JPH0443924B2 - - Google Patents

Info

Publication number
JPH0443924B2
JPH0443924B2 JP57102925A JP10292582A JPH0443924B2 JP H0443924 B2 JPH0443924 B2 JP H0443924B2 JP 57102925 A JP57102925 A JP 57102925A JP 10292582 A JP10292582 A JP 10292582A JP H0443924 B2 JPH0443924 B2 JP H0443924B2
Authority
JP
Japan
Prior art keywords
polymer
polypropylene
disintegration
pelletizing
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57102925A
Other languages
Japanese (ja)
Other versions
JPS5823804A (en
Inventor
Tei Mooman Maikeru
Jei Uizunesukii Tonii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Corp
Original Assignee
Kimberly Clark Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly Clark Corp filed Critical Kimberly Clark Corp
Publication of JPS5823804A publication Critical patent/JPS5823804A/en
Publication of JPH0443924B2 publication Critical patent/JPH0443924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/30Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/10Chemical modification of a polymer including a reactive processing step which leads, inter alia, to morphological and/or rheological modifications, e.g. visbreaking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Artificial Filaments (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は紡糸性、押出性等の加工性を改良した
ポリプロピレンポリマーペレツトを得る方法に関
する。繊維やフイルムに加工するための良好な加
工性を有するポリプロピレンポリマーは下記の属
性を持つことが好ましい。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining polypropylene polymer pellets having improved processability such as spinnability and extrudability. Polypropylene polymers with good processability for processing into fibers and films preferably have the following attributes:

1 溶融状態から繊細化する際に破断しないこ
と。この特性を有するポリマーは未繊細化材料
に比較して高い強度を有する微細フイラメント
や薄いフイルムに加工される時に単位時間の生
産量が高い。
1. Do not break when turning from molten state to finesse. Polymers with this property have a higher yield per unit time when processed into fine filaments or thin films with higher strength than non-attenuated materials.

2 配管や細管を通して圧送できること及び/又
は繊維やフイルムに繊細化する際に要するエネ
ルギーが最小でよいこと。この特性は溶融状ポ
リマーの剪断応力と延伸粘度が低いことを意味
する。
2. It can be pumped through piping or thin tubes, and/or the energy required to decompose it into fibers or films can be minimized. This property means that the shear stress and drawing viscosity of the molten polymer are low.

この最初の属性(高繊維度)は分子量分布(重
量平均分子量と数平均分子量の比で定義される)
が小さいポリプロピレンポリマーを用いれば達成
できることが証明されている。また2番目の属性
(低剪断応力と低延伸粘度)については重量平均
分子量の低いポリマーを用いれば達成できる。
This first attribute (high fibrousness) is defined by the molecular weight distribution (defined as the ratio of weight average molecular weight to number average molecular weight)
It has been proven that this can be achieved using polypropylene polymers with low The second attribute (low shear stress and low drawing viscosity) can be achieved by using polymers with low weight average molecular weights.

現在市販用ポリプロピレンの生産に使われてい
るチーグラーナツタ触媒を用いて微細繊維や薄い
フイルムを製造すると重合反応器から分子量分布
が過大なポリマーが出てきてしまう。従つてかか
る反応器で製造した低重量平均分子量ポリマーは
加工するのに好ましい低粘度を有するが、所望の
繊維化を達成することができない。それ故、ポリ
プロピレン製造業界では分子量分布を小さくする
と同時に重量平均分子量を所望のレベルまで下げ
る固有の作用を有するランダム分子分断工程(熱
崩壊もしくは化学崩壊)の後、重量平均分子量が
非常に高いポリマーを製造することが要求されて
いる。
If fine fibers or thin films are produced using the Ziegler-Natsuta catalyst, which is currently used in the production of commercially available polypropylene, a polymer with an excessive molecular weight distribution will come out of the polymerization reactor. Thus, while low weight average molecular weight polymers produced in such reactors have low viscosities that are desirable for processing, they are unable to achieve the desired fiberization. Therefore, the polypropylene manufacturing industry produces polymers with very high weight average molecular weights after a random molecular fragmentation process (thermal or chemical collapse) which has the inherent effect of narrowing the molecular weight distribution and simultaneously lowering the weight average molecular weight to the desired level. is required to be manufactured.

ポリプロピレンは分解して遊離基を形成する化
合物を添加することによつて化学的に崩壊する。
ポリプロピレンの最終用途安定性を高めるために
添加される化学安定剤は遊離基発生剤の作用を妨
害することがある。
Polypropylene is chemically degraded by adding compounds that decompose to form free radicals.
Chemical stabilizers added to enhance the end-use stability of polypropylene can interfere with the action of free radical generators.

しかし例えば英国特許第1442681号に記載され
ている特定種類の有機過酸化物等のいくつかの遊
離基発生剤型化学薬品は一般に用いられる安定剤
による影響が最小限で済み、従つて好ましい崩壊
促進剤となりうる。
However, some free-radical-generating chemicals, such as the particular class of organic peroxides described in GB 1442681, are minimally affected by commonly used stabilizers and are therefore preferred decay promoters. It can be an agent.

しかしポリマーを崩壊できる度合はポリマー製
造機が非常に粘度の低いポリマーからペレツトを
形成できないために限られている。従つて、フイ
ルムや繊維を製造するポリプロピレン加工機には
フイルムや繊維に加工するには最適ではないポリ
プロピレンを材料に用いなければならないという
問題がある。かくしてペレツト化するために高粘
度特性を、また最終用途加工のために低粘度を有
するポリマーが必要とされてきたのである。
However, the degree to which the polymer can be disintegrated is limited by the inability of polymer manufacturing machines to form pellets from very low viscosity polymers. Therefore, polypropylene processing machines for producing films and fibers have the problem of having to use polypropylene as a material, which is not optimal for processing into films and fibers. Thus, there has been a need for polymers with high viscosity properties for pelletizing and low viscosity for end-use processing.

ポリマー加工業者にとつては好ましい低粘度ポ
リプロピレンポリマーをポリマー製造業者が商業
的にペレツト化する時はどうしても過大な「糸曳
き」(長い尾を持つたペレツト)を生じてしまい、
これが製造業者や加工業者の装置をつまらせる原
因でもあつた。
When polymer manufacturers commercially pelletize low viscosity polypropylene polymers, which are desirable to polymer processors, they inevitably produce excessive "stringiness" (long-tailed pellets).
This also caused the equipment of manufacturers and processors to become clogged.

