するものである。
[Detailed description of the invention] Industrial application field This invention relates to a mold for casting slabs of aluminum alloy by semi-continuous casting or continuous casting, and in particular, it is possible to cast slabs of various different widths with the same mold. This invention relates to a variable width mold in which the short side is made separately from the long side so that the position of the short side can be adjusted.

従来の技術 周知のようにアルミニウム合金のスラブを半連
続鋳造するにあたつては、スラブ幅変更のたびご
とに鋳型を交換する手間を省くとともに、異なる
サイズの多数の鋳型を保管しておかなくて済むよ
うに、幅可変鋳型を使用することが従来から広く
行なわれている。この種の幅可変鋳型の一例を第
3図に示す。第3図において、互いに平行に配置
された一対の長辺部1A,1Bの間に短辺部2
A,2Bが相互に対向するように配置されてお
り、これらの短辺部2A2Bはその相互間の間隔
を図示しない調整機構により調整可能に構成され
ている。
Conventional Technology As is well known, in semi-continuous casting of aluminum alloy slabs, it is possible to avoid the trouble of replacing molds every time the slab width is changed, and to avoid storing a large number of molds of different sizes. Conventionally, it has been widely practiced to use variable width molds to avoid problems. An example of this type of variable width mold is shown in FIG. In FIG. 3, a short side 2 is located between a pair of long sides 1A and 1B that are arranged parallel to each other.
A and 2B are arranged to face each other, and the distance between these short sides 2A2B can be adjusted by an adjustment mechanism (not shown).

このような幅可変鋳型において、短辺部2A,
2Bの表面はある程度の湾曲(曲率半径r1)を持
たせておくのが通常であり、例えば厚み550mmの
スラブを鋳造する鋳型の場合、r1は2600mm程度に
設計するのが通常である。一方短辺部2A,2B
の長辺側端部の形状としては第4図に示すよう
に、幅wが2mm程度の薄いリブ部3を形成してお
くとともに、このリブ部3から15mm程度の小さな
曲陸半径r2で急激に湾曲させ、前述の曲率半径r1
の部分に連続させる形状としたものが一般的であ
る。また一部で第5図に示すように、短辺部2
A,2Bの中央部分の曲率r1を長辺側端部までそ
のまま延長させ、長辺側端部に特に加工を行なつ
ていない鋳型も使用されている。
In such a variable width mold, the short side portions 2A,
The surface of 2B is usually given a certain degree of curvature (radius of curvature r 1 ). For example, in the case of a mold for casting a slab with a thickness of 550 mm, r 1 is usually designed to be about 2600 mm. On the other hand, short side parts 2A, 2B
As shown in Fig. 4, the shape of the long side end part is a thin rib part 3 with a width w of about 2 mm, and a small curved radius r2 of about 15 mm from this rib part 3. sharply curved, the radius of curvature r 1 as mentioned above
It is common to have a shape that is continuous with the part. In addition, as shown in FIG.
A mold is also used in which the curvature r 1 of the central portion of A, 2B is extended as it is to the long side end, and the long side end is not particularly processed.

考案が解決すべき問題点 前述のような従来の幅可変鋳型を用いてアルミ
ニウム合金を鋳造する場合、特にMg含有量の高
いJIS5000番系合金、例えば5052合金や5082合金
等を鋳造する場合においては、スラブのコーナー
部に肌荒れが生じたり、あるいはスラブのコーナ
ー部形状が不安定となつたりする問題があつた。
すなわち短辺部の長辺側端部の形状が第4図に示
すように作られている鋳型を用いて5052合金や
5082合金等を鋳造した場合は、第6図に示すよう
にスラブ5のコーナー部5Aに、引裂かれたよう
な状態の肌荒れ6が生じることが多かつた。また
第5図に示すように短辺部2A,2Bの長辺側端
部に特に加工を行なつていない鋳型を用いて5052
合金や5082合金等を鋳造した場合、第7図に示す
ようにスラブ5のコーナー部5Aの形状が長手方
向(鋳造方向)で変化してコーナー部形状が不安
定となることが多かつた。
Problems to be solved by this invention When casting aluminum alloys using the conventional variable width mold as described above, especially when casting JIS 5000 series alloys with high Mg content, such as 5052 alloy and 5082 alloy, There was a problem in that the corner portions of the slab became rough or the shape of the corner portions of the slab became unstable.
In other words, 5052 alloy or
When casting 5082 alloy or the like, as shown in FIG. 6, rough skin 6, which looks like it has been torn, often appeared at the corner 5A of the slab 5. Furthermore, as shown in FIG.
When alloys, 5082 alloys, etc. were cast, the shape of the corner portion 5A of the slab 5 often changed in the longitudinal direction (casting direction), making the corner shape unstable, as shown in FIG.