ポリマーをペレツト化するためにその粘度を上げ
るにはポリプロピレンポリマーの融点より少し上
の温度でペレタイザーを操作してペレツトの切断
特性を改善することが提案されている。これはペ
レツト化装置における剪断応力によつて発生する
熱を下げるための単位生産量を下げるか、そし
て/又は溶融状ポリマーを冷却しないと構成でき
ない。しかしこの方法は両方とも工程の経費を増
し工程をさらに複雑にしてしまう。
In order to increase the viscosity of the polymer for pelletizing it has been proposed to operate the pelletizer at a temperature slightly above the melting point of the polypropylene polymer to improve the cutting properties of the pellets. This cannot be achieved without lowering the unit production to reduce the heat generated by shear stress in the pelletizing equipment and/or cooling the molten polymer. However, both of these methods add cost to the process and further complicate the process.

また最終用途加工においてポリマーが繊維やフ
イルムに形成される前に化学崩壊促進剤を付加的
にポリプロピレンペレツトに添加してポリマーの
粘度を下げることも提案されている。しかしこの
方法にはいくつかの不都合がみられる。それは 1 これらの過酸化物型崩壊促進剤は着火爆発の
危険があるため特殊な取扱い工程と装置を必要
とすること。
It has also been proposed to add additional chemical disintegrators to polypropylene pellets to reduce the viscosity of the polymer before it is formed into fibers or films in end-use processing. However, this method has some disadvantages. 1. These peroxide-type disintegration accelerators require special handling processes and equipment due to the risk of ignition and explosion.

2 過酸化物が最も効果的に作用するために、過
酸化物を分解して反応させる前にポリマー中に
均一に分散させなければならない。こうしない
と、粘度ムラを持つたポリマーが生じ、加工前
のポリマーよりもさらに大きな分子量分布にな
つてしまう。特殊な装置を用いてペレツトとい
うよりも繊細な薄片を反応器で製造できるポリ
マー製造業者は上記の均一分布を達成するのに
非常に好都合な条件にある。
2. For peroxide to work most effectively, it must be uniformly dispersed in the polymer before it can be decomposed and reacted. Failure to do so will result in a polymer with uneven viscosity and a larger molecular weight distribution than the unprocessed polymer. Polymer manufacturers who are able to produce flakes, rather than pellets, in their reactors using specialized equipment are very well placed to achieve this uniform distribution.

3 加工業者の装置が粘度ムラを有するポリマー
によつて破損することである。
3. Processor equipment is damaged by polymers with uneven viscosity.

4 反応する前にポリマーによく分散されると過
酸化物は崩壊促進剤としての機能の方が効率的
に作用してしまう。
4. If the peroxide is well dispersed in the polymer before the reaction, it will function more efficiently as a disintegration accelerator.

5 過酸化物をペレツトの中よりもただ単にペレ
ツトの上に添加した場合、過酸化物は押出機の
供給部において循滑剤として作用するので与え
られた毎分回転数に対する単位生産量が減少し
てしまう。
5. If peroxide is added simply onto the pellets rather than into them, the peroxide acts as a circulating lubricant in the feed section of the extruder, reducing unit production for a given revolutions per minute. I end up.

また加工工程において非常に高い温度を用いて
ポリプロピレンを熱崩壊することによつて分子量
を減少させることができる。しかし温度を異常に
高く上げると下記の不都合を生じる。
The molecular weight can also be reduced by thermally collapsing the polypropylene using very high temperatures during the processing process. However, if the temperature is raised to an abnormally high temperature, the following problems will occur.

1 装置の寿命が短くなる。1 The life of the device will be shortened.

2 急冷が自由にできないので単位生産量に限度
がある。
2 Unit production is limited because rapid cooling is not possible.

3 過大なエネルギー消費を必要とする。3. Requires excessive energy consumption.

4 高温を用いるために危険な工程現場になる。4. It becomes a dangerous process site because high temperatures are used.

5 その他の問題。5 Other issues.

その他の問題とは以下の問題を含む。 Other issues include the following issues:

1 過度な崩壊を起すため、最終製品が必要とす
る量よりも多くの添加剤をポリマーに添加する
必要がある。
1. Excessive disintegration occurs, requiring more additives to be added to the polymer than the final product requires.

2 使用できる添加剤の範囲が限られているた
め、さらに高価なもしくは最適でない添加剤を
使う必要がある。
2. The range of additives that can be used is limited, requiring the use of more expensive or suboptimal additives.

3 ポリマーや配管を細管で圧送したりダイス型
に適用する際に崩壊生成物でつまつてしまう。
3. Polymers and piping become clogged with decay products when they are pumped through thin tubes or applied to die molds.

以下の従来特許によつてさらに情報が得られ
る。英国特許第1442681号には過酸化物型崩壊促
進剤で崩壊して分子量分布の小さいポリプロピレ
ンポリマーを製造する工程を含むポリプロピレン
の製造法が記載されている。米国特許第3867534
号にはポリプロピレンに対する崩壊促進剤として
脂肪族過酸化物を使用することを記載しており、
またこれに関連する問題について論じており、さ
らにこの問題に対する解決法として未反応の崩壊
促進剤を避けることを提案している。米国特許第
3144436号には遊離基開始剤の使用を含む立体規
則性ポリマーの崩壊方法が記載されている。1つ
の実施例に押出機の溶融領域に崩壊促進剤を注入
する作業を制御している2段階方法が記載されて
いる。米国特許第3849241号及び米国特許第
3978185号にはポリマーの崩壊を制御することに
よつて改良された溶融吹込法が記載されている。
同様にして米国特許第3755527号にはポリマー崩
壊の利点が記載されている。
Further information is available from the following prior patents: British Patent No. 1442681 describes a method for producing polypropylene which includes a step of disintegrating with a peroxide-type disintegration promoter to produce a polypropylene polymer with a narrow molecular weight distribution. US Patent No. 3867534
The issue describes the use of aliphatic peroxides as disintegration accelerators for polypropylene.
It also discusses the problems associated with this and further suggests the avoidance of unreacted disintegration promoters as a solution to this problem. US Patent No.
No. 3,144,436 describes a method for disintegrating stereoregular polymers that involves the use of free radical initiators. One embodiment describes a two-step process controlling the injection of disintegration promoter into the melt zone of an extruder. U.S. Patent No. 3,849,241 and U.S. Patent No.
No. 3,978,185 describes an improved melt blowing process by controlling polymer disintegration.
Similarly, US Pat. No. 3,755,527 describes the advantages of polymer disintegration.