このようにスラブコーナー部に肌荒れや形状不
安定が生じれば、圧延工程において幅端に割れが
生じたりし易く、そのため製品歩留りが低下する
問題があり、したがつてこれらのコーナー部肌荒
れや形状不安定は避けることが必要である。
If surface roughness or shape instability occurs in the slab corner areas in this way, cracks are likely to occur at the width edges during the rolling process, resulting in a problem of lower product yield. It is necessary to avoid instability.

上述のように従来の幅可変鋳型では高Mg系の
アルミニウム合金の場合にコーナー部肌荒れや形
状不安定が生じ易かつた原因は次のように考えら
れる。
As mentioned above, the reason why conventional variable width molds tend to cause corner roughness and shape instability when using high-Mg aluminum alloys is thought to be as follows.

すなわち第4図に示す鋳型の場合、短辺部2A
の長辺側端部のリブ部3が薄く、その部分がヒー
トサイクルによつて変形し易い。この変形が生じ
れば、長辺部1Aと短辺部2Aとの間の隙間Gが
大きくなつて、そこに酸化物が付着し、その酸化
物によつてコーナー部肌荒れを生じると考えられ
る。また上述のようにリブ部3を形成した部分で
は、その部分で熱伝導が悪くなるため、注湯した
アルミニウム合金溶湯に対する抜熱が充分になさ
れず、そのため凝固殻が弱くなつて肌荒れが生じ
易くなると考えられる。
In other words, in the case of the mold shown in FIG. 4, the short side 2A
The rib portion 3 at the end of the long side is thin, and that portion is easily deformed by heat cycles. If this deformation occurs, the gap G between the long side portion 1A and the short side portion 2A will become larger, and oxides will adhere there, and it is thought that the oxides will cause surface roughness at the corner portions. In addition, as mentioned above, in the area where the rib portion 3 is formed, heat conduction is poor in that area, so heat is not sufficiently removed from the poured molten aluminum alloy, and as a result, the solidified shell becomes weak and roughness is likely to occur. It is considered to be.

また第5図に示す鋳型の場合、アルミニウム合
金溶湯の表面張力の関係で鋳造中に溶湯が鋳型の
コーナー部(短辺部と長辺部との境界位置)に近
接したり離れたりする過程を繰返し、その結果ス
ラブコーナー部形状が不安定となると考えられ
る。
In addition, in the case of the mold shown in Figure 5, due to the surface tension of the molten aluminum alloy, there is a process in which the molten metal approaches or moves away from the corners of the mold (the boundary between the short side and the long side) during casting. As a result, the shape of the slab corner becomes unstable.

そして特に高Mg系のアルミニウム合金は、他
の系のアルミニウム合金と比較して溶湯の粘性が
高く、流動性に欠けるため、上述のようなコーナ
ー部肌荒れや形状不安定が生じやすかつたのであ
る。
In particular, high-Mg aluminum alloys have higher molten viscosity and lack fluidity than other aluminum alloys, so they are more likely to suffer from rough corners and shape instability as described above. .

この考案は以上の事情を背景としてなされたも
ので、溶湯流動性の劣る高Mg系アルミニウム合
金を鋳造するにあたつても、スラブコーナー部の
肌荒れやスラブコーナー部の形状不安定を生じる
ことのないようにした幅可変鋳型を提供すること
を目的とするものである。
This idea was developed against the background of the above-mentioned circumstances, and even when casting high-Mg aluminum alloys with poor molten metal fluidity, it is possible to prevent surface roughness at slab corners and unstable shape of slab corners. The object of the present invention is to provide a variable width mold in which the width of the mold is reduced.