本発明は1)加熱してさらに崩壊すると高質フ
イルムや繊維に都合よく加工できる低粘度ポリマ
ーを生成するペレツトにたやすく形成されるポリ
マーを最初に製造する工程を含む段階的ポリマー
崩壊方法、及び2)該方法によつて得られたペレ
ツト又は他の形状の崩壊促進剤含有ポリプロピレ
ンポリマーに関する。
The present invention provides a stepwise polymer disintegration process that includes 1) first producing a polymer that is readily formed into pellets that, upon heating and further disintegration, produce a low viscosity polymer that can be conveniently processed into high quality films and fibers; 2) It relates to pellets or other forms of disintegration accelerator-containing polypropylene polymers obtained by the method.

本発明はポリプロピレンの崩壊促進剤として作
用する特定の遊離基発生化学剤をポリマーに添加
してペレツト化装置を規定の方法で作動させた時
に、上記の化学剤の一部がペレツト化工程が終つ
ても未反応のまま残るという発見に基づいてい
る。すなわちペレツトを形成する押出工程の後、
反応を中断させてから再び押出を行なうとこの残
りの崩壊促進剤が反応して加工しやすい且つ特性
の透れたフイルムや繊維に製造できるポリマーを
生成する。製造工程においてペレツト化した後の
崩壊促進剤の正確な残存率はペレツト化温度、該
温度における崩壊促進剤の滞留時間、及び崩壊剤
の種類に依存する。しかし初めに添加した量の半
分から90%までが好ましい。理想的にはペレツト
化中に崩壊が起らない方が良いが実際にはペレツ
ト化中に一部分の崩壊促進剤が反応する。この初
期的に反応する崩壊促進剤の量は10%程度と少な
いものでありペレタイザーにおけるポリマーの粘
度をわずかに下げるだけなので良く形成された易
流動性のペレツトが製造できる。ペレツト化工程
後、満足する結果を得るためのポリマーの重量に
対して少くとも0.01%の崩壊促進剤が残留してい
ることが必要である。かくして従来特許に関連し
て述べた2段階崩壊添加方法の利点は保持され、
また不利益は実質的に解消されるのである。
The present invention provides that when a specific free radical generating chemical agent is added to the polymer which acts as a disintegration accelerator for the polypropylene and the pelletizing equipment is operated in a specified manner, a portion of said chemical agent is added to the polymer until the pelletizing process is completed. It is based on the discovery that even when exposed to heat, it remains unresponsive. That is, after the extrusion step to form pellets,
When the reaction is stopped and extrusion is carried out again, the remaining disintegration promoter reacts to form a polymer that is easily processed and can be made into films and fibers with transparent properties. The exact residual rate of the disintegration accelerator after pelletization in the manufacturing process depends on the pelletizing temperature, the residence time of the disintegration accelerator at that temperature, and the type of disintegrant. However, half to 90% of the amount initially added is preferred. Ideally, no disintegration should occur during pelletization, but in reality some of the disintegration accelerator reacts during pelletization. The amount of initially reacting disintegration accelerator is small, on the order of 10%, and only slightly reduces the viscosity of the polymer in the pelletizer, resulting in the production of well-formed, free-flowing pellets. After the pelletizing step, it is necessary that at least 0.01% of the disintegration promoter remain based on the weight of the polymer to obtain satisfactory results. Thus, the advantages of the two-step disintegration addition method described in connection with the prior patent are retained;
Moreover, the disadvantages are virtually eliminated.

本発明はポリプロピレンの製造及び加工に適用
できる。本発明はまた廃ポリプロピレン材を加工
してフイルムや繊維形成に再使用することにも適
用できる。当業者には明らかであるが、最適作動
条件及び濃度は使われているポリマーの特性と加
工業者が所望する極限の性質に依存することは言
うまでもない。
The present invention is applicable to the production and processing of polypropylene. The present invention is also applicable to processing waste polypropylene materials for reuse in film and fiber formation. It will be appreciated by those skilled in the art that optimal operating conditions and concentrations will depend on the properties of the polymer used and the extreme properties desired by the processor.

製造されたポリプロピレンは一般的に約250M
乃至500Mの範囲の高い重量平均分子量と約10乃
至15の分子量分布を有する。高速紡糸及び繊維形
成用のポリプロピレンの場合は約2.5乃至4.5の重
量平均分子量分布を有する。しかし、分子量が減
少して130M以下になると、ポリプロピレン樹脂
を商業的レベルでペレツトに加工することが困難
になる。粘度の低いポリマーを用いると輸送や取
扱いがむずかしい形成不良ペレツトが生成され
る。従つて、製造業者は分子量が約160Mを下回
らないように輸送前に行なうポリプロピレンの崩
壊作用を制限する傾向にある。多くの崩壊促進剤
を用いてペレツト化装置における崩壊の上記の度
合が達成される。そしてこれらほとんど全ての崩
壊促進剤は過酸化物型崩壊剤が温度と周囲に依存
する種々の速度で分解する条件下で全面的に反応
する。分解速度は半減期によつて定義される。
The produced polypropylene is generally about 250M
It has a high weight average molecular weight in the range of 500M to 500M and a molecular weight distribution of about 10 to 15. Polypropylene for high speed spinning and fiber forming has a weight average molecular weight distribution of about 2.5 to 4.5. However, as the molecular weight decreases below 130M, it becomes difficult to process polypropylene resin into pellets at a commercial level. The use of low viscosity polymers produces poorly formed pellets that are difficult to transport and handle. Manufacturers therefore tend to limit the disintegration of polypropylene before shipping so that the molecular weight does not fall below about 160M. A number of disintegration promoters are used to achieve the above degrees of disintegration in pelletizers. And almost all of these disintegration accelerators fully react under conditions where the peroxide-type disintegrant decomposes at varying rates depending on temperature and surroundings. Degradation rate is defined by half-life.