問題点を解決するための手段 この考案では、半連続鋳造もしくは連続鋳造に
よりアルミニウム合金のスラブを鋳造するための
鋳型であつてかつスラブ幅は調整可能となるよう
に例えば第1図に示す如く短辺部2A,2Bを長
辺部1A,1Bに対し別体とした幅可変鋳型にお
いて、例えば第2図に詳細に示すように、短辺部
2A,2Bにおける長辺部1A,1Bに近い側の
端部に、長辺表面に対し45°±25°の範囲内の角度
θで斜行する面取部7を、長辺側先端位置Pから
5〜50mmの範囲内の長さlにわたつて形成してお
き、これによつて前述の問題を解決したのであ
る。
Means for Solving the Problems This invention is a mold for casting an aluminum alloy slab by semi-continuous casting or continuous casting, and the width of the slab is adjustable, for example, as shown in Fig. 1, the mold is short. In a variable width mold in which the side portions 2A, 2B are separate from the long side portions 1A, 1B, for example, as shown in detail in FIG. At the end of the chamfer 7, which extends obliquely at an angle θ within the range of 45°±25° with respect to the long side surface, is provided over a length l within the range of 5 to 50 mm from the long side tip position P. In this way, the above-mentioned problem was solved.

作 用 この考案の幅可変鋳型においては、短辺部2
A,2Bにおける長辺側端部に面取部7が形成さ
れているため、第5図に示す従来例の場合よりも
鋳型内面コーナー部が内側に入り込んであり、し
たがつて鋳型中に溶湯の表面張力により溶湯が鋳
型内面コーナー部に近接したり離れたりすること
を防止でき、そのためスラブコーナー部の形状が
不安定となることが防止される。
Function In the variable width mold of this invention, the short side 2
Since chamfers 7 are formed at the long side ends of A and 2B, the inner corner of the mold is deeper inside than in the conventional example shown in FIG. The surface tension prevents the molten metal from approaching or moving away from the inner corner of the mold, thereby preventing the shape of the corner of the slab from becoming unstable.

また、面取部7は、長辺側先端位置Pから長辺
面に対し45°±25°の角度で斜行するように形成さ
れており、このことは面取部7がその基端側(短
辺部の中央部に近い側)から先端(長辺に近い
側)Pへ向けて徐々にその厚みが小さくなるよう
に作られていることを意味する。従来の第4図の
鋳型においては、面取部に対応するリブ部3の厚
みが先端へ向けて急激に薄くなつており、そのた
めリブ部3で熱変形が生じ易かつたが、この考案
の鋳型における面取部7は、上述のように徐々に
その厚みが薄くなつているため従来の第4図の場
合よりも熱変形が生じにくく、そのため熱変形よ
り長辺部1A,1Bとの間の隙間が大きくなつて
その部分が酸化物が付着するような事態が生じる
ことを防止できる。また従来の第4図の場合はリ
ブ部3が急激に薄くなつているためその部分の伝
熱抵抗が大きく、コーナー部で凝固殻が弱くなり
勝ちであつたが、この考案の鋳型における面取部
7では徐々に薄くなつているため伝熱抵抗もさほ
ど大きくなく、そのためコーナー部でも比較的強
固な凝固殻を生成することができる。そしてこれ
らの結果として、スラブコーナー部での肌荒れの
発生を有効に防止することができる。
Further, the chamfered portion 7 is formed so as to be inclined at an angle of 45°±25° with respect to the long side surface from the long side tip position P, which means that the chamfered portion 7 is This means that the thickness is made to gradually decrease from the short side (closer to the center of the short side) to the tip (closer to the long side) P. In the conventional mold shown in FIG. 4, the thickness of the rib portion 3 corresponding to the chamfered portion becomes thinner rapidly toward the tip, and as a result, thermal deformation is likely to occur in the rib portion 3. Since the thickness of the chamfered part 7 in the mold gradually decreases as described above, thermal deformation is less likely to occur than in the conventional case shown in FIG. This can prevent a situation where the gap becomes large and oxides adhere to that part. In addition, in the conventional case shown in Fig. 4, the rib portion 3 is rapidly thinned, so the heat transfer resistance in that portion is large, and the solidified shell tends to be weak at the corner portion, but the chamfer in the mold of this invention Since the portion 7 gradually becomes thinner, the heat transfer resistance is not so large, and therefore a relatively strong solidified shell can be generated even at the corner portions. As a result of these, it is possible to effectively prevent the occurrence of rough skin at the corner portions of the slab.

ここで、面取部7の角度θが20°(=45°−25°)
未満では面取部7の厚みが全体的に薄くなつて熱
変形が生じ易くなるとともに、鋳型コーナー部内
面を内側へ寄せてスラブコーナー部の形状不安定
を防止する効果が充分に得られなくなり、また面
取部7の角度θが70°(=45°プラス25°)を越える
場合も鋳型コーナー部内面を内側へ寄せてスラブ
コーナー部の形状不安定を防止する効果が充分に
得られず、したがつて面取部7の角度θは45°±
25°の範囲内とした。なおこの範囲内でも最も好
ましいのは45°±10°の範囲である。
Here, the angle θ of the chamfered portion 7 is 20° (=45°−25°)
If the thickness is less than 1, the thickness of the chamfered portion 7 becomes thinner as a whole and thermal deformation is likely to occur, and the effect of bringing the inner surface of the mold corner portion inward to prevent the shape of the slab corner portion from becoming unstable cannot be obtained sufficiently. Furthermore, if the angle θ of the chamfered portion 7 exceeds 70° (=45° plus 25°), the effect of bringing the inner surface of the mold corner portion inward and preventing the shape of the slab corner portion from becoming unstable cannot be obtained sufficiently. Therefore, the angle θ of the chamfered portion 7 is 45°±
It was set within the range of 25°. Note that within this range, the most preferable range is 45°±10°.

また角度θが45°±25°の範囲内の面取部7の長
さlが先端から5mm未満の場合も鋳型コーナー部
内面を内側へ寄せてスラブコーナー部の形状不安
定を防止する効果が充分に得られず、一方長さl
が先端Pから50mmを越える場合は、鋳型コーナー
部において短辺部内を流通する冷却水と表面との
間の距離が大きくなつてコーナー部での冷却効果
が不充分となり、その結果逆にコーナー部で凝固
殻が弱くなり、かえつて肌荒れが生じ易くなつて
しまう。したがつて長さlは5〜50mmの範囲内と
した。
Also, if the length l of the chamfered portion 7 within the range of angle θ of 45°±25° is less than 5 mm from the tip, it is effective to move the inner surface of the mold corner portion inward to prevent shape instability of the slab corner portion. On the other hand, the length l
If it exceeds 50 mm from the tip P, the distance between the cooling water flowing in the short side of the mold corner and the surface becomes large, and the cooling effect at the corner becomes insufficient, and as a result, the corner This weakens the coagulated shell, making the skin more likely to become rough. Therefore, the length l was set within the range of 5 to 50 mm.

実施例 長辺部1A,1Bの相互間の間隔が550mmのア
ルミ合金製幅可変鋳型において、第1図、第2図
に示すように短辺部2A,2Bの長辺側端部に角
度θが45°、長さlが7mmの面取部7を形成した。
なお短辺部2A,2Bにおける面取部7以外の部
分は曲率半径r1=2600mmとした。
Example In an aluminum alloy width variable mold in which the distance between the long sides 1A and 1B is 550 mm, an angle θ is formed at the long side ends of the short sides 2A and 2B as shown in FIGS. 1 and 2. A chamfered portion 7 with a angle of 45° and a length l of 7 mm was formed.
Note that the radius of curvature of the short sides 2A and 2B other than the chamfered portion 7 was set to r 1 =2600 mm.