本発明によるとポリプロピレン中での半減期が
190.6℃において30秒を超える値を有する遊離基
源崩壊促進剤をポリマー加工業者が所望する最終
ポリマー特性を出すのに十分な量だけ、反応器に
よつて生成した薄片状の高分子量ポリプロピレン
ポリマーに添加する。短かい半減期を有する崩壊
促進剤を用いるか、もしくは大量の崩壊促進剤を
ペレツト化工程を通して未反応のままにすること
が必要な場合は、崩壊促進剤を溶融状ポリマーの
流れに注入すればよい。崩壊促進剤を均一に分散
して最高の効果を得る必要があるため、崩壊促進
剤を注入た後は混合工程にかける必要がある。概
して崩壊促進剤は一般的に使用されているポリプ
ロピレン安定剤を妨害したり逆に妨害されたりす
るものであつてはならずまた分解する際にポリプ
ロピレンの崩壊を開始する遊離基を効果的に生成
するものでなければならない。しかし崩壊促進剤
は押出機を出る前に実質的に全体的に反応するよ
うにポリマー加工業者での再押出温度における半
減期が十分に短かくなければならない。崩壊促進
剤のポリプロピレン中における半減期は287.8℃
において9秒より少くしてペレツト中の崩壊促進
剤の少くとも99%がこの温度における1分の押出
機滞留時間が経過するまでに反応するようにしな
ければならない。かかる崩壊促進剤は限定しない
例として以下の化合物を含む。すなわち、2,5
−ジメチル2,5ビス−(t−ブチルペロキシ)
ヘキシン−3及び4−メチル4t−ブチルペキシ−
2ペンタノン(例えばPenwalt Corporationの
Lucidol Divisionから販売されているルーパーゾ
ル130及びルーパーゾル120)、3,6,6,9,
9−ペンタメチル−3−(酢酸エチル)−1,2,
4,5−テキシトラオキシ シクロノナン
(Wifco Chemical corporation販売のUSP−
138)、2,5−ジメチル−2,5ビス−(t−ブ
チルペロキシ)ヘキサン(例えばルーパーゾル
101)及び1−3−ビス−(タート−ブチルペロキ
シイソプロピル)−ベンゼン(Hercules,Inc.販
売のヴアルカツプR)である。上記の化合物の中
ではWifco USP−138及びルーパーゾル130が最
も好ましい。遊離基源崩壊促進剤の好ましい濃度
はポリマーの重量に対して約0.01%乃至0.4%の
範囲にある。ペレタイザーはペレツトに添加され
た崩壊促進剤の少くとも75%を保持するように作
動することが望ましい。ポリマーの使用者がポリ
マーを押出機にかけると、その温度によつてポリ
マーの崩壊が再開し所望の程度まで進行し再押出
工程において実質的に完全に反応する。一般的に
かかる押出機温度は約237.8℃乃至287.8℃の範囲
にある。またこれらの条件は押出機のダイアセン
ブリーにおける崩壊作用に適用できる。
According to the present invention, the half-life in polypropylene is
A free radical source decay accelerator having a value greater than 30 seconds at 190.6°C is added to the flaked high molecular weight polypropylene polymer produced by the reactor in an amount sufficient to produce the final polymer properties desired by the polymer processor. Added. If a disintegration accelerator with a short half-life is used, or if large amounts of disintegration accelerator need to remain unreacted throughout the pelletizing process, the disintegration accelerator can be injected into the molten polymer stream. good. After the disintegration accelerator is injected, a mixing step is required since the disintegration accelerator needs to be uniformly dispersed for maximum effectiveness. In general, disintegration accelerators should not interfere with or adversely interfere with commonly used polypropylene stabilizers and, upon decomposition, should effectively generate free radicals that initiate polypropylene disintegration. It must be something that does. However, the disintegration promoter must have a sufficiently short half-life at the re-extrusion temperature at the polymer processor so that it is substantially entirely reacted before exiting the extruder. The half-life of disintegration accelerator in polypropylene is 287.8℃
at less than 9 seconds so that at least 99% of the disintegration promoter in the pellets has reacted by the end of 1 minute extruder residence time at this temperature. Such disintegration promoters include, by way of non-limiting example, the following compounds: That is, 2,5
-dimethyl2,5bis-(t-butylperoxy)
Hexyne-3 and 4-methyl 4t-butylpexy-
2pentanone (e.g. from Penwalt Corporation)
Loupersol 130 and Loupersol 120 sold by Lucidol Division), 3, 6, 6, 9,
9-pentamethyl-3-(ethyl acetate)-1,2,
4,5-Texitroxy cyclononane (USP sold by Wifco Chemical corporation)
138), 2,5-dimethyl-2,5bis-(t-butylperoxy)hexane (e.g. Loupersol
101) and 1-3-bis-(tert-butylperoxyisopropyl)-benzene (Valkap®, sold by Hercules, Inc.). Among the above compounds Wifco USP-138 and Loupersol 130 are most preferred. The preferred concentration of free radical source decay promoter is in the range of about 0.01% to 0.4% based on the weight of the polymer. Preferably, the pelletizer operates to retain at least 75% of the disintegrant added to the pellets. When the polymer user applies the polymer to the extruder, the temperature will cause the polymer to resume disintegration and proceed to the desired degree until substantially complete reaction occurs in the re-extrusion step. Typically such extruder temperatures range from about 237.8°C to 287.8°C. These conditions are also applicable to the disintegration action in the extruder die assembly.

以下の実施例では重量2160gの温度80.6℃で作
動するメルトインデツクス測定装置
(ASTM1238)を用いてメルトインデツクスを求
めている。試料は試験の前に5分間加熱して平衡
に到達せしめた。メルトインデツクスは直径2.1
mmの細管から10分間に出される量のgで表わす。
In the following examples, the melt index is determined using a melt index measuring device (ASTM1238) that weighs 2160 g and operates at a temperature of 80.6°C. Samples were heated for 5 minutes to reach equilibrium before testing. Melt index is 2.1 in diameter
It is expressed in g as the amount released from a mm tube in 10 minutes.