この幅可変鋳型における短辺部2A,2Bの相
互間の間隔を840mmにセツトし、JIS5182合金のス
ラブを、鋳造速度50mm、冷却水量500/min、
メタルヘツド70mmの条件にて半連続鋳造する実験
を行なつた。このとき、長さが2000mmのスラブを
4本鋳造したが、いずれのスラブにおいてもコー
ナー部に肌荒れは生じず、またコーナー部の形状
も安定していることが確認された。
The interval between the short sides 2A and 2B in this variable width mold was set to 840 mm, and a slab of JIS5182 alloy was cast at a casting speed of 50 mm, a cooling water amount of 500/min,
We conducted a semi-continuous casting experiment using a metal head of 70 mm. At this time, four slabs with a length of 2000 mm were cast, and it was confirmed that no roughness occurred at the corners of any of the slabs, and the shapes of the corners were stable.

なお、第1図、第2図の例では面取部7におけ
る角度θ=45°±20°をなす面が平面となつている
例を示しているが、この角度範囲内で湾曲面とな
つていても良いことは勿論である。
In addition, in the examples shown in FIGS. 1 and 2, the surface forming the angle θ=45°±20° in the chamfered portion 7 is a flat surface, but within this angle range, it is a curved surface. Of course, it is okay to leave it alone.

また第1図、第2図では短辺部2A,2Bの位
置を調整する手段を特に示していないが、位置調
整手段は従来公知の機構とすれば良い。
Further, in FIGS. 1 and 2, means for adjusting the positions of the short sides 2A and 2B are not particularly shown, but the position adjusting means may be a conventionally known mechanism.

考案の効果 この考案のアルミニウム合金鋳造用幅可変鋳型
によれば、溶湯の粘性が高い高Mg系のアルミニ
ウム合金、例えば5052合金、5082合金、5182合金
等のスラブを鋳造するにあたつても、スラブコー
ナー部に肌荒れが生じたり、スラブコーナー部の
形状が不安定となつたりすることなく、コーナー
部の品質、性状が優れたスラブを得ることがで
き、したがつて圧延工程における幅端の割れや形
状不良の発生を最小限に抑えて、歩留りを向上さ
せることができる。
Effects of the invention According to the variable width mold for casting aluminum alloy of this invention, even when casting slabs of high Mg aluminum alloys with high viscosity of molten metal, such as 5052 alloy, 5082 alloy, 5182 alloy, etc. It is possible to obtain slabs with excellent quality and properties at the corner parts without causing roughness at the slab corner parts or unstable shape of the slab corner parts. The yield can be improved by minimizing the occurrence of defects in shape and shape.

なお、この考案の位置は、Mgを2.0%以上含有
するアルミニウム合金のスラブ鋳造において最も
有効であるが、その他の系のアルミニウム合金に
も適用できることは勿論である。
Although this invention is most effective in slab casting of aluminum alloys containing 2.0% or more of Mg, it is of course applicable to other types of aluminum alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の幅可変鋳型の一例を示す斜
視図、第2図は第1図の幅可変鋳型の要部を示す
拡大平面図、第3図は従来の幅可変鋳型の一例を
示す平面図、第4図および第5図はそれぞれ従来
の幅可変鋳型の一部を拡大した状態の一例を示す
平面図、第6図及び第7図はそれぞれ従来の幅可
変鋳型により鋳造されたスラブを示す斜視図であ
る。 1A,1B……長辺部、2A,2B……短辺
部、7……面取部。
Figure 1 is a perspective view showing an example of a variable width mold of this invention, Figure 2 is an enlarged plan view showing the main parts of the variable width mold of Figure 1, and Figure 3 is an example of a conventional variable width mold. The plan view, FIGS. 4 and 5 are respectively plan views showing an enlarged example of a part of a conventional variable width mold, and FIGS. 6 and 7 are respectively slabs cast by the conventional variable width mold. FIG. 1A, 1B... Long side part, 2A, 2B... Short side part, 7... Chamfered part.