実施例 1 ポリプロピレン反応器によつて1より低いメル
トインデツクスの値を有する薄片を得た。0.275
重量%のルーパーゾル130をこの薄片に添加して
均質な配合物を調製した。この配合物を190.6℃
で作動するペレツト化装置によつてペレツト化し
滞留時間を約2分にした。理論的に過酸化物の約
22%が反応したことになる。ペレツトのメルトイ
ンデツクスを測定した結果約55のメルトインデツ
クスを有することが分つた。メルトインデツクス
測定器においてペレツト中の崩壊促進剤の約10%
が反応したためペレツトの実際のメルトインデツ
クスは40乃至45の範囲にあると考えられる。この
ポリマーは簡単にペレツト化された。その結果得
られたポリマーペレツトは通常の市販ペレツトと
同等であつた。
Example 1 Flakes with a melt index value of less than 1 were obtained in a polypropylene reactor. 0.275
A homogeneous blend was prepared by adding % by weight of Loupersol 130 to the flakes. This formulation was heated to 190.6℃.
The pellets were pelletized using a pelletizer operating at a residence time of about 2 minutes. Theoretically peroxide approx.
This means that 22% responded. As a result of measuring the melt index of the pellet, it was found that the pellet had a melt index of about 55. Approximately 10% of the disintegration accelerator in the pellet in the melt index meter
The actual melt index of the pellets is thought to be in the range of 40 to 45 because of the reaction. This polymer was easily pelletized. The resulting polymer pellets were comparable to normal commercially available pellets.

次にこれらのペレツトを温度237.8℃、押出機
滞留時間約3分で以つて再押出工程にかけた。押
出物のメルトインデツクスを測定したところ約
550の値が得られた。237.8℃の押出工程がメルト
インデツクスに何ら影響を与えないことを証明す
るために押出物を再び押出工程にかけたところメ
ルトインデツクスは550から580に上昇していた。
従つてメルトインデツクスの増加の約95%はペレ
ツト中の崩壊促進剤が原因であり約5%は押出機
の作用が原因であつた。
These pellets were then subjected to a re-extrusion step at a temperature of 237.8 DEG C. and an extruder residence time of about 3 minutes. The melt index of the extrudate was measured to be approx.
A value of 550 was obtained. To prove that the 237.8°C extrusion process had no effect on the melt index, the extrudate was re-extruded and the melt index increased from 550 to 580.
Therefore, about 95% of the increase in melt index was due to the disintegration promoter in the pellets and about 5% was due to the action of the extruder.

実施例 2 実施例1と同じ薄片及び装置を用い。ただ実施
例1と異なる点は0.3%ルーパーゾル130を薄片に
添加したことである。ペレツトのメルトインデツ
クスは測定の結果45乃至50であることが分つた。
再押出工程の際の押出物は約660のメルトインデ
ツクスを有することが分つた。実施例1と同様に
してペレツトの切断特性は商業的に満足できるも
のであつた。
Example 2 Using the same flakes and equipment as Example 1. The only difference from Example 1 is that 0.3% Loupersol 130 was added to the flakes. The melt index of the pellets was found to be 45 to 50 as a result of measurement.
The extrudate during the re-extrusion process was found to have a melt index of approximately 660. As in Example 1, the cutting properties of the pellets were commercially satisfactory.

実施例 3 Witco Chemical USP−138をその濃度が0.35
重量パーセントになるように薄片に適用した。こ
の配合物を温度190.6℃、押出機滞留時間約2分
で以つて押出工程にかけた。押出した試料のメル
トインデツクスは測定の結果約15であることが分
つた。この試料を温度251.7℃、滞留時間3分で
以つて再押出工程にかけたところメルトインデツ
クスは215の値が測定された。過酸化物を添加し
ないで上記方法によつて加工した薄片は1.7のメ
ルトインデツクスが測定された。
Example 3 Witco Chemical USP-138 at a concentration of 0.35
The weight percent was applied to the flakes. This formulation was subjected to an extrusion process at a temperature of 190.6°C and an extruder residence time of approximately 2 minutes. The melt index of the extruded sample was determined to be approximately 15. When this sample was re-extruded at a temperature of 251.7°C and a residence time of 3 minutes, a melt index value of 215 was measured. A melt index of 1.7 was measured for flakes processed by the above method without the addition of peroxide.

実施例 4 2%ルーパーゾル130をHercuies PC−973と呼
ばれる市販のポリプロピレンペレツトに配合し
た。次にこの配合物を温度170℃、滞留時間1分
で以つて押出工程にかけた。理論的には過酸化物
の98%が反応しないで押出物の中に残つたことに
なる。次にこの過酸化物が濃縮された押出物を
種々でもつてポリプロピレンペレツトに配合し
た。理論的当量の純粋な過酸化物を他のペレツト
に添加した。これらの「濃縮物」/ポリプロピレ
ン配合物と液体過酸化物/ポリプロピレン配合物
を別々にブラベンダー押出機を用いて温度240.6
℃、滞留時間7分でもつて押出工程にかけた。押
出機のダイの先端から出たペレツトの粘度を測定
しその値を第1図に示した。両者とも同等である
ことが分る。
Example 4 2% Loopersol 130 was blended into commercially available polypropylene pellets called Hercuies PC-973. This formulation was then subjected to an extrusion process at a temperature of 170°C and a residence time of 1 minute. Theoretically, 98% of the peroxide would remain unreacted in the extrudate. The various peroxide-enriched extrudates were then blended into polypropylene pellets. A theoretical equivalent of pure peroxide was added to the other pellet. These "concentrates"/polypropylene blends and liquid peroxide/polypropylene blends were separately processed using a Brabender extruder at a temperature of 240.6
℃ and a residence time of 7 minutes. The viscosity of the pellets discharged from the tip of the die of the extruder was measured and the values are shown in FIG. It turns out that both are equivalent.

かくして本発明は非崩壊促進剤の濃縮物を含む。
5重量%までの濃度の崩壊促進剤が容易に形成で
き、また高濃度の崩壊促進剤の形成も可能であ
る。
Thus, the present invention includes a concentrate of non-disintegration accelerators.
Concentrations of disintegration promoters up to 5% by weight can be easily formed, and formation of high concentrations of disintegration promoters is also possible.

本発明をいかなる特定の理論にも限定するもの
ではない、特定の崩壊促進剤の特徴の意義を仮定
することができる。半減期を求める計算から半減
期反応速度係数とがアーレニウスの法則に近似的
に従うことが分る。
Without limiting the invention to any particular theory, the significance of particular disintegration accelerator characteristics can be hypothesized. From calculations to determine the half-life, it can be seen that the half-life reaction rate coefficient approximately follows Arrhenius' law.

すなわち loK= −19700/T+40.4(ルーパーゾル130) loK= −19700/T+41.6(ルーパーゾル101) ただしK=ポリプロピレン中の毎分の半減期反
応速度係数。T=絶対温度〓 Kが決まると次の式によつて一定時間後の未反
応崩壊促進剤の量を求めることができる。
i.e. l oK = -19700/T+40.4 (Loopersol 130) l oK = -19700/T+41.6 (Loopersol 101) where K = half-life reaction rate coefficient per minute in polypropylene. T=absolute temperature Once K is determined, the amount of unreacted disintegration accelerator after a certain period of time can be determined by the following equation.

CA/CA゜=e-kt ただしCA=未反応崩壊剤の濃度。 C A /C A゜=e -kt where C A = concentration of unreacted disintegrant.

CA゜=崩壊促進剤の初期濃度 t=反応時間(分) 例えば、210℃(483〓)1分後における未反応
率を比較するルーパーゾル101はわずか10%に対
してルーパーゾル130の場合は50%になる。
C A゜ = Initial concentration of disintegration accelerator t = Reaction time (minutes) For example, comparing the unreacted rate after 1 minute at 210°C (483〓), Loupersol 101 is only 10%, while Loupersol 130 is 50%. %become.

加うるに、1個の装置を出るポリマーの粘度は
次の式で予測できることが分る。
In addition, it is found that the viscosity of the polymer exiting a single device can be predicted by the following equation:

1/μ=1/μ゜+KCR ただし μ=化学崩壊後、装置を出るポリマーの粘度。 1/μ=1/μ゜+KC R where μ= viscosity of the polymer leaving the device after chemical breakdown.

μ゜=化学崩壊をしないで装置を出るポリマーの
粘度。
μ゜ = viscosity of the polymer that leaves the device without chemical breakdown.

K=化学崩壊効率係数。 K = chemical decay efficiency coefficient.

CR=装置を出る際に反応する崩壊促進剤の量。 C R = amount of disintegration accelerator reacting on exiting the device.

なおCR=CA゜−CAであるため、この式を上式
にあてはめると、 1/μ=1/μ゜+KCA(1−e-kt) を得る。
Note that since C R =C A °-C A , applying this equation to the above equation yields 1/μ=1/μ°+KC A (1-e -kt ).

従つて一定の定数(KCA゜)について考えると
ポリマーの極限の粘度は用いられる崩壊促進剤に
関係なく長時間の反応の後は全部同じになる。し
かし粘度と時間との相関関係は半減期反応速度係
数Kに依存する。例えば、第1図は0.005poise-1
(例えばルーパーゾル130又はルーパーゾル101に
対する典型的な値)のKCA及び201.7℃でペレツ
ト化/押出工程を実施している時のポリマーの初
期粘度10000ポアズに基づく時間対流出ポリプロ
ピレンポリマー粘度の関係を示すグラフである。
このグラフではルーパーゾル130の試料とルーパ
ーゾル101の試料の極限粘度はほとんど同じであ
るが1乃至3分の範囲にある通常のペレツト化時
間における「ペレツト化」粘度についてはルーパ
ーゾル130はルーパーゾル101の約2倍となること
が証明されている。
Therefore, considering a constant constant (KC A °), the ultimate viscosity of the polymer will be the same after a long reaction time, regardless of the disintegration promoter used. However, the relationship between viscosity and time depends on the half-life reaction rate coefficient K. For example, Figure 1 shows 0.005poise -1
Figure 2 shows the relationship of effluent polypropylene polymer viscosity versus time based on a KC A of (typical values for example Loupersol 130 or Loupersol 101) and an initial polymer viscosity of 10000 poise when carrying out the pelletizing/extrusion process at 201.7°C. It is a graph.
This graph shows that the intrinsic viscosities of the samples of Looper Sol 130 and Looper Sol 101 are almost the same, but in terms of "pelletizing" viscosity at normal pelletizing times in the range of 1 to 3 minutes, Looper Sol 130 is about 2 times that of Looper Sol 101. It has been proven to double.

半減期の短かい崩壊促進剤を用いると、滞留時
間1分後に201.7℃にてペレタイザーを出る際の
ポリプロピレンの粘度はルーパーゾル101の場合
のわずか67%であり、またルーパーゾル130の場
合のわずか30%である。かくしてルーパーゾル
130が一番好ましい。
With short half-life disintegration accelerators, the viscosity of polypropylene leaving the pelletizer at 201.7°C after a residence time of 1 minute is only 67% of that of Loupersol 101 and only 30% of that of Loupersol 130. It is. Thus Loupersol
130 is most preferred.

ルーパーゾル130の場合、崩壊促進剤の約50%
がペレツト化工程後に残留することがあるが、初
期の添加量が非常に少ないためポリマーを取扱う
う際の危険はほとんどない。再押出工程では加工
条件が少くとも237.8℃になるのが一般的であり
この温度ではルーパーゾル130の半減期係数が
6/分を超えるため再押出工程後の崩壊促進剤の
残留量は実質的に皆無となる。装置残留時間が例
えばわずか2.5分の場合はペレツト中の過酸化物
のわずか0.000017%しか押出物の中に残留しな
い。例えば、製造業者から送られたポリプロピレ
ンペレツトが0.2%ルーパーゾル130を含有してい
る場合は、加工業者の押出装置は237.8℃にて作
動し、また押出機滞留時間は2.5分であり、さら
に押出機を出るポリマー中のルーパーゾル130の
濃度は1ppbを下回る。
For Loupersol 130, approximately 50% of the disintegration accelerator
may remain after the pelletizing process, but the amount initially added is so small that there is little danger when handling the polymer. In the re-extrusion process, the processing conditions are generally at least 237.8℃, and at this temperature, the half-life coefficient of Loopersol 130 exceeds 6/min, so the amount of disintegration accelerator remaining after the re-extrusion process is essentially There will be none. If the equipment residence time is, for example, only 2.5 minutes, only 0.000017% of the peroxide in the pellets will remain in the extrudate. For example, if the polypropylene pellets sent by the manufacturer contain 0.2% Loopersol 130, the processor's extrusion equipment operates at 237.8°C, the extruder residence time is 2.5 minutes, and the extruder The concentration of Loopersol 130 in the polymer exiting the machine is below 1 ppb.