Claims (1)

【実用新案登録請求の範囲】 半連続鋳造もしくは連続鋳造によりアルミニウ
ム合金のスラブを鋳造するための鋳型であつてか
つスラブ幅が調整可能となるように短辺部を長辺
部に対し別体とした鋳型において、 短辺部における長辺側端部に、長辺面に対し
45°±25°の範囲内の角度で斜行する面取部を長辺
側先端位置から5〜50mmの範囲にわたつて形成し
たことを特徴とするアルミニウム合金鋳造用幅可
変鋳型。
[Claims for Utility Model Registration] A mold for casting an aluminum alloy slab by semi-continuous casting or continuous casting, the short side of which is separate from the long side so that the width of the slab can be adjusted. In the mold, the long side edge of the short side is
1. A variable width mold for casting an aluminum alloy, characterized in that a chamfered portion extending obliquely at an angle within the range of 45°±25° is formed over a range of 5 to 50 mm from the tip position on the long side.
JP1987057160U 1987-04-15 1987-04-15 Expired JPH0444300Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987057160U JPH0444300Y2 (en) 1987-04-15 1987-04-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987057160U JPH0444300Y2 (en) 1987-04-15 1987-04-15

Publications (2)

Publication Number Publication Date
JPS63163242U JPS63163242U (en) 1988-10-25
JPH0444300Y2 true JPH0444300Y2 (en) 1992-10-19

Family

ID=30886613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987057160U Expired JPH0444300Y2 (en) 1987-04-15 1987-04-15

Country Status (1)

Country Link
JP (1) JPH0444300Y2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910459B1 (en) * 2002-06-05 2009-08-04 주식회사 포스코 Mold for Continuous Casting Steel
KR100685474B1 (en) 2005-11-21 2007-02-26 김용호 A mold of the sequence casting equipment
KR100775091B1 (en) 2006-08-07 2007-11-08 주식회사 포스코 Mold for continuous casting machine
JP5453329B2 (en) * 2011-01-28 2014-03-26 三島光産株式会社 Continuous casting mold
KR101353881B1 (en) * 2011-11-02 2014-01-21 주식회사 포스코 Mold for Continuous Casting
KR101360564B1 (en) * 2011-12-27 2014-02-24 주식회사 포스코 Mold in continuous casting
JP6085571B2 (en) * 2014-01-06 2017-02-22 三島光産株式会社 Continuous casting mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179540A (en) * 1982-04-13 1983-10-20 Nippon Light Metal Co Ltd Casting mold device for continuous casting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160650U (en) * 1982-04-21 1983-10-26 日本軽金属株式会社 Continuous casting mold equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179540A (en) * 1982-04-13 1983-10-20 Nippon Light Metal Co Ltd Casting mold device for continuous casting

Also Published As

Publication number Publication date
JPS63163242U (en) 1988-10-25

Similar Documents

Publication Publication Date Title
JPH0767600B2 (en) Continuous casting mold
JPH0444300Y2 (en)
US3948310A (en) Bottom block for D.C. casting of aluminum rolling ingots
EP0931608B1 (en) Continuous casting mold
US4694880A (en) Method of continuously casting metal slabs
WO2006094453A1 (en) The mold for continuous casting of plate billet
WO1999012675A1 (en) Continuous casting of metal slabs
JP3337321B2 (en) Mold for continuous casting of sheet slab
JP2950152B2 (en) Continuous casting mold for slab
JP3174016B2 (en) Continuous casting mold and width changing method during continuous casting
US4558730A (en) Method of and apparatus for continuously or semi-continuously casting metal ingots
JPS606254A (en) Continuous casting method
JPH08243688A (en) Mold for continuous casting
JPH0593644U (en) Tubular mold for continuous casting
JPH09239496A (en) Mold for continuously casting square billet
JPH0673718B2 (en) Continuous casting mold to prevent slab corner cracking
JP2993868B2 (en) Continuous casting mold
JPH0340401Y2 (en)
JPS6149751A (en) Mold for continuous casting
JPH0685986B2 (en) Continuous casting method
JPS5828683Y2 (en) ingot
US3395749A (en) Method of casting reentrant angles
GB2311029A (en) Continuous casting of metal slabs with concave faces
JPH0631399A (en) Method for continuously casting round cast billet
JPH01284463A (en) Short wall side plate for continuous casting machine for cast strip