以上のようにして、本発明によるとポリマー製
造業者が容易にペレツト化できると同時に加工業
者のペレツト加工能力を有意に改善しまた上述の
目的及び利点を完全に満足するようにペレツトを
製造する方法が与えれらるものである。
Thus, in accordance with the present invention, there is provided a method for producing pellets that facilitates pelletization by polymer manufacturers, significantly improves pellet processing capabilities of processors, and fully satisfies the objects and advantages described above. is given.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る2つの崩壊促進剤の実施
例を用いたポリプロピレンの押出温度における反
応時間と粘度との相関関係を示すグラフである。
FIG. 1 is a graph showing the correlation between reaction time and viscosity at extrusion temperature of polypropylene using two examples of disintegration accelerators according to the present invention.

Claims (1)

【特許請求の範囲】 1 重量平均分子量の大きいポリプロピレンを調
製する工程と、 前記ポリプロピレンにポリプロピレン中の半減
期が375°F(190.6℃)の温度において0.5分を超え
る値を有する遊離基源崩壊促進剤を添加する添加
工程、及び 前記ポリマーをペレツト化するペレツト化工程
を備え、 前記ペレツト化工程におけるペレツト化は、ペ
レツト化した後前記ポリマーに対して少なくとも
約0.01重量%の崩壊促進剤が残留してさらに崩壊
作用を行うような条件下で行われるものであるポ
リプロピレンの加工方法。 2 前記ポリプロピレンは約250000乃至500000の
範囲にある重量平均分子量及び約10乃至15の分子
量分布を有することを特徴とする特許請求の範囲
第1項に記載の方法。 3 前記遊離基源崩壊促進剤は2,5−ジメチル
−2,5ビス−(t−ブチルペロキシ)ヘキシン
−3及び3,6,6,9,9−ペンタメチル−3
−(酢酸エチル)−1,2,4,5−テキシトラオ
キシシクロノナンから選ばれたものであることを
特徴とする特許請求の範囲第1項または第2項に
記載の方法。 4 前記添加工程において前記ポリマーの重量の
約0.01乃至0.7%の前記遊離基源崩壊促進剤を添
加することを特徴とする特許請求の範囲第1項乃
至第3項の何れかに記載の方法。 5 前記ペレツト化工程におけるペレツト化は、
前記遊離基源崩壊促進剤の少なくとも約75%(重
量%)がペレツト化後に未反応分として残留する
条件下で行われることを特徴とする特許請求の範
囲第1項乃至第4項の何れかに記載の方法。
[Scope of Claims] 1. A process for preparing a polypropylene having a high weight average molecular weight; and an accelerated decay of a free radical source having a half-life in the polypropylene of more than 0.5 minutes at a temperature of 375°F (190.6°C). and a pelletizing step of pelletizing the polymer, wherein the pelletizing step is such that at least about 0.01% by weight of the disintegration accelerator remains with respect to the polymer after pelletizing. A method for processing polypropylene, which is carried out under conditions that cause further disintegration. 2. The method of claim 1, wherein the polypropylene has a weight average molecular weight in the range of about 250,000 to 500,000 and a molecular weight distribution of about 10 to 15. 3 The free radical source decay accelerators are 2,5-dimethyl-2,5bis-(t-butylperoxy)hexyne-3 and 3,6,6,9,9-pentamethyl-3.
-(Ethyl acetate)-1,2,4,5-texitraoxycyclononane The method according to claim 1 or 2, characterized in that it is selected from -(ethyl acetate)-1,2,4,5-texitraoxycyclononane. 4. The method according to any one of claims 1 to 3, characterized in that in the addition step, about 0.01 to 0.7% of the free radical source decay accelerator based on the weight of the polymer is added. 5 Pelleting in the pelletizing step is as follows:
Any one of claims 1 to 4 is characterized in that the step is carried out under conditions in which at least about 75% (wt%) of the free radical source decay accelerator remains as an unreacted component after pelletizing. The method described in.
JP57102925A 1981-06-15 1982-06-15 Polymer processability improvement and polymer composition Granted JPS5823804A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27393881A 1981-06-15 1981-06-15
US273938 1999-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3297561A Division JPH0798843B2 (en) 1981-06-15 1991-11-14 Polypropylene pellets

Publications (2)

Publication Number Publication Date
JPS5823804A JPS5823804A (en) 1983-02-12
JPH0443924B2 true JPH0443924B2 (en) 1992-07-20

Family

ID=23046062

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57102925A Granted JPS5823804A (en) 1981-06-15 1982-06-15 Polymer processability improvement and polymer composition
JP3297561A Expired - Lifetime JPH0798843B2 (en) 1981-06-15 1991-11-14 Polypropylene pellets

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP3297561A Expired - Lifetime JPH0798843B2 (en) 1981-06-15 1991-11-14 Polypropylene pellets

Country Status (15)

Country Link
JP (2) JPS5823804A (en)
KR (1) KR860001115B1 (en)
AU (1) AU554655B2 (en)
BE (1) BE893522A (en)
BR (1) BR8203490A (en)
CA (1) CA1210176A (en)
DE (1) DE3222498C2 (en)
FR (1) FR2507607B1 (en)
GB (1) GB2100268B (en)
IT (1) IT1157210B (en)
LU (1) LU84200A1 (en)
MX (1) MX167645B (en)
NL (1) NL190931C (en)
PH (1) PH19549A (en)
ZA (1) ZA824064B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099108A (en) * 1983-11-04 1985-06-03 Tokuyama Soda Co Ltd Preparation of molded article of polypropylene
US4766200A (en) * 1984-06-01 1988-08-23 The Hygenic Corporation Process for improving the melt flow index of thermoplastic polymers
US4966952A (en) * 1984-06-01 1990-10-30 The Hygenic Corporation Thermoplastic polymer composition comprising trans 1,4-polyisoprene
EP0227048A3 (en) * 1985-12-24 1989-03-08 Paul J. Albee, Jr. Peroxide concentrate and polymer carrier
US4707524A (en) * 1986-05-06 1987-11-17 Aristech Chemical Corporation Controlled-rheology polypropylene
US4882407A (en) * 1986-12-23 1989-11-21 The Hygenic Corporation Thermoplastic endodontic composition having improved melt flow index
FR2613722B1 (en) * 1987-04-07 1990-11-23 Bp Chimie Sa PROCESS FOR THE MANUFACTURE OF PROPYLENE HOMOPOLYMER OR COPOLYMER GRANULES
GB2206524B (en) * 1987-07-08 1990-03-07 Courtaulds Films & Packaging Voided polypropylene films
GB2206525B (en) * 1987-07-08 1990-03-07 Courtaulds Films & Packaging Orientated polypropylene films
FR2620079B1 (en) * 1987-09-04 1990-01-19 Arjomari Prioux HIGH-MOULDABILITY REINFORCED THERMOPLASTIC SHEET
US5264493A (en) * 1988-02-19 1993-11-23 Fina Research, S.A. Process for the treatment of polypropylene
FR2627498B1 (en) * 1988-02-19 1990-07-06 Labofina Sa POLYPROPYLENE PROCESSING PROCESS
US5198506A (en) * 1991-05-10 1993-03-30 Phillips Petroleum Company High organic peroxide content polypropylene
AT403581B (en) * 1993-06-07 1998-03-25 Danubia Petrochem Polymere METHOD FOR PRODUCING NEW POLYPROPYLENE BY CHEMICAL DEGRADING
DE4321529A1 (en) * 1993-06-29 1995-01-12 Danubia Petrochem Deutschland Novel polypropylenes obtainable by chemical degradation
US5814404A (en) * 1994-06-03 1998-09-29 Minnesota Mining And Manufacturing Company Degradable multilayer melt blown microfibers
US5594074A (en) * 1995-02-21 1997-01-14 Shell Oil Company Process for improving processability of ultra low melt viscosity polymer
US6423800B1 (en) 1999-05-26 2002-07-23 Fina Technology, Inc. Pelletized polyolefin having ultra-high melt flow and its articles of manufacture
GB0005629D0 (en) 2000-03-10 2000-05-03 Clariant Int Ltd Light stabilizer composition
DE102011110154A1 (en) * 2011-08-12 2013-02-14 Deutsche Institute Für Textil- Und Faserforschung Denkendorf METHOD FOR THE PRODUCTION OF SURFACE-MODIFIED POLYOLEFIN YARNES, THE POLYOLEFINGARIN THEREFORE AVAILABLE AND THE USE THEREOF

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833023A (en) * 1971-08-30 1973-05-07
JPS5354247A (en) * 1976-10-27 1978-05-17 Furukawa Electric Co Ltd:The Preparation of organic peroxide impregnatedpolyolefinic resin pellets or gra nules

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148196B2 (en) * 1972-03-11 1976-12-18
TR17756A (en) * 1972-07-25 1976-07-01 Oesterr Stickstoffwerke Ag PROCEDURE FOR THE MANUFACTURING OF POLYPROPYLENE WITH MAHDUT MOLECUEL WEIGHT
JPS5635689B2 (en) * 1973-03-13 1981-08-19
US4087486A (en) * 1975-05-15 1978-05-02 Standard Oil Company (Indiana) Polypropylene composition containing EPR
JPS55742A (en) * 1978-06-20 1980-01-07 Kazuo Saotome Polymer composition composed of polypropylene having relatively low molecular weight
US4296022A (en) * 1980-06-04 1981-10-20 Chevron Research Polypropylene blend compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833023A (en) * 1971-08-30 1973-05-07
JPS5354247A (en) * 1976-10-27 1978-05-17 Furukawa Electric Co Ltd:The Preparation of organic peroxide impregnatedpolyolefinic resin pellets or gra nules

Also Published As

Publication number Publication date
CA1210176A (en) 1986-08-19
KR840000589A (en) 1984-02-25
IT1157210B (en) 1987-02-11
BE893522A (en) 1982-12-15
JPH0798843B2 (en) 1995-10-25
AU8476782A (en) 1982-12-23
NL8202406A (en) 1983-01-03
AU554655B2 (en) 1986-08-28
MX167645B (en) 1993-03-31
LU84200A1 (en) 1983-01-20
FR2507607B1 (en) 1986-08-14
ZA824064B (en) 1983-04-27
NL190931C (en) 1994-11-01
NL190931B (en) 1994-06-01
DE3222498A1 (en) 1983-01-05
GB2100268B (en) 1984-09-19
BR8203490A (en) 1983-06-07
DE3222498C2 (en) 1994-04-07
JPH051111A (en) 1993-01-08
FR2507607A1 (en) 1982-12-17
KR860001115B1 (en) 1986-08-13
IT8248643A0 (en) 1982-06-15
PH19549A (en) 1986-05-20
GB2100268A (en) 1982-12-22
JPS5823804A (en) 1983-02-12

Similar Documents

Publication Publication Date Title
JPH0443924B2 (en)
US4451589A (en) Method of improving processability of polymers and resulting polymer compositions
US4412898A (en) Process for chlorination of PVC in water without use of swelling agents
FI88930C (en) Process for producing propylene homopolymer or copolymer pellets
US5594074A (en) Process for improving processability of ultra low melt viscosity polymer
US5264493A (en) Process for the treatment of polypropylene
EP0334829B1 (en) Process for the treatment of polypropylene
US4490323A (en) Incorporation of liquid additives into polymeric films
US6433133B1 (en) Process for reducing the weight average molecular weight and melt index ratio of polyethylenes and polyethylene products
US5530073A (en) Process for increased peroxide efficiency in controlled rheology polypropylene resin
US3250748A (en) Production of water-soluble polyvinyl alcohol-urea derivatives
US3086966A (en) 2, 5-dimethyl-2, 5-di(t-butylperoxy) hexane
US5883209A (en) Vinyl chloride polymerization with carboxylic acid ester of polyol and suspension agents
MXPA02009584A (en) Process for producing high melt flow polymers.
EP0058171B1 (en) Process for chlorination of pvc in water without use of swelling agents
US5300539A (en) Post-polymerization additive incorporation process
US7713451B2 (en) Process for manufacturing a water-resistant telecommunication cable
US4004069A (en) Unsaturated ethylene-vinyl acetate copolymers and unsaturated polyethylenes and methods of preparing same by partial or exhaustive deacetylation of ethylene-vinyl acetate copolymers
JP3024669B2 (en) Method of manufacturing wear-resistant electric wires and cables
RU2075560C1 (en) Method of preparing pulp to manufacture molded issues
US2359196A (en) Production of vinyl aromatic resins
US3006903A (en) Polymerization process
BE1006075A6 (en) Rigid formulations based on polyvinyl chloride reinforced with glass fibresand use of said formulations for the forming of rigid items by injectionmoulding
JPH0463835A (en) Production of high-nitrile copolymer pellet
CH453702A (en) Process for preparing a stable aqueous dispersion of a polymer of at least one vinyl or vinylidene monomer